JittorMirror/python/jittor/test/test_image_folder.py

80 lines
2.5 KiB
Python

# ***************************************************************
# Copyright (c) 2021
# Dun Liang <randonlang@gmail.com>.
# All Rights Reserved.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
import unittest
import os
import numpy as np
import random
pass_this_test = False
msg = ""
mid = 0
if hasattr(os, "uname") and os.uname()[1] == "jittor-ce":
mid = 1
try:
# check can we run this test
# test code
jt.dirty_fix_pytorch_runtime_error()
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch
traindir = ["/data1/cjld/imagenet/train/","/home/cjld/imagenet/train/"][mid]
check_num_batch = 5
assert os.path.isdir(traindir)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
except Exception as e:
pass_this_test = True
msg = str(e)
@unittest.skipIf(pass_this_test, f"can not run imagenet dataset test: {msg}")
class TestImageFolder(unittest.TestCase):
def test_imagenet(self):
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=256, shuffle=False)
random.seed(0)
tc_data = []
for i, data in enumerate(train_loader):
tc_data.append(data)
print("get", data[0].shape)
if i==check_num_batch: break
from jittor.dataset.dataset import ImageFolder
import jittor.transform as transform
dataset = ImageFolder(traindir).set_attrs(batch_size=256, shuffle=False)
dataset.set_attrs(transform = transform.Compose([
transform.RandomCropAndResize(224),
transform.RandomHorizontalFlip(),
transform.ImageNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]))
random.seed(0)
for i, (images, labels) in enumerate(dataset):
print("compare", i)
assert np.allclose(images.numpy(), tc_data[i][0].numpy())
assert np.allclose(labels.numpy(), tc_data[i][1].numpy())
if i==check_num_batch: break
if __name__ == "__main__":
unittest.main()