JittorMirror/python/jittor/init.py

84 lines
2.7 KiB
Python

# ***************************************************************
# Copyright (c) 2020 Jittor. Authors:
# Guowei Yang <471184555@qq.com>
# Dun Liang <randonlang@gmail.com>.
# All Rights Reserved.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
import numpy as np
import math
def constant(shape, dtype, value=0.0):
return jt.array(np.ones(shape)*value).unary(dtype)
def constant_(var, value=0.0):
var.assign(constant(tuple(var.shape), var.dtype, value))
def uniform(shape, dtype, low, high):
return jt.array(np.random.uniform(low, high, shape)).unary(dtype)
def uniform_(var, low, high):
var.assign(uniform(tuple(var.shape), var.dtype, low, high))
def gauss(shape, dtype, mean=0.0, std=1.0):
return jt.array(np.random.normal(mean, std, shape)).unary(dtype)
def gauss_(var, mean=0.0, std=1.0):
var.assign(gauss(tuple(var.shape), var.dtype, mean, std))
def invariant_uniform(shape, dtype, mode="fan_in"):
assert len(shape)>1
assert mode=="fan_in" or mode=="fan_out"
matsize=1
for i in shape[2:]:
matsize *= i
fan = (shape[1] * matsize) if mode=="fan_in" else (shape[0] * matsize)
bound = math.sqrt(1.0/fan)
return uniform(shape, dtype, -bound, bound)
def invariant_uniform_(var, mode="fan_in"):
var.assign(invariant_uniform(tuple(var.shape), var.dtype, mode))
def relu_invariant_gauss(shape, dtype, mode="fan_in"):
assert len(shape)>1
assert mode=="fan_in" or mode=="fan_out"
matsize=1
for i in shape[2:]:
matsize *= i
fan = (shape[1] * matsize) if mode=="fan_in" else (shape[0] * matsize)
std = math.sqrt(2.0/fan)
return gauss(shape, dtype, 0, std)
def relu_invariant_gauss_(var, mode="fan_in"):
var.assign(relu_invariant_gauss(tuple(var.shape), var.dtype, mode))
#TODO: bound = gain * math.sqrt(6.0/fan) ??
def xavier_uniform(shape, dtype, gain=1.0):
assert len(shape)>1
matsize=1
for i in shape[2:]:
matsize *= i
fan = (shape[1] * matsize) + (shape[0] * matsize)
bound = gain * math.sqrt(1.0/fan)
return uniform(shape, dtype, -bound, bound)
def xavier_uniform_(var, gain=1.0):
var.assign(xavier_uniform(tuple(var.shape), var.dtype, gain))
def xavier_gauss(shape, dtype, gain=1.0):
assert len(shape)>1
matsize=1
for i in shape[2:]:
matsize *= i
fan = (shape[1] * matsize) + (shape[0] * matsize)
std = gain * math.sqrt(2.0/fan)
return gauss(shape, dtype, 0, std)
def xavier_gauss_(var, gain=1.0):
var.assign(xavier_gauss(tuple(var.shape), var.dtype, gain))