JittorMirror/python/jittor/test/test_transpose_op.py

151 lines
5.0 KiB
Python

# ***************************************************************
# Copyright (c) 2021 Jittor. All Rights Reserved.
# Maintainers: Dun Liang <randonlang@gmail.com>.
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import unittest
import jittor as jt
import numpy as np
from .test_core import expect_error
from .test_grad import ngrad
from itertools import permutations
from jittor.test.test_cuda import test_cuda
def gen_data(shape):
num = np.multiply.reduce(shape)
a = np.arange(0, num)
return a.reshape(shape)
class TestTransposeOp(unittest.TestCase):
def test_with_np(self):
def check(a):
perms = list(permutations(range(a.ndim))) + [None]
for perm in perms:
if perm:
x = np.transpose(a, perm)
y = jt.transpose(a, perm).data
else:
x = np.transpose(a)
y = jt.transpose(a).data
self.assertEqual(x.shape, y.shape)
assert (x==y).all(), f"\n{x}\n{y}"
# ia = [gen_data([2,3,4,5]), gen_data([5,3])]
ia = [gen_data([2,2,2]), gen_data([2,3,4,5]), gen_data([5,3])]
for a in ia: check(a)
def test_grad(self):
def check(a):
perms = list(permutations(range(a.ndim))) + [None]
for perm in perms:
x = jt.array(a).float()
if perm:
y = x.transpose(perm)
else:
y = x.transpose()
dx = jt.grad(y*y, x).data
self.assertEqual(dx.shape, a.shape)
assert (dx==a*2).all(), f"\n{dx}\n{a}\n{perm}"
ia = [gen_data([2,2,2]), gen_data([2,3,4,5]), gen_data([5,3])]
for a in ia: check(a)
def test_matmul_grad(self):
np.random.seed(0)
for i in range(10):
a = np.random.rand(2,3).astype("float32")
b = np.random.rand(3,4).astype("float32")
out, (da, db) = ngrad(lambda vars: np.matmul(vars[0],vars[1]).sum(), [a,b], 1e-1)
ja = jt.array(a)
jb = jt.array(b)
jc = ja.matmul(jb)
jda, jdb = jt.grad(jc, [ja,jb])
assert ((da-jda.data)<1e-5).all(), (da, jda.data, da-jda.data)
assert ((db-jdb.data)<1e-5).all(), (db-jdb.data)
def test_permute(self):
a = jt.ones([2,3,4])
assert a.permute().shape == [4,3,2]
assert a.permute(0,2,1).shape == [2,4,3]
def test_transpose_3d2i(self):
a = jt.ones([2,3,4])
assert a.transpose(0,1).shape == (3,2,4)
@unittest.skipIf(not jt.compiler.has_cuda, "No CUDA found")
@jt.flag_scope(use_cuda=1)
def test_cutt(self):
a = jt.rand((10,2)) > 0.5
b = a.transpose()
assert (a.data.transpose() == b.data).all()
a = jt.zeros((1,1))
b = a.transpose((1,0))
b.sync()
class TestFuseTransposeOp(unittest.TestCase):
def test_fuse_transpose1(self):
with jt.profile_scope() as rep:
a = jt.rand((10,11,12))
b = a.fuse_transpose((1,2,0))+1
np.testing.assert_allclose(
a.data.transpose((1,2,0))+1,
b.data
)
assert len(rep) == 3
def test_fuse_transpose2(self):
with jt.profile_scope() as rep:
a = jt.rand((10,11,12))
b = (a+1).fuse_transpose((1,2,0))
np.testing.assert_allclose(
a.data.transpose((1,2,0))+1,
b.data
)
assert len(rep) == 3
def test_fuse_transpose3(self):
with jt.profile_scope() as rep:
a = jt.rand((10,11,12))
c = jt.rand((11,12,10))
b = a.fuse_transpose((1,2,0))+c
np.testing.assert_allclose(
a.data.transpose((1,2,0))+c.data,
b.data
)
assert len(rep) == 3
def test_fuse_transpose4(self):
with jt.profile_scope() as rep:
a = jt.rand((10,11,12))
c = jt.rand((10,11,12))
b = (a+c).fuse_transpose((1,2,0))
np.testing.assert_allclose(
(a.data+c.data).transpose((1,2,0)),
b.data
)
assert len(rep) == 3
def test_fuse_transpose5(self):
with jt.profile_scope() as rep:
a = jt.rand((10,11,6,7))
c = jt.rand((10,11,6,7))
b = (a+c).fuse_transpose((1,0,2,3))
np.testing.assert_allclose(
(a.data+c.data).transpose((1,0,2,3)),
b.data
)
assert len(rep) == 3
@unittest.skipIf(not jt.compiler.has_cuda, "No CUDA found")
class TestFuseTransposeCudaOp(TestFuseTransposeOp):
def setUp(self):
jt.flags.use_cuda = 1
def tearDown(self):
jt.flags.use_cuda = 0
if __name__ == "__main__":
unittest.main()