JittorMirror/python/jittor/utils/pytorch_converter.py

418 lines
14 KiB
Python

# ***************************************************************
# Copyright (c) 2020 Jittor. Authors:
# Wenyang Zhou <576825820@qq.com>
# Dun Liang <randonlang@gmail.com>.
# All Rights Reserved.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import ast, astunparse
import numpy as np
pjmap = {
# ***************************************************************
# Module
# ***************************************************************
'Conv2d': {
'pytorch': {
'args': "in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros'"
},
'jittor': {
'module': 'nn',
'name': 'Conv',
'args': 'in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True'
},
'links': {},
'extras': {},
},
'MaxPool2d': {
'pytorch': {
'args': 'kernel_size, stride=None, padding=0, dilation=1, return_indices=False',
},
'jittor': {
'module': 'nn',
'name': 'Pool',
'args': 'kernel_size, stride=None, padding=0, dilation=None, return_indices=None, ceil_mode=False, op="maximum"'
},
'links': {},
'extras': {
"op": "'maximum'",
},
},
'AvgPool2d': {
'pytorch': {
'args': 'kernel_size, stride=None, padding=0, dilation=1, return_indices=False',
},
'jittor': {
'module': 'nn',
'name': 'Pool',
'args': 'kernel_size, stride=None, padding=0, dilation=None, return_indices=None, ceil_mode=False, op="maximum"'
},
'links': {},
'extras': {
"op": "'mean'",
},
},
'ReLU': {
'pytorch': {
'args': 'inplace=False',
},
'jittor': {
'module': 'nn',
'name': 'ReLU',
'args': ''
},
'links': {},
'extras': {},
},
'BatchNorm2d': {
'pytorch': {
'args': 'num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True',
},
'jittor': {
'module': 'nn',
'name': 'BatchNorm',
'args': 'num_features, eps=1e-5, momentum=0.1, affine=None, is_train=True'
},
'links': {},
'extras': {},
},
'LeakyReLU': {
'pytorch': {
'args': 'negative_slope=0.01, inplace=False',
},
'jittor': {
'module': 'nn',
'name': 'Leaky_relu',
'args': ''
},
'links': {},
'extras': {},
},
'kaiming_normal_': {
'pytorch': {
'args': "tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'",
},
'jittor': {
'module': 'init',
'name': 'relu_invariant_gauss_',
'args': 'var, mode="fan_in"'
},
'links': {'tensor': 'var'},
'extras': {},
},
'constant_': {
'pytorch': {
'args': "tensor, val",
},
'jittor': {
'module': 'init',
'name': 'constant_',
'args': 'var, value=0.0'
},
'links': {'tensor': 'var', 'val': 'value'},
'extras': {},
},
'normal_': {
'pytorch': {
'args': "tensor, mean=0.0, std=1.0",
},
'jittor': {
'module': 'init',
'name': 'gauss_',
'args': 'var, mean=0.0, std=1.0'
},
'links': {'tensor': 'var'},
'extras': {},
},
'cat': {
'pytorch': {
'args': "tensors, dim=0, out=None",
},
'jittor': {
'module': 'jt.contrib',
'name': 'concat',
'args': 'vars, dim=0'
},
'links': {'tensors': 'vars'},
'extras': {},
},
# ***************************************************************
# torch.Tensor.xxx(...) and torch.xxx(torch.Tensor, ...)
# Example: x.reshape([2,3]) and torch.reshape(x, [2,3])
# ***************************************************************
'flatten': {
'pytorch': {
'prefix': ['torch'],
'args_prefix': 'input, start_dim=0, end_dim=-1',
'args': 'start_dim=0, end_dim=-1',
},
'jittor': {
'prefix': 'jt',
'module': '',
'name': 'flatten',
'args_prefix': 'input, start_dim=0, end_dim=-1',
'args': 'start_dim=0, end_dim=-1'
},
'links': {'aaaaa': 'bbbb'},
'extras': {},
},
'reshape': {
'pytorch': {
'prefix': ['torch'],
'args_prefix': 'input, shape',
'args': 'shape',
},
'jittor': {
'prefix': 'jt',
'module': '',
'name': 'reshape',
'args_prefix': 'input, shape',
'args': 'shape'
},
'links': {},
'extras': {},
},
'permute': {
'pytorch': {
'prefix': [],
'args_prefix': '',
'args': '*dim',
},
'jittor': {
'prefix': '',
'module': '',
'name': 'permute',
'args_prefix': '',
'args': '*dim'
},
'links': {},
'extras': {},
},
# 好像不需要如果一毛一样的话
'view': {
'pytorch': {
'prefix': [],
'args_prefix': '',
'args': '*shape',
},
'jittor': {
'prefix': '',
'module': '',
'name': 'view',
'args_prefix': '',
'args': '*shape'
},
'links': {},
'extras': {},
}
}
def replace(a):
if hasattr(a, "attr"):
if a.attr == "Conv2d": a.attr = "Conv"
if a.attr == "BatchNorm2d": a.attr = "BatchNorm"
if a.attr == "ReLU": a.attr = "Relu"
if a.attr == "AvgPool2d": a.attr = "Pool"
if a.attr == "MaxPool2d": a.attr = "Pool"
if a.attr == "LeakyReLU": a.attr = "Leaky_relu"
if hasattr(a, "id"):
if a.id == "Conv2d": a.id = "Conv"
if a.id == "BatchNorm2d": a.id = "BatchNorm"
if a.id == "ReLU": a.id = "Relu"
if a.id == "AvgPool2d": a.id = "Pool"
if a.id == "MaxPool2d": a.id = "Pool"
if a.id == "LeakyReLU": a.id = "Leaky_relu"
import_flag = []
def convert(code):
a = ast.parse(code)
dfs(a)
a.body.insert(0, ast.parse('import jittor as jt').body[0])
if 'init' not in import_flag:
a.body.insert(1, ast.parse('from jittor import init').body[0])
if 'nn' not in import_flag:
a.body.insert(2, ast.parse('from jittor import nn').body[0])
return astunparse.unparse(a)
def convert_(prefix, func_name, ags, kws):
info = pjmap[func_name]
p_prefix = info['pytorch']['prefix'] if 'prefix' in info['pytorch'].keys() else None
if p_prefix is not None and prefix in p_prefix:
p_ags = info['pytorch']['args_prefix']
j_ags = info['jittor']['args_prefix']
else:
p_ags = info['pytorch']['args']
j_ags = info['jittor']['args']
j_prefix = info['jittor']['prefix'] if 'prefix' in info['jittor'].keys() else None
j_module = info['jittor']['module']
j_name = info['jittor']['name']
links = info['links']
extras = info['extras']
jj_ags = []
jj_kws = {}
pp_ags = []
pp_kws = {}
if j_ags == '' and p_ags == '':
# no args in Pytorch and Jittor.
if p_prefix is None:
return f"{j_module}.{j_name}()"
else:
if prefix in p_prefix:
return f"{j_prefix}.{j_name}()"
else:
return f"{prefix}.{j_name}()"
else:
j_ags = j_ags.replace(' ','').split(',')
for j_ag in j_ags:
if '=' in j_ag:
k,v = j_ag.split('=')
jj_kws[k] = v
else:
jj_ags.append(j_ag)
p_ags = p_ags.replace(' ','').split(',')
for p_ag in p_ags:
if '=' in p_ag:
k,v = p_ag.split('=')
pp_kws[k] = v
else:
pp_ags.append(p_ag)
if len(jj_ags) == 0 and len(pp_ags) != 0:
raise AttributeError(f"{func_name} in Jittor has no Attribute {pp_ags[0]}")
if len(pp_ags) > len(ags) + len(kws):
raise RuntimeError(f'There are needed {len(pp_ags) + len(list(pp_kws.keys()))} args in Pytorch {func_name} function, but you only provide {len(ags) + len(kws)}')
ags_ = []
for i in range(len(pp_ags)):
if i < len(ags):
if '*' in pp_ags[i]:
ags_.append('(' + ', '.join(ags[i:]) + ')')
ags = ags_
break
else:
ags_.append(ags[i])
else:
break
if len(pp_ags) + len(list(pp_kws.keys())) < len(ags) + len(kws):
raise RuntimeError(f'There are only {len(pp_ags) + len(list(pp_kws.keys()))} args in Pytorch {func_name} function, but you provide {len(ags) + len(kws)}')
j_ags_flag = np.zeros(len(jj_ags))
j_ags_values = {}
j_kws_values = {}
for i,ag in enumerate(ags):
if len(pp_ags) == 0:
ag_name = list(pp_kws.keys())[i]
elif i < len(pp_ags):
ag_name = pp_ags[i]
elif i >= len(pp_ags) and (i-len(pp_ags)) <= len(list(pp_kws.keys())):
ag_name = list(pp_kws.keys())[i-len(pp_ags)]
else:
raise RuntimeError(f'The args number is not matc{func_name} in Jittor has no Attribute {ag_name}')
if ag_name in links.keys():
ag_name = links[ag_name]
if ag_name in jj_ags:
j_ags_flag[jj_ags.index(ag_name)] = 1
j_ags_values[str(jj_ags.index(ag_name))] = ag
elif ag_name in jj_kws.keys():
j_kws_values[ag_name] = ag
else:
raise AttributeError(f'{func_name} in Jittor has no Attribute {ag_name}')
for i,kw in enumerate(kws):
kw_name, kw_value = kw.split('=')
if kw_name in links.keys():
kw_name = links[kw_name]
if kw_name in jj_ags:
j_ags_flag[jj_ags.index(kw_name)] = 1
j_ags_values[str(jj_ags.index(kw_name))] = kw_value
elif kw_name in jj_kws.keys():
j_kws_values[kw_name] = kw_value
else:
raise AttributeError(f'{func_name} in Jittor has no Attribute {kw_name}')
len_jj_ags = len(jj_ags) if len(jj_ags) == 0 or jj_ags[0] != '' else 0
if j_ags_flag.sum() < len_jj_ags:
missing_args = []
for i in range(len(jj_ags)):
if j_ags_flag[i] == 0:
missing_args.append(jj_ags[i])
raise AttributeError(f"the needed args of {func_name} in Jittor is {', '.join(jj_ags)}, so you need to give value of {', '.join(missing_args)}.")
if extras:
for k in extras.keys():
if k in jj_ags:
j_ags_values[str(jj_ags.index(k))] = extras[k]
elif k in jj_kws.keys():
j_kws_values[k] = extras[k]
else:
raise AttributeError(f"there is not attribute named {k} in Jittor {func_name}, you should delete it in {func_name} extras.")
j_ags_ = [j_ags_values[str(i)] for i in range(len(list(j_ags_values.keys())))]
j_kws_ = [key + "=" + j_kws_values[key] for key in j_kws_values.keys()]
j_func = f"{j_module}.{j_name}({', '.join(j_ags_+j_kws_)})"
if p_prefix is None:
return f"{j_module}.{j_name}({', '.join(j_ags_+j_kws_)})"
else:
if prefix in p_prefix:
return f"{j_prefix}.{j_name}({', '.join(j_ags_+j_kws_)})"
else:
return f"{prefix}.{j_name}({', '.join(j_ags_+j_kws_)})"
return j_func
def dfs(a):
if isinstance(a, ast.Import):
if 'torch' in astunparse.unparse(a) and 'init' in astunparse.unparse(a):
import_flag.append('init')
return ast.parse('from jittor import init').body[0]
if 'torch' in astunparse.unparse(a) and 'nn' in astunparse.unparse(a):
import_flag.append('nn')
return ast.parse('from jittor import nn').body[0]
if a.names[0].name == 'torch':
return 'delete'
elif isinstance(a, ast.ImportFrom):
if 'torch' in a.module:
return 'delete'
elif isinstance(a, ast.Call):
for idx, ag in enumerate(a.args):
ret = dfs(ag)
if ret is not None:
a.args[idx] = ret
for idx, kw in enumerate(a.keywords):
ret = dfs(kw)
if ret is not None:
a.keywords[idx] = ret
func = astunparse.unparse(a.func).strip('\n').split('.')
prefix = '.'.join(func[0:-1])
func_name = func[-1]
if func_name in pjmap.keys():
ags = [astunparse.unparse(ag).strip('\n') for ag in a.args]
kws = [astunparse.unparse(kw).strip('\n') for kw in a.keywords]
ret = convert_(prefix, func_name, ags, kws)
return ast.parse(ret).body[0].value
if ".load_state_dict" in astunparse.unparse(a.func):
a.func.attr = 'load_parameters'
if astunparse.unparse(a.func).strip('\n').endswith(".size"):
ags = [astunparse.unparse(ag).strip('\n') for ag in a.args]
if len(ags) != 0:
con = astunparse.unparse(a.func).split('.size')[0] + '.shape[' + ','.join(ags) + ']'
else:
con = astunparse.unparse(a.func).replace('size', 'shape')
return ast.parse(con).body[0].value
elif isinstance(a, ast.Expr): pass
elif isinstance(a, ast.Attribute) or isinstance(a, ast.Name): replace(a)
elif isinstance(a, ast.FunctionDef):
if a.name == 'forward': a.name = 'execute'
if hasattr(a, '__dict__'):
for k in a.__dict__.keys():
if isinstance(a.__dict__[k], list):
delete_flag = []
for i,a_ in enumerate(a.__dict__[k]):
ret = dfs(a_)
if ret is 'delete':
delete_flag.append(True)
del a.__dict__[k][i]
continue
if ret is not None:
a.__dict__[k][i] = ret
delete_flag.append(False)
tmp = [a_ for i,a_ in enumerate(a.__dict__[k]) if delete_flag[i] == False]
a.__dict__[k] = tmp
else:
ret = dfs(a.__dict__[k])
if ret is not None:
a.__dict__[k] = ret