mirror of https://github.com/Jittor/Jittor
443 lines
14 KiB
Python
443 lines
14 KiB
Python
# ***************************************************************
|
|
# Copyright (c) 2022 Jittor. All Rights Reserved.
|
|
# Maintainers:
|
|
# Wenyang Zhou <576825820@qq.com>.
|
|
#
|
|
# This file is subject to the terms and conditions defined in
|
|
# file 'LICENSE.txt', which is part of this source code package.
|
|
# ***************************************************************
|
|
import unittest
|
|
import jittor as jt
|
|
import numpy as np
|
|
skip_this_test = False
|
|
|
|
@unittest.skipIf(skip_this_test, "No Torch found")
|
|
class TestSetitem(unittest.TestCase):
|
|
def test_setitem_(self):
|
|
arr0 = jt.random((4,2,2))
|
|
data0 = jt.ones((2,2))
|
|
arr0[1] = data0
|
|
arr0.sync()
|
|
data0.data[0,0] = 0
|
|
assert arr0[1,0,0] == 0
|
|
|
|
arr00 = jt.random((4,2,2))
|
|
data00 = jt.ones((2,2))
|
|
# share memory will fail if d has an edge to other nodes.
|
|
tmp = data00 + 1
|
|
arr00[1] = data00
|
|
arr00.sync()
|
|
data00.data[0,0] = 0
|
|
assert arr00[1,0,0] == 0
|
|
|
|
arr1 = jt.random((4,2,2))
|
|
data1 = jt.zeros((2,2))
|
|
arr1[3,:,:] = data1
|
|
arr1.sync()
|
|
data1.data[0,0] = 1
|
|
assert arr1[3,0,0] == 1
|
|
|
|
arr21 = jt.ones((2,2))
|
|
arr22 = jt.ones((2,2)) * 2
|
|
arr2 = jt.concat([arr21, arr22], dim=0)
|
|
arr2.sync()
|
|
arr21.data[0,0] = 3
|
|
arr22.data[0,0] = 4
|
|
assert arr2[0,0] == 3
|
|
assert arr2[2,0] == 4
|
|
|
|
def test_getitem(self):
|
|
# test for different slice type
|
|
arr0 = jt.random((4,3))
|
|
arr0_res = arr0[2,:]
|
|
arr0_res.data[1] = 1
|
|
assert arr0[2,1] == 1
|
|
|
|
arr1 = jt.array([1,2,3,4])
|
|
arr1_res = arr1[None]
|
|
arr1_res.data[0,2] = -1
|
|
assert arr1[2] == -1
|
|
|
|
arr2 = jt.array([1,2,3,4])
|
|
arr2_res = arr2[...]
|
|
arr2_res.data[2] = -1
|
|
assert arr2[2] == -1
|
|
|
|
arr3 = jt.array([1,2,3,4])
|
|
arr3_res = arr3[3]
|
|
arr3_res.data[0] = -1
|
|
assert arr3[3] == -1
|
|
|
|
arr4 = jt.random((4,2,3,3))
|
|
arr4_res = arr4[...,:,:]
|
|
arr4_res.data[0,0,1,1] = 1
|
|
assert arr4[0,0,1,1] == 1
|
|
|
|
arr4 = jt.random((4,2,3,3))
|
|
arr4_res = arr4[...,:,:2]
|
|
arr4_res.data[0,0,1,1] = 1
|
|
assert arr4[0,0,1,1] != 1
|
|
|
|
arr4 = jt.random((3,3))
|
|
arr4_res = arr4[...,:,:2]
|
|
arr4_res.data[1,1] = 1
|
|
assert arr4[1,1] != 1
|
|
|
|
arr5 = jt.random((4,2,3,3))
|
|
arr5_res = arr5[1:3,:,:,:]
|
|
arr5_res.data[1,0,1,1] = 1
|
|
assert arr5[2,0,1,1] == 1
|
|
|
|
arr6 = jt.random((4,2,3,3))
|
|
arr6_res = arr6[1]
|
|
arr6_res.data[0,1,1] = 1
|
|
assert arr6[1,0,1,1] == 1
|
|
|
|
# test for different data type (float32/float64/bool/int8/int32)
|
|
arr_float32 = jt.random((4,2,3))
|
|
arr_float32_res = arr_float32[1:3,:,:]
|
|
arr_float32_res.data[0,0,0] = 1
|
|
assert arr_float32[1,0,0] == 1
|
|
arr_float32_res.data[1,1,2] = 1
|
|
assert arr_float32[2,1,2] == 1
|
|
arr_float32[1,0,0] = 0
|
|
# getitem and setitem do not conflict
|
|
assert arr_float32_res[0,0,0] == 1
|
|
|
|
arr_bool = jt.bool(np.ones((4,2,3)))
|
|
arr_bool_res = arr_bool[1:3,:,:]
|
|
arr_bool_res.data[0,0,0] = False
|
|
assert arr_bool[1,0,0] == False
|
|
arr_bool_res.data[0,0,1] = False
|
|
assert arr_bool[1,0,1] == False
|
|
|
|
arr_float64 = jt.random((4,2,3), dtype='float64')
|
|
arr_float64_res = arr_float64[1:3,:,:]
|
|
arr_float64_res.data[0,0,0] = 1
|
|
assert arr_float64[1,0,0] == 1
|
|
arr_float64_res.data[1,1,2] = 1
|
|
assert arr_float64[2,1,2] == 1
|
|
|
|
arr_int32 = jt.ones((4,2,3), dtype='int32')
|
|
arr_int32_res = arr_int32[1:3,:,:]
|
|
arr_int32_res.data[0,0,0] = 0
|
|
assert arr_int32[1,0,0] == 0
|
|
arr_int32_res.data[1,1,2] = 0
|
|
assert arr_int32[2,1,2] == 0
|
|
|
|
def test_setitem_inplace_case1(self):
|
|
# test type case
|
|
a = jt.zeros((3,))
|
|
a[1] = 123
|
|
assert a.data[1] == 123
|
|
|
|
def test_setitem_inplace_case2(self):
|
|
# test un-continuous first dim
|
|
a = jt.zeros((3,))
|
|
a[0::2] = jt.ones((2,))
|
|
assert a.data[2] == 1
|
|
|
|
def test_setitem_inplace_case3(self):
|
|
# test broadcast
|
|
a = jt.zeros((3,))
|
|
a[0:] = 1.0
|
|
assert a.data[2] == 1
|
|
|
|
@unittest.skipIf(not jt.compiler.has_cuda, "No CUDA found")
|
|
@jt.flag_scope(use_cuda=1)
|
|
def test_getitem_inplace_array(self):
|
|
a = jt.array([[1,2],[3,4]])
|
|
assert (a[0].numpy() == [1,2]).all(), a[0].numpy()
|
|
assert (a[1].numpy() == [3,4]).all(), a[1].numpy()
|
|
|
|
@unittest.skipIf(not jt.compiler.has_cuda, "No CUDA found")
|
|
@jt.flag_scope(use_cuda=1)
|
|
def test_setitem_inplace_array(self):
|
|
a = jt.array([[1,2],[3,4]])
|
|
a[0,0] = -1
|
|
a[1,1] = -2
|
|
assert (a[0].numpy() == [-1,2]).all(), a[0].numpy()
|
|
assert (a[1].numpy() == [3,-2]).all(), a[1].numpy()
|
|
|
|
def test_scatter(self):
|
|
src = jt.arange(1, 11).reshape((2, 5))
|
|
index = jt.array([[0, 1, 2, 0]])
|
|
x = jt.zeros((3, 5), dtype=src.dtype).scatter_(0, index, src)
|
|
assert (x.data ==
|
|
[[1, 0, 0, 4, 0],
|
|
[0, 2, 0, 0, 0],
|
|
[0, 0, 3, 0, 0]]).all()
|
|
index = jt.array([[0, 1, 2], [0, 1, 4]])
|
|
x = jt.zeros((3, 5), dtype=src.dtype).scatter_(1, index, src)
|
|
assert (x.data ==
|
|
[[1, 2, 3, 0, 0],
|
|
[6, 7, 0, 0, 8],
|
|
[0, 0, 0, 0, 0]]).all()
|
|
x = jt.full((2, 4), 2.).scatter_(1, jt.array([[2], [3]]),
|
|
jt.array(1.23), reduce='multiply')
|
|
assert np.allclose(x.data,
|
|
[[2.0000, 2.0000, 2.4600, 2.0000],
|
|
[2.0000, 2.0000, 2.0000, 2.4600]]), x
|
|
x = jt.full((2, 4), 2.).scatter_(1, jt.array([[2], [3]]),
|
|
jt.array(1.23), reduce='add')
|
|
assert np.allclose(x.data,
|
|
[[2.0000, 2.0000, 3.2300, 2.0000],
|
|
[2.0000, 2.0000, 2.0000, 3.2300]])
|
|
|
|
def test_gather(self):
|
|
t = jt.array([[1, 2], [3, 4]])
|
|
data = t.gather(1, jt.array([[0, 0], [1, 0]])).data
|
|
assert (data == [[ 1, 1], [ 4, 3]]).all()
|
|
data = t.gather(0, jt.array([[0, 0], [1, 0]])).data
|
|
assert (data == [[ 1, 2], [ 3, 2]]).all()
|
|
|
|
@unittest.skipIf(not jt.compiler.has_cuda, "No CUDA found")
|
|
@jt.flag_scope(use_cuda=1)
|
|
def test_scatter_cuda(self):
|
|
self.test_scatter()
|
|
|
|
@unittest.skipIf(not jt.compiler.has_cuda, "No CUDA found")
|
|
@jt.flag_scope(use_cuda=1)
|
|
def test_gather_cuda(self):
|
|
self.test_gather()
|
|
|
|
def test_setitem_bool(self):
|
|
a = jt.array([1,2,3,4])
|
|
b = jt.array([True,False,True,False])
|
|
a[b] = jt.array([-1,-2])
|
|
assert (a.data == [-1,2,-2,4]).all()
|
|
|
|
def test_setitem_bool2(self):
|
|
a = jt.array([1,2,3,4])
|
|
b = jt.array([True,False,True,False])
|
|
a[b] = jt.array([-1])
|
|
assert (a.data == [-1,2,-1,4]).all(), a
|
|
a = jt.array([1,2,3,4])
|
|
b = jt.array([True,False,True,False])
|
|
a[b] = -1
|
|
assert (a.data == [-1,2,-1,4]).all(), a
|
|
|
|
def test_slice_none(self):
|
|
a = jt.array([1,2])
|
|
assert a[None,:,None,None,...,None].shape == (1,2,1,1,1)
|
|
|
|
def test_roll(self):
|
|
x = jt.array([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2)
|
|
y = x.roll(1, 0)
|
|
assert (y.numpy() == [[7,8],[1,2],[3,4],[5,6]]).all(), y
|
|
y = x.roll(-1, 0)
|
|
assert (y.numpy() == [[3,4],[5,6],[7,8],[1,2]]).all()
|
|
y = x.roll(shifts=(2, 1), dims=(0, 1))
|
|
assert (y.numpy() == [[6,5],[8,7],[2,1],[4,3]]).all()
|
|
|
|
def test_ellipsis_with_none(self):
|
|
a = jt.arange(2*4*4).reshape(2,4,4)
|
|
b = a[...,:,None,:2]
|
|
assert b.shape == [2,4,1,2]
|
|
np.testing.assert_allclose(b.data, a.data[...,:,None,:2])
|
|
|
|
def test_flip_grad(self):
|
|
a = jt.rand(10)
|
|
b = a[::-1]
|
|
c = b[::-1]
|
|
d = c.sum()
|
|
jt.grad(d, [a])
|
|
|
|
def test_concat2(self):
|
|
a = jt.rand(10)
|
|
b = jt.rand(11)
|
|
c = jt.rand(12)
|
|
def cc():
|
|
x = jt.concat([b.copy(), c.copy()])
|
|
d = jt.concat([a.copy(), x])
|
|
return d.copy().copy().copy().copy().copy().copy()\
|
|
.copy().copy() + x.sum()*0.0
|
|
d = cc()
|
|
np.testing.assert_allclose(d.data,
|
|
np.concatenate([a.data,b.data,c.data]))
|
|
|
|
def test_concat3(self):
|
|
# a = jt.rand(10)
|
|
b = jt.rand(11)
|
|
c = jt.rand(12)
|
|
def cc():
|
|
x = jt.concat([b.copy(), c.copy()])
|
|
d = jt.concat([x])
|
|
return d.copy().copy().copy().copy().copy().copy()\
|
|
.copy().copy() + x.sum()*0.0
|
|
d = cc()
|
|
np.testing.assert_allclose(d.data,
|
|
np.concatenate([b.data,c.data]))
|
|
|
|
|
|
def test_concat4(self):
|
|
# a = jt.rand(10)
|
|
b = jt.rand(11)
|
|
c = jt.rand(12)
|
|
def cc():
|
|
x = jt.concat([b.copy(), c.copy()])
|
|
d = jt.concat([x])
|
|
return d
|
|
d = cc()
|
|
np.testing.assert_allclose(d.data,
|
|
np.concatenate([b.data,c.data]))
|
|
|
|
def test_concat_random(self):
|
|
def check(backward=False):
|
|
n1, n2, n3 = 1000, 20, 10
|
|
# n1, n2, n3 = 3, 2, 3
|
|
import random
|
|
data = []
|
|
back = []
|
|
for i in range(n1):
|
|
if len(data) > n2:
|
|
v = random.randint(0,len(data)-1)
|
|
# print("del", v)
|
|
del data[v]
|
|
x1 = random.randint(0,9)
|
|
# print(i, x1)
|
|
if len(data) == 0:
|
|
# a = jt.random((random.randint(10,20),))
|
|
a = jt.array(np.random.rand(random.randint(n3,n3*2)))
|
|
data.append(a)
|
|
if x1 == 0:
|
|
a = data[random.randint(0,len(data)-1)]
|
|
a = a.copy()
|
|
data.append(a)
|
|
elif x1 == 1:
|
|
a = data[random.randint(0,len(data)-1)]
|
|
a = a.clone()
|
|
data.append(a)
|
|
elif x1 == 2:
|
|
a = data[random.randint(0,len(data)-1)]
|
|
b = np.random.permutation(np.arange(a.numel()))
|
|
# print("permutation", b)
|
|
a = a[b]
|
|
data.append(a)
|
|
elif x1 == 3:
|
|
a = data[random.randint(0,len(data)-1)]
|
|
a = a[:100]
|
|
# print(a.shape)
|
|
data.append(a)
|
|
elif x1 == 4:
|
|
# a = jt.random((random.randint(10,20),))
|
|
a = jt.array(np.random.rand(random.randint(n3,n3*2)))
|
|
if backward and random.randint(0,1):
|
|
back.append(a)
|
|
data.append(a)
|
|
elif x1 == 5:
|
|
v = random.randint(0,len(data)-1)
|
|
a = data[v]
|
|
# print("split", v, a.shape)
|
|
arr = a.split(n3-1)
|
|
data += arr
|
|
else:
|
|
if not len(data): continue
|
|
n = random.randint(1,3)
|
|
a = [ data[random.randint(0,len(data)-1)] for i in range(n) ]
|
|
a = jt.concat(a)
|
|
if a.numel() > 1000:
|
|
b = np.random.permutation(np.arange(a.numel()))
|
|
a = a[b][:100]
|
|
data.append(a)
|
|
ret = jt.concat(data)
|
|
if backward and len(back):
|
|
grads = jt.grad(jt.rand_like(ret)*ret, back)
|
|
return jt.concat(grads).numpy()
|
|
return ret.numpy()
|
|
|
|
for s in range(100):
|
|
print("check", s)
|
|
for check_grad in [True, False]:
|
|
jt.set_global_seed(s)
|
|
data = check(check_grad)
|
|
jt.gc()
|
|
jt.set_global_seed(s)
|
|
with jt.flag_scope(gopt_disable=1):
|
|
data2 = check(check_grad)
|
|
jt.gc()
|
|
np.testing.assert_allclose(data, data2, atol=1e-5, rtol=1e-5)
|
|
|
|
def test_concat_grad(self):
|
|
n = 30000
|
|
m = 100
|
|
arr = []
|
|
for i in range(n):
|
|
arr.append(jt.random((m,)))
|
|
x = jt.concat(arr)
|
|
y = jt.rand_like(x)
|
|
grads = jt.grad(x*y, arr)
|
|
for i in range(n):
|
|
np.testing.assert_allclose(grads[i].numpy(), y[i*m:(i+1)*m].numpy())
|
|
|
|
def test_split_grad(self):
|
|
n = 30000
|
|
m = 100
|
|
x = jt.random((n*m,))
|
|
arr = x.split(m)
|
|
yy = [ jt.rand(m) for i in range(n) ]
|
|
arr2 = [ y*yy[i] for i,y in enumerate(arr) ]
|
|
g = jt.grad(jt.concat(arr2), x)
|
|
for i in range(n):
|
|
np.testing.assert_allclose(g.data[i*m:(i+1)*m], yy[i].data)
|
|
|
|
def test_dfs_memopt(self):
|
|
with jt.flag_scope(profile_memory_enable=1):
|
|
n = 1024
|
|
b = []
|
|
for i in range(n):
|
|
a = jt.rand(n).copy().copy()
|
|
a = a.sum()
|
|
# a.sync()
|
|
b.append(a)
|
|
jt.sync_all()
|
|
jt.get_max_memory_treemap()
|
|
|
|
|
|
def test_setitem_bc(self):
|
|
a = jt.random([10,11,12])
|
|
b = a[jt.arange(3)[:,None],
|
|
jt.arange(4)[None,:]]
|
|
b.sync()
|
|
assert (a[:3, :4] == b).all()
|
|
|
|
a = jt.random([10,11,12])
|
|
b = a[jt.arange(3)[:,None],
|
|
jt.arange(4)[None,:],
|
|
jt.arange(4)[None,:]]
|
|
nb = a.data[np.arange(3)[:,None],
|
|
np.arange(4)[None,:],
|
|
np.arange(4)[None,:]]
|
|
np.testing.assert_allclose(nb, b.data)
|
|
|
|
a = jt.random([10,11,12])
|
|
b = a[jt.arange(3)[::-1,None],
|
|
jt.arange(4)[None,:],
|
|
jt.arange(4)[None,:]]
|
|
nb = a.data[np.arange(3)[::-1,None],
|
|
np.arange(4)[None,:],
|
|
np.arange(4)[None,:]]
|
|
np.testing.assert_allclose(nb, b.data)
|
|
|
|
a = jt.random([10,11,12])
|
|
b = a[jt.arange(3)[::-1,None],
|
|
jt.arange(4)[None,:],
|
|
jt.arange(4)[None,::-1]]
|
|
nb = a.data[np.arange(3)[::-1,None],
|
|
np.arange(4)[None,:],
|
|
np.arange(4)[None,::-1]]
|
|
np.testing.assert_allclose(nb, b.data)
|
|
|
|
def test_cuda_slice_migrate_bug(self):
|
|
a = jt.array([1,2,3,4,5])
|
|
jt.sync_all()
|
|
if not jt.has_cuda: return
|
|
with jt.flag_scope(use_cuda=1):
|
|
b = a[0]
|
|
b.sync(True)
|
|
assert b.item() == 1
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main() |