JittorMirror/python/jittor/sparse.py

54 lines
1.7 KiB
Python

# ***************************************************************
# Copyright (c) 2022 Jittor. All Rights Reserved.
# Maintainers:
# Dun Liang <randonlang@gmail.com>.
# Xiangli Li <190569238@qq.com>
#
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
import numpy as np
class SparseVar:
def __init__(self,indices,values,shape):
assert isinstance(indices,jt.Var) and isinstance(values,jt.Var) and isinstance(shape,jt.NanoVector)
self.indices = indices
self.values = values
self.shape = shape
self.ndim = len(shape)
def _indices(self):
return self.indices
def _values(self):
return self.values
def t(self):
indices = list(self.indices.split(1,dim=0))
indices[-1],indices[-2] = indices[-2],indices[-1]
indices = jt.concat(indices,dim=0)
shape = list(self.shape)
shape[-1],shape[-2] = shape[-2],shape[-1]
shape = jt.NanoVector(shape)
return SparseVar(indices,self.values,shape)
def to_dense(self):
ret = jt.zeros(self.shape,self.values.dtype)
indices = tuple(self.indices.split(1,dim=0))
ret[indices]=self.values
return ret
def sparse_array(indices,values,shape):
return SparseVar(indices,values,shape)
def spmm(spase_x,y):
assert isinstance(spase_x,SparseVar) and isinstance(y,jt.Var)
assert spase_x.ndim==2 and y.ndim==2 and spase_x.shape[-1]==y.shape[0]
# TODO
x = spase_x.to_dense()
return jt.matmul(x,y)