mirror of https://github.com/Jittor/Jittor
39 lines
1.3 KiB
Python
39 lines
1.3 KiB
Python
|
|
# ***************************************************************
|
|
# Copyright (c) 2020 Jittor. Authors:
|
|
# Xiangli Li <1905692338@qq.com>
|
|
# Dun Liang <randonlang@gmail.com>.
|
|
# All Rights Reserved.
|
|
# This file is subject to the terms and conditions defined in
|
|
# file 'LICENSE.txt', which is part of this source code package.
|
|
# ***************************************************************
|
|
import unittest
|
|
import jittor as jt
|
|
import numpy as np
|
|
import jittor.nn as jnn
|
|
|
|
skip_this_test = False
|
|
|
|
try:
|
|
jt.dirty_fix_pytorch_runtime_error()
|
|
import torch
|
|
import torch.nn as tnn
|
|
except:
|
|
torch = None
|
|
tnn = None
|
|
skip_this_test = True
|
|
|
|
@unittest.skipIf(skip_this_test, "No Torch found")
|
|
class TestSparse(unittest.TestCase):
|
|
def test_sparse_var(self):
|
|
indices = np.array([[0,1,1],[2,0,2]])
|
|
values = np.array([3,4,5]).astype(np.float32)
|
|
shape = [2,3]
|
|
jt_array = jt.sparse.sparse_array(jt.array(indices),jt.array(values),jt.NanoVector(shape))
|
|
torch_tensor = torch.sparse.FloatTensor(torch.from_numpy(indices),torch.from_numpy(values),torch.Size(shape))
|
|
jt_numpy = jt_array.to_dense().numpy()
|
|
torch_numpy = torch_tensor.to_dense().numpy()
|
|
assert np.allclose(jt_numpy,torch_numpy)
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main() |