JittorMirror/python/jittor/test/perf/perf.py

225 lines
7.8 KiB
Python

import sys, os
suffix = ""
import jittor as jt
import time
import jittor_utils as jit_utils
home_path = jit_utils.home()
perf_path = os.path.join(home_path, ".cache", "jittor_perf")
def main():
os.makedirs(perf_path+"/src/jittor", exist_ok=True)
os.makedirs(perf_path+"/src/jittor_utils", exist_ok=True)
os.system(f"cp -rL {jt.flags.jittor_path} {perf_path+'/src/'}")
os.system(f"cp -rL {jt.flags.jittor_path}/../jittor_utils {perf_path+'/src/'}")
use_torch_1_4 = os.environ.get("use_torch_1_4", "0") == "1"
dockerfile_src = r"""
FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04
RUN echo \
"deb [trusted=yes] https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse\n\
deb [trusted=yes] https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse\n\
deb [trusted=yes] https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse\n\
deb [trusted=yes] https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse" > /etc/apt/sources.list
# RUN rm -rf /var/lib/apt/lists/*
RUN apt update || true
RUN apt install wget \
python3.7 python3.7-dev \
g++ build-essential -y
WORKDIR /usr/src
RUN apt download python3-distutils && dpkg-deb -x ./python3-distutils* / \
&& wget -O - https://bootstrap.pypa.io/get-pip.py | python3.7
# change tsinghua mirror
RUN pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
RUN pip3 install
numpy \
tqdm \
pillow \
astunparse
RUN pip3 install torch torchvision
"""
global suffix
if use_torch_1_4:
suffix = "_1_4"
dockerfile_src = dockerfile_src.replace("torch ", "torch==1.4.0 ")
dockerfile_src = dockerfile_src.replace("torchvision", "torchvision==0.5.0")
with open("/tmp/perf_dockerfile", 'w') as f:
f.write(dockerfile_src)
assert os.system("sudo nvidia-smi -lgc 1500") == 0
# if the docker image is not built
if os.system(f"sudo docker image inspect jittor/jittor-perf{suffix}"):
assert os.system(f"sudo docker build --tag jittor/jittor-perf{suffix} -f /tmp/perf_dockerfile .") == 0
# run once for compile source
jt_fps = test_main("jittor", "resnet50", 1)
logs = ""
# resnext50_32x4d with bs=8 cannot pass this test
#### inference test
for model_name in ["resnet50", "wide_resnet50_2", # "resnext50_32x4d",
"resnet152", "wide_resnet101_2", "resnext101_32x8d",
"alexnet", "vgg11", "squeezenet1_1", "mobilenet_v2",
"densenet121", "densenet169", "densenet201",
"res2net50", "res2net101"]:
for bs in [1, 2, 4, 8, 16, 32, 64, 128]:
jt_fps = test_main("jittor", model_name, bs)
logs += f"jittor-{model_name}-{bs} {jt_fps}\n"
tc_fps = test_main("torch", model_name, bs)
logs += f"torch-{model_name}-{bs} {tc_fps}\n"
logs += f"compare-{model_name}-{bs} {jt_fps/tc_fps}\n"
print(logs)
#### train test
for model_name in ["train_resnet50", "train_resnet101"
]:
for bs in [1, 2, 4, 8, 16, 32, 64, 128]:
jt_fps = test_main("jittor", model_name, bs)
logs += f"jittor-{model_name}-{bs} {jt_fps}\n"
tc_fps = test_main("torch", model_name, bs)
logs += f"torch-{model_name}-{bs} {tc_fps}\n"
logs += f"compare-{model_name}-{bs} {jt_fps/tc_fps}\n"
print(logs)
with open(f"{perf_path}/jittor-perf{suffix}-latest.txt", "w") as f:
f.write(logs)
from datetime import datetime
with open(f"{perf_path}/jittor-perf{suffix}-{datetime.now()}.txt", "w") as f:
f.write(logs)
def test_main(name, model_name, bs):
cmd = f"sudo docker run --gpus all --rm -v {perf_path}:/root/.cache/jittor --network host jittor/jittor-perf{suffix} bash -c 'PYTHONPATH=/root/.cache/jittor/src python3.7 /root/.cache/jittor/src/jittor/test/perf/perf.py {name} {model_name} {bs}'"
fps = -1
try:
print("run cmd:", cmd)
if os.system(cmd) == 0:
with open(f"{perf_path}/{name}-{model_name}-{bs}.txt", 'r') as f:
fps = float(f.read().split()[3])
except:
pass
return fps
def time_iter(duration=2, min_iter=5):
start = time.time()
for i in range(10000000):
yield i
end = time.time()
if end-start>duration and i>=min_iter:
return
def test(name, model_name, bs):
print("hello", name, model_name, bs)
import numpy as np
import time
is_train = False
_model_name = model_name
if model_name.startswith("train_"):
is_train = True
model_name = model_name[6:]
if name == "torch":
import torch
import torchvision.models as tcmodels
from torch import optim
from torch import nn
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
model = tcmodels.__dict__[model_name]()
model = model.cuda()
else:
import jittor as jt
from jittor import optim
from jittor import nn
jt.flags.use_cuda = 1
jt.cudnn.set_algorithm_cache_size(10000)
import jittor.models as jtmodels
model = jtmodels.__dict__[model_name]()
if (model == "resnet152" or model == "resnet101") and bs == 128 and is_train:
jt.cudnn.set_max_workspace_ratio(0.05)
if is_train:
model.train()
else:
model.eval()
img_size = 224
if model_name == "inception_v3":
img_size = 300
test_img = np.random.random((bs, 3, img_size, img_size)).astype("float32")
if is_train:
label = (np.random.random((bs,)) * 1000).astype("int32")
if name == "torch":
test_img = torch.Tensor(test_img).cuda()
if is_train:
label = torch.LongTensor(label).cuda()
opt = optim.SGD(model.parameters(), 0.001)
sync = lambda: torch.cuda.synchronize()
jt = torch
else:
test_img = jt.array(test_img).stop_grad()
if is_train:
label = jt.array(label).stop_grad()
opt = optim.SGD(model.parameters(), 0.001)
sync = lambda: jt.sync_all(True)
sync()
use_profiler = os.environ.get("use_profiler", "0") == "1"
if hasattr(jt, "nograd"):
ng = jt.no_grad()
ng.__enter__()
def iter():
x = model(test_img)
if isinstance(x, tuple):
x = x[0]
if is_train:
loss = nn.CrossEntropyLoss()(x, label)
if name == "jittor":
opt.step(loss)
else:
opt.zero_grad()
loss.backward()
opt.step()
else:
if name == "jittor":
x.sync()
sync()
for i in time_iter():
iter()
sync()
for i in time_iter():
iter()
sync()
if use_profiler:
if name == "torch":
prof = torch.autograd.profiler.profile(use_cuda=True)
else:
prof = jt.profile_scope()
prof.__enter__()
if name == "jittor":
if hasattr(jt.flags, "use_parallel_op_compiler"):
jt.flags.use_parallel_op_compiler = 0
start = time.time()
for i in time_iter(10):
iter()
sync()
end = time.time()
if use_profiler:
prof.__exit__(None,None,None)
if name == "torch":
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=30))
total_iter = i+1
print("duration:", end-start, "FPS:", total_iter*bs/(end-start))
fpath = f"{home_path}/.cache/jittor/{name}-{_model_name}-{bs}.txt"
with open(fpath, 'w') as f:
f.write(f"duration: {end-start} FPS: {total_iter*bs/(end-start)}")
os.chmod(fpath, 0x666)
if len(sys.argv) <= 1:
main()
else:
name, model, bs = sys.argv[1:]
bs = int(bs)
test(name, model, bs)