JittorMirror/python/jittor/lr_scheduler.py

206 lines
7.5 KiB
Python

# ***************************************************************
# Copyright (c) 2022 Jittor. All Rights Reserved.
# Maintainers:
# Guowei Yang <471184555@qq.com>
# Dun Liang <randonlang@gmail.com>.
#
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
from jittor.optim import Optimizer
import math
class ReduceLROnPlateau(object):
def __init__(self, optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=1e-4, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-8):
assert factor < 1.0, "factor should be < 1.0."
assert isinstance(optimizer, Optimizer), '{} is not an Optimizer'.format(type(optimizer).__name__)
assert mode in {'min', 'max'}, 'mode ' + mode + ' is unknown!'
assert threshold_mode in {'rel', 'abs'}, 'threshold mode ' + threshold_mode + ' is unknown!'
if isinstance(min_lr, list) or isinstance(min_lr, tuple):
assert len(min_lr) == len(optimizer.param_groups), "expected {} min_lrs, got {}".format(len(optimizer.param_groups), len(min_lr))
self.min_lrs = list(min_lr)
else:
self.min_lrs = [min_lr] * len(optimizer.param_groups)
self.factor = factor
self.optimizer = optimizer
self.patience = patience
self.verbose = verbose
self.cooldown = cooldown
self.n_cd = 0
self.mode = mode
self.threshold = threshold
self.threshold_mode = threshold_mode
self.loss_best = None
self.n_bad = 0
self.eps = eps
self.last_epoch = 0
self.loss_best = math.inf if mode=="min" else -math.inf
def step(self, loss, epoch=None):
# convert `metrics` to float, in case it's a zero-dim Tensor
loss_now = float(loss)
if epoch is None:
epoch = self.last_epoch + 1
self.last_epoch = epoch
if self.better(loss_now, self.loss_best):
self.loss_best = loss_now
self.n_bad = 0
else:
self.n_bad += 1
if self.n_cd > 0:
self.n_cd -= 1
self.n_bad = 0
if self.n_bad > self.patience:
self.update_lr(epoch)
self.n_cd = self.cooldown
self.n_bad = 0
def update_lr(self, epoch):
for i, param_group in enumerate(self.optimizer.param_groups):
old_lr = float(param_group.get("lr", self.optimizer.lr))
new_lr = max(old_lr * self.factor, self.min_lrs[i])
if old_lr - new_lr > self.eps:
if param_group.get("lr")!=None:
param_group["lr"] = max(param_group["lr"] * self.factor, self.min_lrs[i])
else:
self.optimizer.lr = new_lr
if self.verbose:
print('Epoch {:5d}: reducing learning rate of group {} from {:.4e} to {:.4e}.'.format(epoch, i, old_lr, new_lr))
def better(self, a, b):
if self.mode == 'min' and self.threshold_mode == 'rel':
save = 1.0 - self.threshold
return a < b * save
elif self.mode == 'min' and self.threshold_mode == 'abs':
return a < b - self.threshold
elif self.mode == 'max' and self.threshold_mode == 'rel':
save = self.threshold + 1.0
return a > b * save
else:
return a > b + self.threshold
class CosineAnnealingLR(object):
def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1):
self.T_max = T_max
self.eta_min = eta_min
self.optimizer = optimizer
self.last_epoch = last_epoch
self.base_lr = optimizer.lr
self.base_lr_pg = [pg.get("lr") for pg in optimizer.param_groups]
#TODO set last_epoch is not ready
def get_lr(self, base_lr, now_lr):
if self.last_epoch == 0:
return base_lr
if (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
return (now_lr + (base_lr - self.eta_min) *
(1 - math.cos(math.pi / self.T_max)) / 2)
return ((1 + math.cos(math.pi * self.last_epoch / self.T_max)) /
(1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) *
(now_lr - self.eta_min) + self.eta_min)
def step(self):
self.last_epoch += 1
self.update_lr()
def update_lr(self):
self.optimizer.lr = self.get_lr(self.base_lr, self.optimizer.lr)
for i, param_group in enumerate(self.optimizer.param_groups):
if param_group.get("lr") != None:
param_group["lr"] = self.get_lr(self.base_lr_pg[i], param_group["lr"])
class ExponentialLR(object):
""" learning rate is multiplied by gamma in each step.
"""
def __init__(self, optimizer, gamma, last_epoch=-1):
self.optimizer = optimizer
self.gamma = gamma
self.last_epoch = last_epoch
self.base_lr = optimizer.lr
self.base_lr_pg = [pg.get("lr") for pg in optimizer.param_groups]
def get_lr(self, base_lr, now_lr):
if self.last_epoch == 0:
return base_lr
return base_lr * self.gamma ** self.last_epoch
def step(self):
self.last_epoch += 1
self.update_lr()
def update_lr(self):
self.optimizer.lr = self.get_lr(self.base_lr, self.optimizer.lr)
for i, param_group in enumerate(self.optimizer.param_groups):
if param_group.get("lr") != None:
param_group["lr"] = self.get_lr(self.base_lr_pg[i], param_group["lr"])
class StepLR(object):
def __init__(self, optimizer, step_size, gamma=0.1, last_epoch=-1):
self.optimizer = optimizer
self.step_size = step_size
self.gamma = gamma
self.last_epoch = last_epoch
self.cur_epoch = 0
def get_gamma(self):
if self.last_epoch < 0:
if (self.cur_epoch != 0 and (self.cur_epoch + 1) % self.step_size == 0):
return self.gamma
else:
if (self.cur_epoch + 1 + self.last_epoch) % self.step_size == 0:
return self.gamma
return 1.
def get_lr(self):
return self.optimizer.lr
def step(self):
self.update_lr()
self.cur_epoch += 1
def update_lr(self):
gamma = self.get_gamma()
if gamma != 1.:
self.optimizer.lr = self.optimizer.lr * gamma
for i, param_group in enumerate(self.optimizer.param_groups):
if param_group.get("lr") != None:
param_group["lr"] = param_group["lr"] * gamma
class MultiStepLR(object):
def __init__(self, optimizer, milestones=[], gamma=0.1, last_epoch=-1):
self.optimizer = optimizer
self.milestones = milestones
self.gamma = gamma
self.last_epoch = last_epoch
#TODO set last_epoch is not ready
def get_gamma(self):
if (self.last_epoch in self.milestones):
return self.gamma
return 1.0
def get_lr(self):
now_lr = self.optimizer.lr
return now_lr * self.get_gamma()
def step(self):
self.last_epoch += 1
self.update_lr()
def update_lr(self):
gamma = self.get_gamma()
if gamma != 1.0:
self.optimizer.lr = self.optimizer.lr * gamma
for i, param_group in enumerate(self.optimizer.param_groups):
if param_group.get("lr") != None:
param_group["lr"] = param_group["lr"] * gamma