mirror of https://github.com/Jittor/Jittor
335 lines
14 KiB
Python
335 lines
14 KiB
Python
|
|
# ***************************************************************
|
|
# Copyright (c) 2022 Jittor. All Rights Reserved.
|
|
# Maintainers:
|
|
# Wenyang Zhou <576825820@qq.com>
|
|
# Dun Liang <randonlang@gmail.com>.
|
|
#
|
|
# This file is subject to the terms and conditions defined in
|
|
# file 'LICENSE.txt', which is part of this source code package.
|
|
# ***************************************************************
|
|
import unittest
|
|
import jittor as jt
|
|
import numpy as np
|
|
import jittor.nn as jnn
|
|
|
|
skip_this_test = False
|
|
|
|
try:
|
|
jt.dirty_fix_pytorch_runtime_error()
|
|
import torch
|
|
import torch.nn as tnn
|
|
import torchvision
|
|
except:
|
|
torch = None
|
|
tnn = None
|
|
torchvision = None
|
|
skip_this_test = True
|
|
|
|
def check_equal(res1, res2, eps=1e-5):
|
|
assert np.allclose(res1.detach().numpy(), res2.numpy(), eps)
|
|
|
|
@unittest.skipIf(skip_this_test, "No Torch found")
|
|
class TestPad(unittest.TestCase):
|
|
def test_index_add_(self):
|
|
x = np.ones((5,3))
|
|
a1 = torch.Tensor(x)
|
|
a1.index_add_(0, torch.tensor([0,4,2]), torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float))
|
|
a2 = jt.array(x)
|
|
a2.index_add_(0, jt.array([0,4,2]), jt.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
|
check_equal(a1, a2)
|
|
|
|
x = np.ones((3,5))
|
|
a1 = torch.Tensor(x)
|
|
a1.index_add_(1, torch.tensor([0,4,2]), torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float))
|
|
a2 = jt.array(x)
|
|
a2.index_add_(1, jt.array([0,4,2]), jt.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
|
check_equal(a1, a2)
|
|
print('pass index_add_ test ...')
|
|
|
|
def test_repeat(self):
|
|
arr = np.random.randn(16,3,224,224)
|
|
check_equal(torch.Tensor(arr).repeat(1,2,3,4), jt.array(arr).repeat(1,2,3,4))
|
|
check_equal(torch.Tensor(arr).repeat(4,2,3,4), jt.array(arr).repeat(4,2,3,4))
|
|
print('pass repeat test ...')
|
|
|
|
def test_chunk(self):
|
|
arr = np.random.randn(16,3,224,224)
|
|
check_equal(torch.Tensor(arr).chunk(2,0)[0], jt.array(arr).chunk(2,0)[0])
|
|
check_equal(torch.Tensor(arr).chunk(2,0)[1], jt.array(arr).chunk(2,0)[1])
|
|
print('pass chunk test ...')
|
|
|
|
def test_stack(self):
|
|
arr1 = np.random.randn(16,3,224,224)
|
|
arr2 = np.random.randn(16,3,224,224)
|
|
check_equal(torch.stack([torch.Tensor(arr1), torch.Tensor(arr2)], 0), jt.stack([jt.array(arr1), jt.array(arr2)], 0))
|
|
print('pass stack test ...')
|
|
|
|
def test_flip(self):
|
|
arr = np.random.randn(16,3,224,224)
|
|
check_equal(torch.Tensor(arr).flip(0), jt.array(arr).flip(0))
|
|
check_equal(torch.Tensor(arr).flip(1), jt.array(arr).flip(1))
|
|
check_equal(torch.Tensor(arr).flip(2), jt.array(arr).flip(2))
|
|
check_equal(torch.Tensor(arr).flip(3), jt.array(arr).flip(3))
|
|
check_equal(torch.Tensor(arr).flip([2,3]), jt.array(arr).flip([2,3]))
|
|
print('pass flip test ...')
|
|
|
|
def test_cross(self):
|
|
def check_equal(a, b, tol):
|
|
np.testing.assert_allclose(a.detach().numpy(), b.numpy(), atol=1e-5)
|
|
arr1 = np.random.randn(16,3,224,224,3)
|
|
arr2 = np.random.randn(16,3,224,224,3)
|
|
check_equal(torch.Tensor(arr1).cross(torch.Tensor(arr2), dim=1), jt.array(arr1).cross(jt.array(arr2), dim=1), 1e-1)
|
|
check_equal(torch.Tensor(arr1).cross(torch.Tensor(arr2), dim=-4), jt.array(arr1).cross(jt.array(arr2), dim=-4), 1e-1)
|
|
check_equal(torch.Tensor(arr1).cross(torch.Tensor(arr2), dim=-1), jt.array(arr1).cross(jt.array(arr2), dim=-1), 1e-1)
|
|
check_equal(torch.Tensor(arr1).cross(torch.Tensor(arr2), dim=4), jt.array(arr1).cross(jt.array(arr2), dim=4), 1e-1)
|
|
print('pass cross test ...')
|
|
|
|
def test_normalize(self):
|
|
arr = np.random.randn(16,3,224,224,3)
|
|
check_equal(tnn.functional.normalize(torch.Tensor(arr)), jt.normalize(jt.array(arr)))
|
|
check_equal(tnn.functional.normalize(torch.Tensor(arr), dim=0), jt.normalize(jt.array(arr), dim=0), 1e-1)
|
|
check_equal(tnn.functional.normalize(torch.Tensor(arr), dim=1), jt.normalize(jt.array(arr), dim=1), 1e-1)
|
|
check_equal(tnn.functional.normalize(torch.Tensor(arr), dim=-1), jt.normalize(jt.array(arr), dim=-1), 1e-1)
|
|
check_equal(tnn.functional.normalize(torch.Tensor(arr), dim=2), jt.normalize(jt.array(arr), dim=2), 1e-1)
|
|
check_equal(tnn.functional.normalize(torch.Tensor(arr), dim=3), jt.normalize(jt.array(arr), dim=3), 1e-1)
|
|
print('pass normalize test ...')
|
|
|
|
def test_make_grid(self):
|
|
arr = np.random.randn(16,3,10,10)
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr)), jt.make_grid(jt.array(arr)))
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr), nrow=2), jt.make_grid(jt.array(arr), nrow=2))
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr), nrow=3), jt.make_grid(jt.array(arr), nrow=3))
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr), nrow=3, padding=4), jt.make_grid(jt.array(arr), nrow=3, padding=4))
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr), nrow=3, padding=4, pad_value=-1), jt.make_grid(jt.array(arr), nrow=3, padding=4, pad_value=-1))
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr), nrow=3, normalize=True, padding=4, pad_value=-1), jt.make_grid(jt.array(arr), nrow=3, normalize=True, padding=4, pad_value=-1))
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr), nrow=3, normalize=True, padding=4, pad_value=-1, range=(-100,100)), jt.make_grid(jt.array(arr), nrow=3, normalize=True, padding=4, pad_value=-1, range=(-100,100)))
|
|
print('pass make_grid test ...')
|
|
|
|
def test_make_grid2(self):
|
|
def check(shape):
|
|
arr = np.random.randn(*shape)
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr)), jt.make_grid(jt.array(arr)))
|
|
check((3,100,200))
|
|
check((1,100,200))
|
|
check((100,200))
|
|
check((1,3,100,200))
|
|
check((4,3,100,200))
|
|
check((10,3,100,200))
|
|
|
|
def test_make_grid3(self):
|
|
arr=np.random.randn(3,10,10)
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr)), jt.make_grid(jt.array(arr)))
|
|
check_equal(torchvision.utils.make_grid(torch.Tensor(arr), normalize=True), jt.make_grid(jt.array(arr), normalize=True))
|
|
|
|
def test_save_image(self):
|
|
arr = jt.array(np.random.randn(16,3,10,10))
|
|
jt.save_image(arr, jt.flags.cache_path+"/tmp/a.jpg")
|
|
|
|
def test_unbind(self):
|
|
arr = np.random.randn(2,3,4)
|
|
for dim in range(len(arr.shape)):
|
|
t_res = torch.unbind(torch.Tensor(arr), dim=dim)
|
|
j_res = jt.unbind(jt.array(arr), dim=dim)
|
|
for idx in range(len(t_res)):
|
|
assert np.allclose(t_res[idx].numpy(), j_res[idx].numpy())
|
|
print('pass unbind test ...')
|
|
|
|
def test_expand(self):
|
|
a = jt.zeros((3,1))
|
|
b = a.expand(3, 4)
|
|
assert b.shape == (3,4)
|
|
b = a.expand(-1, 4)
|
|
assert b.shape == (3,4)
|
|
b = a.expand((3, 4))
|
|
assert b.shape == (3,4)
|
|
b = a.expand((-1, 4))
|
|
assert b.shape == (3,4)
|
|
|
|
def test_bilinear(self):
|
|
from jittor import nn
|
|
m = nn.Bilinear(20, 30, 40)
|
|
input1 = jt.randn(128, 20)
|
|
input2 = jt.randn(128, 30)
|
|
output = m(input1, input2)
|
|
assert output.shape == [128,40]
|
|
|
|
m2 = torch.nn.Bilinear(20, 30, 40)
|
|
m2.weight = torch.nn.Parameter(torch.Tensor(m.weight.data))
|
|
m2.bias = torch.nn.Parameter(torch.Tensor(m.bias.data))
|
|
in1 = torch.Tensor(input1.data)
|
|
in2 = torch.Tensor(input2.data)
|
|
out = m2(in1, in2)
|
|
np.testing.assert_allclose(
|
|
out.detach().numpy(), output.data,
|
|
atol=1e-4)
|
|
|
|
def test_ctc_loss(self):
|
|
def check(T,C,N,S,S_min):
|
|
jt.set_global_seed(0)
|
|
|
|
# Initialize random batch of input vectors, for *size = (T,N,C)
|
|
input = jt.randn(T, N, C).log_softmax(2)
|
|
# input = -jt.ones((T, N, C))
|
|
# input[0,0,1] += 0.01
|
|
|
|
# Initialize random batch of targets (0 = blank, 1:C = classes)
|
|
target = jt.randint(low=1, high=C, shape=(N, S), dtype=jt.int)
|
|
_input_jt = input
|
|
|
|
input_lengths = jt.full((N,), T, dtype=jt.int)
|
|
target_lengths = jt.randint(low=S_min, high=S+1, shape=(N,), dtype=jt.int)
|
|
# ctc_loss = nn.CTCLoss()
|
|
loss = jt.ctc_loss(input, target, input_lengths, target_lengths, reduction='none')
|
|
_loss_jt = loss
|
|
|
|
loss_jt = loss.numpy()
|
|
|
|
input = torch.Tensor(input.numpy()).detach().requires_grad_()
|
|
input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
|
|
target_lengths = torch.LongTensor(target_lengths.numpy())
|
|
input_lengths = torch.LongTensor(input_lengths.numpy())
|
|
target = torch.LongTensor(target.numpy())
|
|
loss = tnn.CTCLoss(reduction='none')(input, target, input_lengths, target_lengths)
|
|
np.testing.assert_allclose(loss.detach().numpy(), loss_jt, rtol=1e-5, atol=1e-5)
|
|
|
|
dinput_jt = jt.grad(_loss_jt, _input_jt)
|
|
dinput_jt.sync()
|
|
|
|
loss.sum().backward()
|
|
# print(input.grad)
|
|
# print(dinput_jt)
|
|
# print(loss)
|
|
|
|
def check_gpu_with_cpu(T,C,N,S,S_min):
|
|
jt.set_global_seed(1)
|
|
|
|
# Initialize random batch of input vectors, for *size = (T,N,C)
|
|
input = jt.randn(T, N, C).log_softmax(2)
|
|
# input = -jt.ones((T, N, C))
|
|
# input[0,0,1] += 0.01
|
|
|
|
# Initialize random batch of targets (0 = blank, 1:C = classes)
|
|
target = jt.randint(low=1, high=C, shape=(N, S), dtype=jt.int)
|
|
_input_jt = input
|
|
|
|
input_lengths = jt.full((N,), T, dtype=jt.int)
|
|
target_lengths = jt.randint(low=S_min, high=S+1, shape=(N,), dtype=jt.int)
|
|
# ctc_loss = nn.CTCLoss()
|
|
loss = jt.ctc_loss(input, target, input_lengths, target_lengths, reduction='none')
|
|
_loss_jt = loss
|
|
|
|
loss_jt = loss.numpy()
|
|
|
|
dinput_jt = jt.grad(_loss_jt, _input_jt)
|
|
dinput_jt.sync()
|
|
|
|
with jt.flag_scope(use_cuda=1):
|
|
input = input.copy()
|
|
target = target.copy()
|
|
input_lengths = input_lengths.copy()
|
|
target_lengths = target_lengths.copy()
|
|
loss = jt.ctc_loss(input, target, input_lengths, target_lengths, reduction='none')
|
|
grad = jt.grad(loss, input)
|
|
np.testing.assert_allclose(_loss_jt.numpy(), loss.numpy(), atol=1e-5, rtol=1e-5)
|
|
np.testing.assert_allclose(dinput_jt.numpy(), grad.numpy(), atol=1e-5, rtol=1e-5)
|
|
|
|
|
|
check(2,2,1,1,1)
|
|
check(50,20,16,30,10)
|
|
|
|
if jt.has_cuda:
|
|
with jt.flag_scope(use_cuda=1):
|
|
check(2,2,1,1,1)
|
|
check(50,20,16,30,10)
|
|
check_gpu_with_cpu(50,20,16,30,10)
|
|
|
|
class TestOther(unittest.TestCase):
|
|
def test_save(self):
|
|
pp = [1,2,jt.array([1,2,3]), {"a":[1,2,3], "b":jt.array([1,2,3])}]
|
|
name = jt.flags.cache_path+"/xx.pkl"
|
|
jt.save(pp, name)
|
|
x = jt.load(name)
|
|
assert x[:2] == [1,2]
|
|
assert (x[2] == np.array([1,2,3])).all()
|
|
assert x[3]['a'] == [1,2,3]
|
|
assert (x[3]['b'] == np.array([1,2,3])).all()
|
|
|
|
def test_arctan2(self):
|
|
a = jt.arctan2(jt.array([1,1.0,0]), jt.array([1,0.0,-1]))
|
|
np.testing.assert_allclose(a.data, [0.7853982,1.5707964,3.1415927])
|
|
|
|
y = jt.random((100,))
|
|
x = jt.random((100,))
|
|
z = jt.arctan2(y, x)
|
|
z2 = np.arctan2(y.data, x.data)
|
|
np.testing.assert_allclose(z.data, z2)
|
|
|
|
def test_softmax_precision(self):
|
|
# jt.flags.use_cuda = 1
|
|
a = -jt.array([1.0,2.0,1e5])
|
|
b = a.log_softmax(0)
|
|
assert b.isfinite().all().item()
|
|
print("test_softmax_precision cpu ok")
|
|
if not jt.has_cuda: return
|
|
jt.flags.use_cuda = 1
|
|
a = -jt.array([1.0,2.0,1e5])
|
|
b = a.log_softmax(0)
|
|
assert b.isfinite().all().item()
|
|
print("test_softmax_precision gpu ok")
|
|
|
|
def test_code_softmax(self):
|
|
if not jt.has_cuda: return
|
|
|
|
def softmax(x, dim = None, log=False):
|
|
if dim is None:
|
|
x = (x - x.max()).exp()
|
|
ret = x / x.sum()
|
|
else:
|
|
x = (x-x.max(dim, keepdims=True)).exp()
|
|
ret = x / x.sum(dim, keepdims=True)
|
|
if log: return ret.log()
|
|
return ret
|
|
from jittor.other.code_softmax import softmax_v1
|
|
|
|
with jt.flag_scope(use_cuda = 1):
|
|
shape = (120, 2000, 2000)
|
|
shape = (3,3)
|
|
for log in [0,1]:
|
|
for shape in [(3,3),
|
|
(12, 200, 2000),
|
|
(12, 200, 2048),
|
|
(12, 200, 2049)]:
|
|
print(shape)
|
|
a = jt.rand(shape)
|
|
c = jt.rand(shape)
|
|
b = softmax(a, -1, log=log)
|
|
bb = softmax_v1(a, log=log)
|
|
|
|
err = (bb - b).abs().max()
|
|
assert err.item() < 1e-5, (err, bb, b)
|
|
|
|
d1 = jt.grad(b*c, a)
|
|
d2 = jt.grad(bb*c, a)
|
|
err = (d1 - d2).abs().max()
|
|
|
|
if log:
|
|
assert err.item() < 1e-2, (err.item())
|
|
else:
|
|
assert err.item() < 1e-5, (err.item())
|
|
|
|
def test_nan(self):
|
|
a = np.array([1.0,0.0,1.0,-1.0], "float32") / np.array([1.0,0.0,0.0,0.0], "float32")
|
|
np.testing.assert_allclose(jt.isnan(jt.array(a)).data, [0,1,0,0])
|
|
np.testing.assert_allclose(jt.isfinite(jt.array(a)).data, [1,0,0,0])
|
|
np.testing.assert_allclose(jt.isinf(jt.array(a)).data, [0,0,1,1])
|
|
np.testing.assert_allclose(jt.isneginf(jt.array(a)).data, [0,0,0,1])
|
|
np.testing.assert_allclose(jt.isposinf(jt.array(a)).data, [0,0,1,0])
|
|
|
|
def test_nan_cuda(self):
|
|
if not jt.has_cuda: return
|
|
with jt.flag_scope(use_cuda=1):
|
|
self.test_nan()
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main() |