mirror of https://github.com/Jittor/Jittor
44 lines
1.5 KiB
Python
44 lines
1.5 KiB
Python
# ***************************************************************
|
|
# Copyright (c) 2021 Jittor. All Rights Reserved.
|
|
# Maintainers:
|
|
# Dun Liang <randonlang@gmail.com>.
|
|
#
|
|
# This file is subject to the terms and conditions defined in
|
|
# file 'LICENSE.txt', which is part of this source code package.
|
|
# ***************************************************************
|
|
import unittest
|
|
import jittor as jt
|
|
import os
|
|
import numpy as np
|
|
import jittor.nn as jnn
|
|
|
|
from jittor.test.test_log import find_log_with_re
|
|
skip_this_test = False
|
|
|
|
try:
|
|
jt.dirty_fix_pytorch_runtime_error()
|
|
import torch
|
|
import torch.nn as tnn
|
|
except:
|
|
skip_this_test = True
|
|
|
|
@unittest.skipIf(skip_this_test, "No Torch found")
|
|
class TestStd(unittest.TestCase):
|
|
def test_std(self):
|
|
x=np.random.randn(100,1000).astype(np.float32)
|
|
jt_x=jt.array(x)
|
|
tc_x=torch.from_numpy(x)
|
|
assert np.allclose(jt_x.std().numpy(), tc_x.std().numpy(), 1e-4) ,(x, jt_x.std().numpy(), tc_x.std().numpy())
|
|
|
|
def test_norm(self):
|
|
x=np.random.randn(100,1000).astype(np.float32)
|
|
jt_x=jt.array(x)
|
|
tc_x=torch.from_numpy(x)
|
|
assert np.allclose(jt_x.norm(1,1).numpy(), tc_x.norm(1,1).numpy())
|
|
assert np.allclose(jt_x.norm(1,0).numpy(), tc_x.norm(1,0).numpy())
|
|
assert np.allclose(jt_x.norm(2,1).numpy(), tc_x.norm(2,1).numpy())
|
|
assert np.allclose(jt_x.norm(2,0).numpy(), tc_x.norm(2,0).numpy())
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|