JittorMirror/python/jittor/einops/layers/jittor.py

56 lines
2.0 KiB
Python

from typing import Optional, Dict
import jittor as jt
from jittor import nn
import numpy as np
from jittor.einops.layers import RearrangeMixin, ReduceMixin
from jittor.einops.layers._einmix import _EinmixMixin
__author__ = 'Ruiyang Liu'
class Rearrange(RearrangeMixin, jt.nn.Module):
def execute(self, input):
return self._apply_recipe(input)
class Reduce(ReduceMixin, jt.nn.Module):
def execute(self, input):
return self._apply_recipe(input)
class EinMix(_EinmixMixin, jt.nn.Module):
def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound):
self.weight = jt.zeros(weight_shape)
nn.init.uniform_(self.weight, low = -weight_bound, high = weight_bound)
if bias_shape is not None:
self.bias = jt.zeros(bias_shape)
nn.init.uniform_(self.bias, low = -bias_bound, high = bias_bound)
else:
self.bias = None
def _create_rearrange_layers(self,
pre_reshape_pattern: Optional[str],
pre_reshape_lengths: Optional[Dict],
post_reshape_pattern: Optional[str],
post_reshape_lengths: Optional[Dict],
):
self.pre_rearrange = None
if pre_reshape_pattern is not None:
self.pre_rearrange = Rearrange(pre_reshape_pattern, **pre_reshape_lengths)
self.post_rearrange = None
if post_reshape_pattern is not None:
self.post_rearrange = Rearrange(post_reshape_pattern, **post_reshape_lengths)
def execute(self, input):
if self.pre_rearrange is not None:
input = self.pre_rearrange(input)
result = jt.linalg.einsum(self.einsum_pattern, input, self.weight)
if self.bias is not None:
result += self.bias
if self.post_rearrange is not None:
result = self.post_rearrange(result)
return result