mirror of https://github.com/Jittor/Jittor
128 lines
5.1 KiB
Python
128 lines
5.1 KiB
Python
# ***************************************************************
|
|
# Copyright (c) 2021 Jittor. All Rights Reserved.
|
|
# Maintainers:
|
|
# Guowei Yang <471184555@qq.com>
|
|
# Meng-Hao Guo <guomenghao1997@gmail.com>
|
|
# Dun Liang <randonlang@gmail.com>.
|
|
#
|
|
# This file is subject to the terms and conditions defined in
|
|
# file 'LICENSE.txt', which is part of this source code package.
|
|
# ***************************************************************
|
|
import jittor as jt
|
|
from jittor import nn, Module
|
|
from jittor.models import inception
|
|
import numpy as np
|
|
import sys, os
|
|
import random
|
|
import math
|
|
import unittest
|
|
from jittor.test.test_reorder_tuner import simple_parser
|
|
from jittor.test.test_log import find_log_with_re
|
|
from jittor.dataset.mnist import MNIST
|
|
import jittor.transform as trans
|
|
import time
|
|
|
|
skip_this_test = False
|
|
|
|
class MnistNet(Module):
|
|
def __init__(self):
|
|
self.model = inception.inception_v3()
|
|
self.layer = nn.Linear(1000,10)
|
|
def execute(self, x):
|
|
x = self.model(x)
|
|
x = self.layer(x)
|
|
return x
|
|
|
|
@unittest.skipIf(skip_this_test, "skip_this_test")
|
|
class TestInception(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(self):
|
|
# hyper-parameters
|
|
self.batch_size = 32
|
|
self.weight_decay = 0.0001
|
|
self.momentum = 0.9
|
|
self.learning_rate = 0.1
|
|
# mnist dataset
|
|
self.train_loader = MNIST(train=True, transform=trans.Resize(300)) \
|
|
.set_attrs(batch_size=self.batch_size, shuffle=True)
|
|
self.train_loader.num_workers = 4
|
|
self.train_loader.total_len = self.batch_size * 300
|
|
|
|
# setup random seed
|
|
def setup_seed(self, seed):
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
jt.seed(seed)
|
|
|
|
@unittest.skipIf(not jt.has_cuda, "Cuda not found")
|
|
@jt.flag_scope(use_cuda=1, use_stat_allocator=1)
|
|
def test_inception(self):
|
|
self.setup_seed(1)
|
|
loss_list=[]
|
|
acc_list=[]
|
|
mnist_net = MnistNet()
|
|
global prev
|
|
prev = time.time()
|
|
SGD = nn.SGD(mnist_net.parameters(), self.learning_rate, self.momentum, self.weight_decay)
|
|
|
|
for batch_idx, (data, target) in enumerate(self.train_loader):
|
|
|
|
# train step
|
|
with jt.log_capture_scope(
|
|
log_silent=1,
|
|
log_v=1, log_vprefix="op.cc=100,exe=10",
|
|
) as logs:
|
|
# breakpoint()
|
|
output = mnist_net(data)
|
|
loss = nn.cross_entropy_loss(output, target)
|
|
SGD.step(loss)
|
|
def callback(batch_idx, loss, output, target):
|
|
# print train info
|
|
global prev
|
|
pred = np.argmax(output, axis=1)
|
|
acc = np.mean(target==pred)
|
|
loss_list.append(loss[0])
|
|
acc_list.append(acc)
|
|
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAcc: {:.6f} \tTime:{:.3f}'
|
|
.format(0, batch_idx, 300,1. * batch_idx / 6.0, loss[0], acc, time.time()-prev))
|
|
# prev = time.time()
|
|
jt.fetch(batch_idx, loss, output, target, callback)
|
|
|
|
log_conv = find_log_with_re(logs,
|
|
"Jit op key (not )?found: ((mkl)|(cudnn))_conv.*")
|
|
log_matmul = find_log_with_re(logs,
|
|
"Jit op key (not )?found: ((mkl)|(cublas))_matmul.*")
|
|
if batch_idx > 2:
|
|
assert len(log_conv)==283 and len(log_matmul)==6, (len(log_conv), len(log_matmul))
|
|
|
|
mem_used = jt.flags.stat_allocator_total_alloc_byte \
|
|
-jt.flags.stat_allocator_total_free_byte
|
|
# assert mem_used < 4e9, mem_used
|
|
# TODO: why bigger?
|
|
assert mem_used < 15.6e9, mem_used
|
|
# example log:
|
|
# Train Epoch: 0 [0/100 (0%)] Loss: 2.352903 Acc: 0.110000
|
|
# Train Epoch: 0 [1/100 (1%)] Loss: 2.840830 Acc: 0.080000
|
|
# Train Epoch: 0 [2/100 (2%)] Loss: 3.473594 Acc: 0.100000
|
|
# Train Epoch: 0 [3/100 (3%)] Loss: 3.131615 Acc: 0.200000
|
|
# Train Epoch: 0 [4/100 (4%)] Loss: 2.524094 Acc: 0.230000
|
|
# Train Epoch: 0 [5/100 (5%)] Loss: 7.780025 Acc: 0.080000
|
|
# Train Epoch: 0 [6/100 (6%)] Loss: 3.890721 Acc: 0.160000
|
|
# Train Epoch: 0 [7/100 (7%)] Loss: 6.370137 Acc: 0.140000
|
|
# Train Epoch: 0 [8/100 (8%)] Loss: 11.390827 Acc: 0.150000
|
|
# Train Epoch: 0 [9/100 (9%)] Loss: 21.598564 Acc: 0.080000
|
|
# Train Epoch: 0 [10/100 (10%)] Loss: 23.369165 Acc: 0.130000
|
|
# Train Epoch: 0 [20/100 (20%)] Loss: 4.804510 Acc: 0.100000
|
|
# Train Epoch: 0 [30/100 (30%)] Loss: 3.393924 Acc: 0.110000
|
|
# Train Epoch: 0 [40/100 (40%)] Loss: 2.286762 Acc: 0.130000
|
|
# Train Epoch: 0 [50/100 (50%)] Loss: 2.055014 Acc: 0.290000
|
|
|
|
assert jt.core.number_of_lived_vars() < 50000, jt.core.number_of_lived_vars()
|
|
|
|
jt.sync_all(True)
|
|
assert np.mean(loss_list[-20:])<1
|
|
assert np.mean(acc_list[-20:])>0.5
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|