JittorMirror/python/jittor/init.py

732 lines
22 KiB
Python

# ***************************************************************
# Copyright (c) 2023 Jittor. All Rights Reserved.
# Maintainers:
# Guowei Yang <471184555@qq.com>
# Dun Liang <randonlang@gmail.com>.
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
from jittor import NanoVector, Var
import numpy as np
import math
import warnings
def eye(shape, dtype="float32"):
''' Generate 2-D identity matrix.
Args:
shape (int or tuple of int):
shape of the output matrix
dtype (string):
dtype of the output matrix, default float32
Return:
A Jittor Var of identity matrix.
Example::
from jittor import init
print(init.eye(2))
# output: [[1.,0.],[0.,1.]]
print(init.eye((2,3), "float32"))
# output: [[1.,0.,0.],[0.,1.,0.]]
'''
if isinstance(shape, int):
shape = (shape,shape)
assert len(shape)==2, f"len of shape should be 2, but got {shape}"
index = jt.index(shape)
return (index[0]==index[1]).unary(dtype)
def eye_(var):
''' Inplace initialize variable with identity matrix.
Args:
var (Jittor Var):
Var to initialize with identity matrix.
Return:
var itself.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.eye_(linear.weight)
print(linear.weight)
# output: [[1.,0.],[0.,1.]]
linear.weight.eye_() # This is ok too
'''
return var.assign(eye(var.shape, var.dtype))
Var.eye_ = eye_
def constant(shape, dtype="float32", value=0.0):
'''Generate constant Jittor Var.
Args:
shape (int or tuple of int):
shape of the output Var
dtype (string):
dtype of the output Var, default float32
value (int or float):
value to be filled in output Var
Return:
A Jittor Var which filled by constant value.
Example::
from jittor import init
print(init.constant(2))
# output: [0.,0.]
print(init.constant((2,3), value=1.))
# output: [[1.,1.,1.],[1.,1.,1.]]
'''
return jt.array(value).unary(dtype).broadcast(NanoVector(shape))
def constant_(var, value=0.0):
''' Inplace initialize variable with constant value.
Args:
var (Jittor Var):
Var to initialize with constant value.
Return:
var itself.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.constant_(linear.weight)
print(linear.weight)
# output: [[0.,0.],[0.,0.]]
linear.weight.constant_() # This is ok too
'''
return var.assign(constant(var.shape, var.dtype, value))
Var.constant_ = constant_
fill = Var.fill_ = constant_
def zero(shape, dtype="float32"):
'''Generate zero Jittor Var.
Args:
shape (int or tuple of int):
shape of the output Var
dtype (string):
dtype of the output Var, default float32
Return:
A Jittor Var which filled by constant value.
Example::
from jittor import init
print(init.zero(2))
# output: [0.,0.]
print(init.zero((2,3)))
# output: [[0.,0.,0.],[0.,0.,0.]]
'''
return constant(shape, dtype, 0)
def zero_(var):
''' Inplace initialize variable with zero.
Args:
var (Jittor Var):
Var to initialize with zero.
Return:
var itself.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.zero_(linear.weight)
print(linear.weight)
# output: [[0.,0.],[0.,0.]]
linear.weight.zero_() # This is ok too
'''
return var.assign(zero(var.shape, var.dtype))
Var.zero_ = zero_
def one(shape, dtype="float32"):
'''Generate Jittor Var filled by one.
Args:
shape (int or tuple of int):
shape of the output Var
dtype (string):
dtype of the output Var, default float32
Return:
A Jittor Var which filled by one.
Example::
from jittor import init
print(init.one(2))
# output: [1.,1.]
print(init.one((2,3)))
# output: [[1.,1.,1.],[1.,1.,1.]]
'''
return constant(shape, dtype, 1)
def one_(var):
''' Inplace initialize variable with one.
Args:
var (Jittor Var):
Var to initialize with one.
Return:
var itself.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.one_(linear.weight)
print(linear.weight)
# output: [[1.,1.],[1.,1.]]
linear.weight.one_() # This is ok too
'''
return var.assign(one(var.shape, var.dtype))
Var.one_ = one_
def uniform(shape, dtype="float32", low=0, high=1):
'''Generate random uniform Jittor Var.
Args:
shape (int or tuple of int):
shape of the output Var
dtype (string):
dtype of the output Var, default float32
low (int or float or Var):
lower bound value of the random uniform
high (int or float or Var):
upper bound value of the random uniform
Return:
A Jittor Var which filled by random uniform.
Example::
from jittor import init
print(init.uniform(5))
# output: [0.202268, 0.518688, 0.595274, 0.777354, 0.981979]
print(init.uniform((2,3), low=-1, high=1))
# output: [[ 0.6647397 0.2801202 -0.01981187]
# [-0.9779438 -0.30149996 0.69056886]]
'''
return jt.random(NanoVector(shape), dtype) * (low - high) + high
def uniform_(var, low=0, high=1):
''' Inplace initialize Jittor Var by random uniform.
Args:
var (Jittor Var):
Var to be initialized by random uniform
low (int or float or Var):
lower bound value of the random uniform
high (int or float or Var):
upper bound value of the random uniform
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.uniform_(linear.weight, -1.0, 1.0)
print(linear.weight)
# output: [[ 0.6647397 0.2801202], [-0.9779438 -0.30149996]]
linear.weight.uniform_(-1.0, 1.0) # This is ok too
'''
return var.assign(uniform(var.shape, var.dtype, low, high))
Var.uniform_ = uniform_
def gauss(shape, dtype="float32", mean=0.0, std=1.0):
''' Return Jittor Var initialize by random gauss.
Args:
shape (int or tuple of int):
shape of the output Var
dtype (string):
dtype of the output Var, default float32
mean (int or float or Var):
mean value of the random gauss
std (int or float or Var):
std value of the random gauss
Example::
from jittor import init
from jittor import nn
a = init.gauss((2,2), "float32", 0.0, 1.0)
print(a)
'''
return jt.random(NanoVector(shape), dtype, "normal") * std + mean
def gauss_(var, mean=0.0, std=1.0):
''' Inplace initialize Jittor Var by random gauss.
Args:
var (Jittor Var):
Var to be initialized by random gauss
mean (int or float or Var):
mean value of the random gauss
std (int or float or Var):
std value of the random gauss
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.gauss_(linear.weight, 0.0, 1.0)
print(linear.weight)
linear.weight.gauss_(0.0, 1.0) # This is ok too
'''
return var.assign(gauss(var.shape, var.dtype, mean, std))
Var.gauss_ = gauss_
def invariant_uniform(shape, dtype="float32", mode="fan_in"):
''' Return Jittor initialized Var by invariant_uniform.
Args:
shape (int or tuple of int):
shape of the output Var
dtype (string):
dtype of the output Var, default float32
mode (string):
mode selection, should be fan_in or fan_out.
Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
Example::
from jittor import init
from jittor import nn
a = init.invariant_uniform_((2,2))
print(a)
'''
assert len(shape)>1
assert mode=="fan_in" or mode=="fan_out", \
f"mode not supported, should be fan_in or fan_out, but got {mode}"
matsize=1
for i in shape[2:]:
matsize *= i
fan = (shape[1] * matsize) if mode=="fan_in" else (shape[0] * matsize)
bound = math.sqrt(1.0/fan)
return uniform(shape, dtype, -bound, bound)
def invariant_uniform_(var, mode="fan_in"):
''' Inplace initialize Jittor Var by invariant_uniform.
Args:
var (Jittor Var):
Var to be initialized by random invariant_uniform
mode (string):
mode selection, should be fan_in or fan_out.
Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.invariant_uniform_(linear.weight)
print(linear.weight)
linear.weight.invariant_uniform_() # This is ok too
'''
var.assign(invariant_uniform(tuple(var.shape), var.dtype, mode))
Var.invariant_uniform_ = invariant_uniform_
def relu_invariant_gauss(shape, dtype="float32", mode="fan_in"):
''' Return Jittor Var initialized by relu_invariant_gauss.
Args:
shape (int or tuple of int):
shape of the output Var
dtype (string):
dtype of the output Var, default float32
mode (string):
mode selection, should be fan_in or fan_out.
Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
Example::
from jittor import init
from jittor import nn
a = init.relu_invariant_gauss((2,2))
print(a)
'''
assert len(shape)>1
assert mode=="fan_in" or mode=="fan_out"
matsize=1
for i in shape[2:]:
matsize *= i
fan = (shape[1] * matsize) if mode=="fan_in" else (shape[0] * matsize)
std = math.sqrt(2.0/fan)
return gauss(shape, dtype, 0, std)
def relu_invariant_gauss_(var, mode="fan_in"):
''' Inplace initialize Jittor Var by relu_invariant_gauss.
Args:
var (Jittor Var):
Var to be initialized by random relu_invariant_gauss
mode (string):
mode selection, should be fan_in or fan_out.
Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.relu_invariant_gauss_(linear.weight)
print(linear.weight)
linear.weight.relu_invariant_gauss_() # This is ok too
'''
return var.assign(relu_invariant_gauss(tuple(var.shape), var.dtype, mode))
Var.relu_invariant_gauss_ = relu_invariant_gauss_
def calculate_std(var, mode, nonlinearity, param=0.01):
mode = mode.lower()
assert isinstance(param,(int,float))
assert var.ndim>=2
assert mode in ['fan_in', 'fan_out']
fan = var.shape[1] if mode == 'fan_in' else var.shape[0]
fan *= var[0][0].numel()
gains = {
'linear':1,
'conv1d':1,
'conv2d':1,
'conv3d':1,
'conv_transpose1d':1,
'conv_transpose2d':1,
'conv_transpose3d':1,
'sigmoid':1,
'tanh':5.0/3,
'relu':math.sqrt(2.0),
'leaky_relu':math.sqrt(2.0 / (1 + param ** 2)),
}
gain = gains[nonlinearity]
std = gain/math.sqrt(fan)
return std
def kaiming_uniform_(var, a=0, mode='fan_in', nonlinearity='leaky_relu'):
''' Inplace initialize Jittor Var by kaiming_uniform.
Args:
var (Jittor Var):
Var to be initialized by random kaiming_uniform
a (float):
the negative slope of the rectifier used after this layer (only used with 'leaky_relu')
mode (string):
mode selection, should be fan_in or fan_out.
Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
nonlinearity (string):
nonlinearity used after this layer.
It can be one of [linear, conv*, sigmoid, tanh, relu, leaky_relu].
leaky_relu is used by default.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.kaiming_uniform_(linear.weight)
print(linear.weight)
linear.weight.kaiming_uniform_() # This is ok too
'''
std = calculate_std(var,mode,nonlinearity,a)
bound = math.sqrt(3.0) * std
return uniform_(var,-bound, bound)
Var.kaiming_uniform_ = kaiming_uniform_
def kaiming_normal_(var, a=0, mode='fan_in', nonlinearity='leaky_relu'):
''' Inplace initialize Jittor Var by kaiming_normal.
Args:
var (Jittor Var):
Var to be initialized by random kaiming_normal
a (float):
the negative slope of the rectifier used after this layer (only used with 'leaky_relu')
mode (string):
mode selection, should be fan_in or fan_out.
Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
nonlinearity (string):
nonlinearity used after this layer.
It can be one of [linear, conv*, sigmoid, tanh, relu, leaky_relu].
leaky_relu is used by default.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.kaiming_normal_(linear.weight)
print(linear.weight)
linear.weight.kaiming_normal_() # This is ok too
'''
std = calculate_std(var,mode,nonlinearity,a)
return gauss_(var,0, std)
Var.kaiming_normal_ = kaiming_normal_
def xavier_uniform(shape, dtype="float32", gain=1.0):
''' Inplace initialize Jittor Var by xavier_uniform.
The resulting var will have values sampled from
:math:`uniform(-a, a)` where
.. math::
a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}
Args:
shape (int or tuple of int):
shape of the return Var.
dtype (string):
dtype of the return Var, default float32.
gain (float):
an optional scaling factor.
Example::
from jittor import init
from jittor import nn
a = init.xavier_uniform((2,2), gain=init.calculate_gain('relu'))
print(a)
'''
assert len(shape)>1
matsize=1
for i in shape[2:]:
matsize *= i
fan = (shape[1] * matsize) + (shape[0] * matsize)
bound = gain * math.sqrt(6.0/fan)
return uniform(shape, dtype, -bound, bound)
def xavier_uniform_(var, gain=1.0):
''' Inplace initialize Jittor Var by xavier_uniform.
The resulting var will have values sampled from
:math:`uniform(-a, a)` where
.. math::
a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}
Args:
var (Jittor Var):
Var to be initialized by random xavier_uniform
gain (float):
an optional scaling factor.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.xavier_uniform_(linear.weight, init.calculate_gain('relu'))
print(linear.weight)
linear.weight.xavier_uniform_() # This is ok too
'''
return var.assign(xavier_uniform(tuple(var.shape), var.dtype, gain))
Var.xavier_uniform_ = xavier_uniform_
def xavier_gauss(shape, dtype="float32", gain=1.0):
''' Return Jittor Var initialized by xavier_gauss, a.k.a xavier_normal.
The resulting var will have values sampled from
:math:`gauss(-a, a)` where
.. math::
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}
Args:
shape (int or tuple of int):
shape of the return Var.
dtype (string):
dtype of the return Var, default float32.
gain (float):
an optional scaling factor.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.xavier_gauss_(linear.weight, init.calculate_gain('relu'))
print(linear.weight)
linear.weight.xavier_gauss_() # This is ok too
'''
assert len(shape)>1
matsize=1
for i in shape[2:]:
matsize *= i
fan = (shape[1] * matsize) + (shape[0] * matsize)
std = gain * math.sqrt(2.0/fan)
return gauss(shape, dtype, 0, std)
def xavier_gauss_(var, gain=1.0):
''' Inplace initialize Jittor Var by xavier_gauss, a.k.a xavier_normal.
The resulting var will have values sampled from
:math:`gauss(-a, a)` where
.. math::
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}
Args:
var (Jittor Var):
Var to be initialized by random xavier_gauss
gain (float):
an optional scaling factor.
Example::
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.xavier_gauss_(linear.weight, init.calculate_gain('relu'))
print(linear.weight)
linear.weight.xavier_gauss_() # This is ok too
'''
return var.assign(xavier_gauss(tuple(var.shape), var.dtype, gain))
Var.xavier_gauss_ = xavier_gauss_
def calculate_gain(nonlinearity, param=None):
r"""Return the recommended gain value for the given nonlinearity function.
The values are as follows:
================= ====================================================
nonlinearity gain
================= ====================================================
Linear / Identity :math:`1`
Conv{1,2,3}D :math:`1`
Sigmoid :math:`1`
Tanh :math:`\frac{5}{3}`
ReLU :math:`\sqrt{2}`
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
SELU :math:`\frac{3}{4}`
================= ====================================================
Args:
nonlinearity: the non-linear function (`nn.functional` name)
param: optional parameter for the non-linear function
Examples:
>>> gain = nn.init.calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2
.. _Self-Normalizing Neural Networks: https://papers.nips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
"""
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
return 1
elif nonlinearity == 'tanh':
return 5.0 / 3
elif nonlinearity == 'relu':
return math.sqrt(2.0)
elif nonlinearity == 'leaky_relu':
if param is None:
negative_slope = 0.01
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
# True/False are instances of int, hence check above
negative_slope = param
else:
raise ValueError("negative_slope {} not a valid number".format(param))
return math.sqrt(2.0 / (1 + negative_slope ** 2))
elif nonlinearity == 'selu':
return 3.0 / 4
else:
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
def trunc_normal_(var, mean=0., std=1., a=-2., b=2.):
# type: (jt.jittor_core.Var, float, float, float, float) -> jt.jittor_core.Var
r"""Fills the input jt.jittor_core.Var with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
var: an n-dimensional `jt.jittor_core.Var`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
from jittor import init
from jittor import nn
linear = nn.Linear(2,2)
init.trunc_normal_(linear.weight, std=.02)
print(linear.weight)
linear.weight.trunc_normal_(std=.02) # This is ok too
"""
return var.assign(_no_grad_trunc_normal_(var, mean, std, a, b))
Var.trunc_normal_ = trunc_normal_
def _no_grad_trunc_normal_(var, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
# var.uniform(2 * l - 1, 2 * u - 1)
var.uniform_(low=2 * l - 1, high=2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
var = var.erfinv()
# Transform to proper mean, std
var = var.multiply(std * math.sqrt(2.))
var = var.add(mean)
# Clamp to ensure it's in the proper range
var = var.clamp(min_v=a, max_v=b)
return var