JittorMirror/python/jittor/misc.py

1660 lines
53 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ***************************************************************
# Copyright (c) 2021 Jittor. All Rights Reserved.
# Maintainers:
# Dun Liang <randonlang@gmail.com>.
# Wenyang Zhou <576825820@qq.com>
# Guoye Yang <498731903@qq.com>
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
import numpy as np
import math
from collections.abc import Sequence,Iterable
def index_add_(x, dim, index, tensor):
""" Take out each index subscript vector of the dim dimension and add the corresponding tensor variable.
Example:
x = jt.ones((5,3))
tensor = jt.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
index = jt.array([0,4,2])
x.index_add_(0, index, tensor)
print(x)
>>> jt.Var([[ 2., 3., 4.],
[ 1., 1., 1.],
[ 8., 9., 10.],
[ 1., 1., 1.],
[ 5., 6., 7.]])
"""
assert len(index.shape) == 1
assert tensor.shape[0] == index.shape[0]
x[(slice(None,),)*dim+(index,)] += tensor
jt.Var.index_add_ = index_add_
def __copy__(x):
return x.copy().detach()
jt.Var.__copy__ = __copy__
def __deepcopy__(x,memo):
result = x.copy().detach()
memo[id(x)]=result
return result
jt.Var.__deepcopy__ = __deepcopy__
def __len__(x):
return x.shape[0]
jt.Var.__len__ = __len__
def __iter__(x):
result = []
for i in range(x.shape[0]):
result.append(x[i])
return result.__iter__()
jt.Var.__iter__ = __iter__
def all(x, dim=[]):
return x.all_(dim).bool()
jt.Var.all = all
def any(x,dim):
return x.any_(dim).bool()
jt.Var.any = any
def bernoulli(input):
return (input>jt.rand_like(input)).cast(input.dtype)
def repeat(x, *shape):
r'''
Repeats this var along the specified dimensions.
Args:
x (var): jittor var.
shape (tuple): int or tuple. The number of times to repeat this var along each dimension.
Example:
>>> x = jt.array([1, 2, 3])
>>> x.repeat(4, 2)
[[ 1, 2, 3, 1, 2, 3],
[ 1, 2, 3, 1, 2, 3],
[ 1, 2, 3, 1, 2, 3],
[ 1, 2, 3, 1, 2, 3]]
>>> x.repeat(4, 2, 1).size()
[4, 2, 3,]
'''
if len(shape) == 1 and isinstance(shape[0], Sequence):
shape = shape[0]
len_x_shape = len(x.shape)
len_shape = len(shape)
x_shape = x.shape
rep_shape = shape
if len_x_shape < len_shape:
x_shape = (len_shape - len_x_shape) * [1] + x.shape
x = x.broadcast(x_shape)
elif len_x_shape > len_shape:
rep_shape = (len_x_shape - len_shape) * [1] + list(shape)
reshape_shape = []
broadcast_shape = []
for x_s,r_s in zip(x_shape,rep_shape):
if r_s != 1:
reshape_shape.append(1)
broadcast_shape.append(r_s)
reshape_shape.append(x_s)
broadcast_shape.append(1)
x = x.reshape(reshape_shape)
x = x.broadcast(broadcast_shape)
tar_shape = (np.array(x_shape) * np.array(rep_shape)).tolist()
x = x.reshape(tar_shape)
return x
jt.Var.repeat = repeat
def repeat_interleave(x,repeats,dim=None):
# TODO repeats is jt.Var
assert isinstance(repeats,int)
if dim == None:
x = x.reshape(-1)
dim=0
if dim<0: dim+=x.ndim
tar_shape = list(x.shape)
x_shape = list(x.shape)
tar_shape[dim] = tar_shape[dim]*repeats
dims = []
for i in range(len(tar_shape)):
if dim==i:
dims.append(f"i{i}/{repeats}")
else:
dims.append(f"i{i}")
return x.reindex(tar_shape,dims)
jt.Var.repeat_interleave = repeat_interleave
def chunk(x, chunks, dim=0):
r'''
Splits a var into a specific number of chunks. Each chunk is a view of the input var.
Last chunk will be smaller if the var size along the given dimension dim is not divisible by chunks.
Args:
input (var) the var to split.
chunks (int) number of chunks to return.
dim (int) dimension along which to split the var.
Example:
>>> x = jt.random((10,3,3))
>>> res = jt.chunk(x, 2, 0)
>>> print(res[0].shape, res[1].shape)
[5,3,3,] [5,3,3,]
'''
if dim<0:
dim += x.ndim
l = x.shape[dim]
res = []
if l <= chunks:
for i in range(l):
res.append(x[(slice(None,),)*dim+([i,],)])
else:
nums = (l-1) // chunks + 1
for i in range(chunks-1):
res.append(x[(slice(None,),)*dim+(slice(i*nums,(i+1)*nums),)])
if (i+1)*nums < l:
res.append(x[(slice(None,),)*dim+(slice((i+1)*nums,None),)])
return res
jt.Var.chunk = chunk
def expand(x, *shape):
''' Expand and broadcast this array, -1 represents this dimension is not changed.
Example::
a = jt.zeros((3,1))
b = a.expand(3, 4)
assert b.shape == (3,4)
b = a.expand(-1, 4)
assert b.shape == (3,4)
b = a.expand((3, 4))
assert b.shape == (3,4)
b = a.expand((-1, 4))
assert b.shape == (3,4)
'''
if len(shape) == 1 and isinstance(shape[0], (tuple,list,jt.NanoVector)):
shape = shape[0]
shape = list(shape)
for i in range(len(shape)):
if shape[i] == -1:
shape[i] = x.shape[i]
return x.broadcast(shape)
jt.Var.expand = expand
def t(x):
pose = [i for i in range(x.ndim)]
pose[-1], pose[-2] = pose[-2], pose[-1]
return x.transpose(*pose)
jt.Var.t = t
def median(x,dim=None,keepdim=False, keepdims=False):
keepdim = keepdim or keepdims
if dim is None:
x = x.reshape(-1)
dim=0
_,x = x.argsort(dim)
slices = [slice(None) for i in range(dim-1)]
k = (x.shape[dim]-1)//2
if keepdim:
slices.append(slice(k,k+1))
else:
slices.append(k)
return x[tuple(slices)]
jt.Var.median = median
def stack(x, dim=0):
r'''
Concatenates sequence of vars along a new dimension.
All vars need to be of the same size.
Args:
x (sequence of vars) sequence of vars to concatenate.
dim (int) dimension to insert. Has to be between 0 and the number of dimensions of concatenated vars (inclusive).
Example:
>>> a1 = jt.array([[1,2,3]])
>>> a2 = jt.array([[4,5,6]])
>>> jt.stack([a1, a2], 0)
[[[1 2 3]
[[4 5 6]]]
'''
assert isinstance(x, Sequence)
if len(x) < 2:
return x[0].unsqueeze(dim)
res = [x_.unsqueeze(dim) for x_ in x]
return jt.contrib.concat(res, dim=dim)
jt.Var.stack = stack
def flip(x, dim=0):
r'''
Reverse the order of a n-D var along given axis in dims.
Args:
input (var) the input var.
dims (a list or tuple) axis to flip on.
Example:
>>> x = jt.array([[1,2,3,4]])
>>> x.flip(1)
[[4 3 2 1]]
'''
if isinstance(dim, int):
dim = [dim]
for i in range(len(dim)):
if dim[i]<0:
dim[i] += x.ndim
assert dim[i]>=0 and dim[i]<x.ndim
dim = set(dim)
tar_dims = []
for i in range(len(x.shape)):
if i in dim:
tar_dims.append(f"xshape{i}-1-i{i}")
else:
tar_dims.append(f"i{i}")
return x.reindex(x.shape, tar_dims)
jt.Var.flip = flip
def cross(input, other, dim=-1):
r'''
Returns the cross product of vectors in dimension dim of input and other.
the cross product can be calculated by (a1,a2,a3) x (b1,b2,b3) = (a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)
input and other must have the same size, and the size of their dim dimension should be 3.
If dim is not given, it defaults to the first dimension found with the size 3.
Args:
input (Tensor) the input tensor.
other (Tensor) the second input tensor
dim (int, optional) the dimension to take the cross-product in.
out (Tensor, optional) the output tensor.
Example:
>>> input = jt.random((6,3))
>>> other = jt.random((6,3))
>>> jt.cross(input, other, dim=1)
[[-0.42732686 0.6827885 -0.49206433]
[ 0.4651107 0.27036983 -0.5580432 ]
[-0.31933784 0.10543461 0.09676848]
[-0.58346975 -0.21417202 0.55176204]
[-0.40861478 0.01496297 0.38638002]
[ 0.18393655 -0.04907863 -0.17928357]]
>>> jt.cross(input, other)
[[-0.42732686 0.6827885 -0.49206433]
[ 0.4651107 0.27036983 -0.5580432 ]
[-0.31933784 0.10543461 0.09676848]
[-0.58346975 -0.21417202 0.55176204]
[-0.40861478 0.01496297 0.38638002]
[ 0.18393655 -0.04907863 -0.17928357]]
'''
assert input.shape==other.shape, "input shape and other shape must be same"
if dim < 0: dim += len(input.shape)
assert input.shape[dim] == 3, "input dim shape must be 3"
a1 = input[(slice(None,),)*dim+(1,)]*other[(slice(None,),)*dim+(2,)]-input[(slice(None,),)*dim+(2,)]*other[(slice(None,),)*dim+(1,)]
a2 = input[(slice(None,),)*dim+(2,)]*other[(slice(None,),)*dim+(0,)]-input[(slice(None,),)*dim+(0,)]*other[(slice(None,),)*dim+(2,)]
a3 = input[(slice(None,),)*dim+(0,)]*other[(slice(None,),)*dim+(1,)]-input[(slice(None,),)*dim+(1,)]*other[(slice(None,),)*dim+(0,)]
return jt.contrib.concat([a1.unsqueeze(dim),a2.unsqueeze(dim),a3.unsqueeze(dim)], dim=dim)
jt.Var.cross = cross
def normalize(input, p=2, dim=1, eps=1e-30):
r'''
Performs L_p normalization of inputs over specified dimension.
Args:
input input array of any shape
p (float) the exponent value in the norm formulation. Default: 2
dim (int) the dimension to reduce. Default: 1
eps (float) small value to avoid division by zero. Default: 1e-12
Example:
>>> x = jt.random((6,3))
[[0.18777736 0.9739261 0.77647036]
[0.13710196 0.27282116 0.30533272]
[0.7272278 0.5174613 0.9719775 ]
[0.02566639 0.37504175 0.32676998]
[0.0231761 0.5207773 0.70337296]
[0.58966476 0.49547017 0.36724383]]
>>> jt.normalize(x)
[[0.14907198 0.7731768 0.61642134]
[0.31750825 0.63181424 0.7071063 ]
[0.5510936 0.39213243 0.736565 ]
[0.05152962 0.7529597 0.656046 ]
[0.02647221 0.59484214 0.80340654]
[0.6910677 0.58067477 0.4303977 ]]
'''
return input / input.norm(p, dim, True, eps)
jt.Var.normalize = normalize
def unbind(x, dim=0):
r'''
Removes a var dimension.
Returns a tuple of all slices along a given dimension, already without it.
Args:
input (var) the var to unbind
dim (int) dimension to remove
Example:
a = jt.random((3,3))
b = jt.unbind(a, 0)
'''
if dim < 0: dim += len(x.shape)
return [x[(slice(None),)*dim+(i,)] for i in range(x.shape[dim])]
jt.Var.unbind = unbind
def make_grid(x, nrow=8, padding=2, normalize=False, range=None, scale_each=False, pad_value=0):
assert isinstance(range, tuple) or range is None
assert scale_each == False
if isinstance(x, list): x = jt.stack(x)
assert isinstance(x, jt.Var)
if x.ndim < 4: return x
if x.ndim == 4 and x.shape[0] <= 1: return x
nrow = min(nrow, x.shape[0])
if normalize:
if range is None: x = (x - x.min()) / (x.max() - x.min())
else: x = (x - range[0]) / (range[1] - range[0])
b,c,h,w = x.shape
ncol = math.ceil(b / nrow)
return x.reindex([c, h*ncol+(ncol+1)*padding, w*nrow+(nrow+1)*padding],
[f"i1/{padding+h}*{nrow}+i2/{padding+w}", "i0",
f"i1-i1/{padding+h}*{padding+h}-{padding}", f"i2-i2/{padding+w}*{padding+w}-{padding}"], overflow_value=pad_value)
def save_image(
x,
filepath,
nrow: int = 8,
padding: int = 2,
normalize: bool = False,
range = None,
scale_each = False,
pad_value = 0,
format = None
):
from PIL import Image
grid = make_grid(x, nrow=nrow, padding=padding, pad_value=pad_value,
normalize=normalize, range=range, scale_each=scale_each)
ndarr = (grid*255+0.5).clamp(0, 255).permute(1, 2, 0).uint8().numpy()
im = Image.fromarray(ndarr)
im.save(filepath, format=format)
def _ntuple(n):
def parse(x):
if isinstance(x, Iterable):
return x
return tuple([x]*n)
return parse
_single = _ntuple(1)
_pair = _ntuple(2)
_triple = _ntuple(3)
_quadruple = _ntuple(4)
def unique(x):
r'''
Returns the unique elements of the input tensor.
Args:
x the input tensor.
'''
x = x.reshape(-1)
_,x = jt.argsort(x)
index,= jt.index((x.shape[0],))
y = x[1:][x[index[1:]] != x[index[:-1]]]
x = jt.contrib.concat([x[:1],y],dim=0)
return x
jt.Var.unique = unique
def hypot(a,b):
return jt.sqrt(a.sqr()+b.sqr())
def rad2deg(x):
return 180 * x / np.pi
jt.Var.rad2deg = rad2deg
def deg2rad(x):
return x * np.pi / 180.
jt.Var.deg2rad = deg2rad
def arctan2(y,x):
angle = jt.zeros(x.shape,dtype=x.dtype)
mask = x!=0.0
if angle[mask].numel()>0:
angle[mask] = jt.arctan(y[mask]/x[mask])
mask = (y<0) & (x<0)
if angle[mask].numel()>0:
angle[mask] -= np.pi
mask = (y>0) &(x<0)
if angle[mask].numel()>0:
angle[mask] +=np.pi
return angle
def nonzero(x):
r'''
Return the index of the elements of input tensor which are not equal to zero.
'''
x = jt.where(x)
x = [xx.unsqueeze(1) for xx in x]
if len(x)<2:
return x[0]
x = jt.contrib.concat(x,dim=1)
return x
jt.Var.nonzero = nonzero
def arange(start=0, end=None, step=1,dtype=None):
if end is None:
end,start = start,0
l = round((end-start)//step)+1
if (l-1)*step+start>=end:
l-=1
x = jt.index((l,),0)
x = x*step+start
if dtype is not None:
x= x.cast(dtype)
return x
def log2(x):
return jt.log(x)/math.log(2.0)
jt.Var.log2 = log2
def meshgrid(*tensors):
r'''
Take N tensors, each of which can be 1-dimensional vector, and create N n-dimensional grids,
where the i th grid is defined by expanding the i th input over dimensions defined by other inputs.
'''
if len(tensors)==1 and isinstance(tensors[0], list):
tensors = tensors[0]
size = len(tensors)
shape = []
for i in range(size):
assert isinstance(tensors[i],jt.Var) and tensors[i].ndim==1
shape.append(tensors[i].shape[0])
grids = []
view_shape = [1]*size
for i in range(size):
vs = view_shape[:]
vs[i]=-1
grids.append(tensors[i].reshape(vs).expand(shape))
return grids
def split(d,split_size,dim):
r'''
Splits the tensor into chunks. Each chunk is a view of the original tensor.
If split_size is an integer type, then tensor will be split into equally sized chunks (if possible). Last chunk will be smaller if the tensor size along the given dimension dim is not divisible by split_size.
If split_size is a list, then tensor will be split into len(split_size) chunks with sizes in dim according to split_size_or_sections.
Args:
d (Tensor) tensor to split.
split_size (int) or (list(int)) size of a single chunk or list of sizes for each chunk
dim (int) dimension along which to split the tensor.
'''
if isinstance(split_size,int):
shape = d.shape[dim]
if shape % split_size == 0:
split_size = [split_size]*(shape//split_size)
else:
split_size = [split_size]*(shape//split_size)+[shape%split_size]
if isinstance(split_size, Iterable):
assert sum(split_size)==d.shape[dim]
if dim<0:
dim+=d.ndim
ans = []
last = 0
for i in split_size:
if i==0:
shape = list(d.shape)
shape[dim]=0
new_d = jt.zeros(tuple(shape),dtype=d.dtype)
ans.append(new_d)
continue
ss = (slice(None),)*dim+(slice(last,last+i),)
new_d = d[ss]
last +=i
ans.append(new_d)
return tuple(ans)
jt.Var.split = split
def tolist(x):
return x.numpy().tolist()
jt.Var.tolist = tolist
def view_as(x,y):
return x.reshape(y.shape)
jt.Var.view_as = view_as
def diag(x,diagonal=0):
assert x.ndim==1 or (x.ndim==2 and x.shape[0]==x.shape[1])
d = diagonal if diagonal>=0 else -diagonal
d_str = f'+{diagonal}' if diagonal>=0 else f'{diagonal}'
if x.ndim==1:
output_shape = (x.shape[0]+d,)*2
return x.reindex(output_shape,[f'i1-{d}' if diagonal>=0 else f'i0-{d}'],overflow_conditions=[f'i0{d_str}!=i1'])
else:
output_shape = (x.shape[0]-d,)
return x.reindex(output_shape,[f'i0+{d}' if diagonal<=0 else 'i0',f'i0+{d}' if diagonal>=0 else 'i0'])
jt.Var.diag = diag
def topk(input, k, dim=None, largest=True, sorted=True):
if input.numel()==0:
return jt.array([],dtype=input.dtype),jt.array([],dtype='int32')
if dim is None:
dim = -1
if dim<0:
dim+=input.ndim
index,values = jt.argsort(input,dim=dim,descending=largest)
dims = (slice(None),)*dim+(slice(0,k),)
indices = index[dims]
values = values[dims]
return values,indices
jt.Var.topk = topk
def kthvalue(input, k, dim=None, keepdim=False, keepdims=False):
keepdim = keepdim or keepdims
if dim is None:
dim = -1
if dim<0:
dim+=input.ndim
index,values = jt.argsort(input,dim=dim)
dims = (slice(None),)*dim+(slice(k-1,k),)
indices = index[dims]
values = values[dims]
if not keepdim and indices.ndim>1:
indices = indices.squeeze(dim)
values = values.squeeze(dim)
return values,indices
jt.Var.kthvalue = kthvalue
def _prod(x,dim=0):
x = jt.log(x)
x = x.sum(dim=dim)
return jt.exp(x)
def numpy_cumsum(x, dim=None):
def cumsum_forward(np, data):
dim = data['inputs'][1].item()
a = data['inputs'][0]
b = data['outputs'][0]
np.cumsum(a, axis=dim, out=b)
def cumsum_backward(np, data):
dim = data['inputs'][1].item()
dout = data['dout']
out = data['outputs'][0]
np.cumsum(dout[..., ::-1], axis=dim, out=out)
np.copyto(out, out[..., ::-1])
if (dim == None):
dim = -1
assert(dim >= -1 and dim < len(x.shape))
dim_var = jt.array([dim],dtype=int)
return jt.numpy_code(x.shape, x.dtype, [x, dim_var.detach()], cumsum_forward, [cumsum_backward])
def cub_cumsum(x, dim=None):
if (dim == None):
dim = -1
assert(dim >= -1 and dim < len(x.shape))
shape = x.shape
if (dim != -1 and dim != len(shape) - 1):
order = range(len(shape))
order[dim], order[-1] = order[-1], order[dim]
shape[dim], shape[-1] = shape[-1], shape[dim]
x = x.permute(order)
if (len(shape) > 2):
x = x.reshape([-1, shape[-1]])
x = jt.compile_extern.cub_ops.cub_cumsum(x)
if (len(shape) > 2):
x = x.reshape(shape)
if (dim != -1 and dim != len(shape) - 1):
x = x.permute(order)
return x
def cumsum(x, dim=None):
'''
Parameters:
-----------
x: jt.var
dim: int
Returns:
--------
the cumulative sum in dim of x
'''
if (dim == None):
dim = -1
assert(dim >= -1 and dim < len(x.shape))
if jt.has_cuda:
return cub_cumsum(x, dim)
else:
return numpy_cumsum(x, dim)
jt.Var.cumsum = cumsum
def cumprod(x,dim=None):
x = jt.log(x)
x = cumsum(x,dim=dim)
return jt.exp(x)
jt.Var.cumprod=cumprod
def nms(dets,thresh):
'''
dets jt.array [x1,y1,x2,y2,score]
x(:,0)->x1,x(:,1)->y1,x(:,2)->x2,x(:,3)->y2,x(:,4)->score
'''
threshold = str(thresh)
order = jt.argsort(dets[:,4],descending=True)[0]
dets = dets[order]
s_1 = '(@x(j,2)-@x(j,0)+1)*(@x(j,3)-@x(j,1)+1)'
s_2 = '(@x(i,2)-@x(i,0)+1)*(@x(i,3)-@x(i,1)+1)'
s_inter_w = 'max((Tx)0,min(@x(j,2),@x(i,2))-max(@x(j,0),@x(i,0))+1)'
s_inter_h = 'max((Tx)0,min(@x(j,3),@x(i,3))-max(@x(j,1),@x(i,1))+1)'
s_inter = s_inter_h+'*'+s_inter_w
iou = s_inter + '/(' + s_1 +'+' + s_2 + '-' + s_inter + ')'
fail_cond = iou+'>'+threshold
selected = jt.candidate(dets, fail_cond)
return order[selected]
jt.Var.expand_as = jt.Var.broadcast_var
def index_fill_(x,dim,indexs,val):
r'''
Fills the elements of the input tensor with value val by selecting the indices in the order given in index.
Args:
x - the input tensor
dim - dimension along which to index
index indices of input tensor to fill in
val the value to fill with
'''
overflow_conditions = [f'i{dim}=={i}'for i in indexs]
indexs = [f'i{i}' for i in range(len(x.shape))]
return x.reindex(shape = x.shape,indexes = indexs,overflow_conditions=overflow_conditions,overflow_value=val)
def triu_(x,diagonal=0):
r'''
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.
The upper triangular part of the matrix is defined as the elements on and above the diagonal.
Args:
x the input tensor.
diagonal the diagonal to consider,default =0
'''
l = len(x.shape)
assert l>1
overflow_conditions=[f'i{l-1}<i{l-2}+{diagonal}']
indexs = [f'i{i}' for i in range(l)]
return x.reindex(x.shape,indexs,overflow_conditions=overflow_conditions,overflow_value=0)
jt.Var.triu_ = triu_
def print_tree(now, max_memory_size, prefix1, prefix2, build_by):
def format_size(s, end='B'):
if (s < 1024):
s = str(s)
return s + ' '+end
if (s < 1024*1024):
s = format(s/1024, '.2f')
return s + ' K'+end
if (s < 1024*1024*1024):
s = format(s/1024/1024, '.2f')
return s + ' M'+end
s = format(s/1024/1024/1024, '.2f')
return s + ' G'+end
out = ''
tab = ' '
out += prefix1+now['name']+'('+now['type']+')\n'
out += prefix2+'['+format_size(now['size'])+'; '+format(now['size']/max_memory_size*100, '.2f')+'%; cnt:'+format_size(now['cnt'],'') + ']\n'
if (build_by == 0):
for p in now['path']:
out += prefix2+p+'\n'
else:
out += prefix2+now['path'] + '\n'
if (len(now['children']) > 0):
out += prefix2 + tab + '| ' + '\n'
else:
out += prefix2 + '\n'
for i in range(len(now['children'])):
c = now['children'][i]
if i < len(now['children']) - 1:
prefix1_ = prefix2 + tab + '├─'
prefix2_ = prefix2 + tab + '| '
else:
prefix1_ = prefix2 + tab + '└─'
prefix2_ = prefix2 + tab + ' '
out += print_tree(c, max_memory_size, prefix1_, prefix2_, build_by)
return out
def get_max_memory_treemap(build_by=0, do_print=True):
'''show treemap of max memory consumption
Example::
net = jt.models.resnet18()
with jt.flag_scope(trace_py_var=3, profile_memory_enable=1):
imgs = jt.randn((1,3,224,224))
net(imgs).sync()
jt.get_max_memory_treemap()
Output::
|
├─./python/jittor/test/test_memory_profiler.py:100(test_sample)
| [19.03 MB; 29.67%]
| ./python/jittor/test/test_memory_profiler.py:100
| |
| └─./python/jittor/__init__.py:730(__call__)
| [19.03 MB; 29.67%]
| ./python/jittor/__init__.py:730
| |
| └─./python/jittor/models/resnet.py:152(execute)
| [19.03 MB; 29.67%]
| ./python/jittor/models/resnet.py:152
| |
| ├─./python/jittor/models/resnet.py:142(_forward_impl)
| | [6.13 MB; 9.55%]
| | ./python/jittor/models/resnet.py:142
| | |
'''
div1 = "[!@#div1!@#]"
div2 = "[!@#div2!@#]"
div3 = "[!@#div3!@#]"
info = jt.get_max_memory_info()
vars = []
vars_ = info.split(div1)
max_memory_size = int(vars_[0])
vars_ = vars_[1:]
for v_ in vars_:
v__ = v_.split(div2)
var = {'size':int(v__[1]), 'stack':[], 'cnt':1}
v__ = v__[2:-1]
for s_ in v__:
s__ = s_.split(div3)
s = {'path':s__[0], 'name':s__[1], 'type':s__[2]}
var['stack'].append(s)
vars.append(var)
if (build_by == 0): # build tree by name
tree = {'name':'root', "children":[], 'size':0, 'cnt':1, 'path':[], 'type':''}
def find_child(now, key):
for c in now['children']:
if (c['name'] == key):
return c
return None
for v in vars:
now = tree
now['size'] += v['size']
now['cnt'] += v['cnt']
for s in v['stack']:
ch = find_child(now, s['name'])
if (ch is not None):
if (not s['path'] in ch['path']):
ch['path'].append(s['path'])
assert(ch['type']==s['type'])
now = ch
now['size'] += v['size']
now['cnt'] += v['cnt']
else:
now_ = {'name':s['name'], "children":[], 'size':v['size'], 'cnt':v['cnt'], 'path':[s['path']], 'type':s['type']}
now['children'].append(now_)
now = now_
elif (build_by == 1): # build tree by path
tree = {'name':'root', "children":[], 'size':0, 'cnt':0, 'path':'_root_', 'type':''}
def find_child(now, key):
for c in now['children']:
if (c['path'] == key):
return c
return None
for v in vars:
now = tree
now['size'] += v['size']
now['cnt'] += v['cnt']
for s in v['stack']:
ch = find_child(now, s['path'])
if (ch is not None):
now = ch
now['size'] += v['size']
now['cnt'] += v['cnt']
else:
now_ = {'name':s['name'], "children":[], 'size':v['size'], 'cnt':v['cnt'], 'path':s['path'], 'type':s['type']}
now['children'].append(now_)
now = now_
else:
assert(False)
def sort_tree(now):
def takeSize(elem):
return elem['size']
now['children'].sort(key=takeSize, reverse=True)
for c in now['children']:
sort_tree(c)
sort_tree(tree)
out = print_tree(tree, max_memory_size, '', '', build_by)
if (do_print):
print(out)
return tree, out
def python_pass_wrapper(mod_func, args, kw):
import importlib
mod, func = mod_func.rsplit(".", 1)
mod = importlib.import_module(mod)
func = getattr(mod, func)
args = args + ("**kw",)
args = ",".join(args)
return eval(f"func({args})")
def auto_parallel(n, src, **kw):
"""
auto parallel(CPU and GPU) n-d for loop function like below:
Before:
void inner_func(int n0, int i0, int n1, int i1) {
...
}
for (int i0=0; i0<n0; i0++)
for (int i1=0; i1<n1; i1++)
inner_func(n0, i0, n1, i1, ...);
After:
@python.jittor.auto_parallel(2)
void inner_func(int n0, int i0, int n1, int i1) {
...
}
inner_func(n0, 0, n1, 0, ...);
"""
# src = prev_func func_name(args)code
a, b = src.split('(', 1)
prev_func, func_name = a.rsplit(None, 1)
args, code = b.split(')', 1)
args = args.split(',')
assert len(args) >= n*2, (args, n)
oargs = args[n*2:]
pargs = args[:n*2]
piargs = pargs[1::2]
pnargs = pargs[0::2]
pnargs2 = [ a.split()[-1] for a in pnargs ]
oargs2 = [ a.split()[-1] for a in oargs ]
entry_func_args_def = ",".join(["int tn"+str(i) for i in range(n)]
+ pnargs + oargs)
entry_func_args = ",".join(["tn"+str(i) for i in range(n)]
+ pnargs2 + oargs2)
tid_def = ""
tid_loop = ""
call_args = []
for i in reversed(range(n)):
tid_def += f"\nauto tid{i} = tid & ((1<<tn{i})-1);"
tid_def += f"\nauto tnum{i} = 1<<tn{i};"
tid_def += f"\ntid = tid>>tn{i};"
for i in range(n):
tid_loop += f"\nfor (int i{i}=tid{i}; i{i}<{pnargs2[i]}; i{i}+=tnum{i})"
call_args.append(pnargs2[i])
call_args.append(f"i{i}")
call_args += oargs2
call_args = ",".join(call_args)
xn = '\n'
new_src = f"""
#ifdef JIT_cuda
__device__
#endif
{src.replace(func_name, func_name+"_inner", 1)}
#ifdef JIT_cuda
__global__ static void {func_name}_entry({entry_func_args_def}) {{
int tid = threadIdx.x + blockIdx.x * blockDim.x;
{tid_def}
{tid_loop}
{func_name}_inner({call_args});
}}
#endif
inline static void {func_name}({",".join(pargs+oargs)}) {{
#ifdef JIT_cuda
int thread_num = 256*1024;
{xn.join([f"int tn{i} = NanoVector::get_nbits(std::min(thread_num, {pnargs2[i]})) - 2;thread_num >>= tn{i};" for i in reversed(range(n))])}
thread_num = 1<<({"+".join([f"tn{i}" for i in range(n)])});
int p1 = std::max(thread_num/1024, 1);
int p2 = std::min(thread_num, 1024);
{func_name}_entry<<<p1,p2>>>({entry_func_args});
#else
{xn.join([f"for (int i{i}=0; i{i}<{pnargs2[i]}; i{i}++)" for i in range(n)])}
{func_name}_inner({call_args});
#endif
}}
"""
return new_src
def cumprod(a, dim):
class CumprodFunc(jt.Function):
def forward_code(self, np, data):
a = data["inputs"][0]
b = data["outputs"][0]
out = np.cumprod(a, self.dim)
np.copyto(b, out)
def backward_code(self, np, data):
a, b, dout = data["inputs"]
out = data["outputs"][0]
sdim = a.shape[self.dim]
dim = (len(a.shape)+1)*[1]
dim[self.dim+1] = sdim
res = np.tile(np.expand_dims(b, self.dim+1), dim)
dout = np.tile(np.expand_dims(dout, self.dim+1), dim)
dim[self.dim]=sdim
dim[self.dim+1]=1
a = np.tile(np.expand_dims(a, self.dim), dim)
res = res/a
mask = np.tril(np.ones((sdim, sdim)))
for i in range(self.dim):
mask = np.expand_dims(mask, 0)
for i in range(len(a.shape)-self.dim-2):
mask = np.expand_dims(mask, -1)
res = np.sum(mask*res*dout, self.dim)
np.copyto(out, res)
def execute(self, a, dim):
self.save_vars = a
self.dim = dim
self.res = jt.numpy_code(
a.shape,
a.dtype,
[a],
self.forward_code,
)
return self.res
def grad(self, grad_a):
a = self.save_vars
b = self.res
return jt.numpy_code(
a.shape,
a.dtype,
[a, b, grad_a],
self.backward_code,
)
func = CumprodFunc()
if dim<0:
dim+=len(a.shape)
return func(a, dim)
def linspace(start, end, steps):
res = jt.index((steps,))[0]
res = res*(end-start)/float(steps-1)+start
return res
def randperm(n, dtype="int32"):
key = jt.random((n,))
index, _ = jt.argsort(key)
return index.cast(dtype)
def set_global_seed(seed, different_seed_for_mpi=True):
''' Sets the seeds of the random number generators of Python, numpy and jittor,
simultaneously.
.. note::
Jittor also gurantees each worker of jittor.dataset.Dataset to hold a different seed,
also gurantees each process hold a different seed which using mpi,
which is (global_seed ^ (worker_id*1167)) ^ 1234 + jt.rank * 2591
'''
if (different_seed_for_mpi):
seed = seed + jt.rank * 2591
import random
random.seed(seed)
jt.set_seed(seed)
np.random.seed(seed)
try:
import cupy
cupy.random.seed(seed)
except:
pass
import time
set_global_seed(int(time.time() * 1000000) % 100000007)
def searchsorted(sorted, values, right=False):
"""
Find the indices from the innermost dimension of `sorted` for each `values`.
Example::
sorted = jt.array([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]])
values = jt.array([[3, 6, 9], [3, 6, 9]])
ret = jt.searchsorted(sorted, values)
assert (ret == [[1, 3, 4], [1, 2, 4]]).all(), ret
ret = jt.searchsorted(sorted, values, right=True)
assert (ret == [[2, 3, 5], [1, 3, 4]]).all(), ret
sorted_1d = jt.array([1, 3, 5, 7, 9])
ret = jt.searchsorted(sorted_1d, values)
assert (ret == [[1, 3, 4], [1, 3, 4]]).all(), ret
"""
_searchsorted_header = f"""
namespace jittor {{
@python.jittor.auto_parallel(2)
inline static void searchsorted(
int batch_num, int batch_id, int value_num, int value_id,
int sorted_num, int batch_stride,
{sorted.dtype}* __restrict__ sort_p, {values.dtype}* __restrict__ value_p,
int32* __restrict__ index_p) {{
int32 l = batch_id * batch_stride;
int32 r = l + sorted_num;
auto v = value_p[batch_id * value_num + value_id];
while (l<r) {{
int32 m = (l+r)/2;
if (sort_p[m] {"<=" if right else "<"} v)
l = m+1;
else
r = m;
}}
index_p[batch_id * value_num + value_id] = l - batch_id * batch_stride;
}}
}}
"""
_searchsorted_src = """
int value_num = in1->shape[in1->shape.size()-1];
int sorted_num = in0->shape[in0->shape.size()-1];
int32 batch_num = in0->num / sorted_num;
int32 batch_num2 = in1->num / value_num;
int32 batch_stride = batch_num == 1 ? 0 : sorted_num;
CHECK(batch_num == batch_num2 || batch_num == 1);
searchsorted(batch_num2, 0, value_num, 0, sorted_num, batch_stride, in0_p, in1_p, out0_p);
"""
return jt.code(values.shape, "int32", [sorted, values],
cpu_header=_searchsorted_header,
cpu_src=_searchsorted_src,
cuda_header=_searchsorted_header,
cuda_src=_searchsorted_src)
def scatter(x:jt.Var, dim:int, index:jt.Var, src:jt.Var, reduce='void'):
''' if x is a 3-D array, rewrite x like:
self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0
self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1
self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2
Parameters::
* x (jt.Var) input array
* dim (int) the axis along which to index
* index (jt.Var) the indices of elements to scatter, can be either empty or of the same dimensionality as src. When empty, the operation returns self unchanged.
* src (jt.Var) the source element(s) to scatter.
* reduce (str, optional) reduction operation to apply, can be either 'add' or 'multiply'.
Example::
src = jt.arange(1, 11).reshape((2, 5))
index = jt.array([[0, 1, 2, 0]])
x = jt.zeros((3, 5), dtype=src.dtype).scatter_(0, index, src)
assert (x.data ==
[[1, 0, 0, 4, 0],
[0, 2, 0, 0, 0],
[0, 0, 3, 0, 0]]).all()
index = jt.array([[0, 1, 2], [0, 1, 4]])
x = jt.zeros((3, 5), dtype=src.dtype).scatter_(1, index, src)
assert (x.data ==
[[1, 2, 3, 0, 0],
[6, 7, 0, 0, 8],
[0, 0, 0, 0, 0]]).all()
x = jt.full((2, 4), 2.).scatter_(1, jt.array([[2], [3]]),
jt.array(1.23), reduce='multiply')
assert np.allclose(x.data,
[[2.0000, 2.0000, 2.4600, 2.0000],
[2.0000, 2.0000, 2.0000, 2.4600]]), x
x = jt.full((2, 4), 2.).scatter_(1, jt.array([[2], [3]]),
jt.array(1.23), reduce='add')
assert np.allclose(x.data,
[[2.0000, 2.0000, 3.2300, 2.0000],
[2.0000, 2.0000, 2.0000, 3.2300]])
'''
shape = index.shape
if src.shape != shape and src.numel() != 1:
src = src[tuple( slice(None,s) for s in shape )]
indexes = [ f'i{i}' for i in range(len(shape)) ]
indexes[dim] = index
return x.setitem(tuple(indexes), src, reduce)
def scatter_(x, dim, index, src, reduce='void'):
return x.assign(x.scatter(dim, index, src, reduce))
jt.Var.scatter = scatter
jt.Var.scatter_ = scatter_
def gather(x, dim, index):
''' if x is a 3-D array, reindex x like:
out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2
Parameters::
* x (jt.Var) the source array
* dim (int) the axis along which to index
* index (jt.Var) the indices of elements to gather
Example::
t = jt.array([[1, 2], [3, 4]])
data = t.gather(1, jt.array([[0, 0], [1, 0]]))
assert (data.data == [[ 1, 1], [ 4, 3]]).all()
data = t.gather(0, jt.array([[0, 0], [1, 0]]))
assert (data.data == [[ 1, 2], [ 3, 2]]).all()
'''
shape = index.shape
indexes = [ f'i{i}' for i in range(len(shape)) ]
indexes[dim] = index
return x.getitem(tuple(indexes))
jt.Var.gather = gather
def roll(x, shifts, dims=None):
'''Roll the tensor along the given dimension(s).
Parameters::
* x (jt.Var) the source array
* shifts (int or tuple) shift offset of dims
* dims (int or tuple) shift dims
Examples::
x = jt.array([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2)
y = x.roll(1, 0)
assert (y.numpy() == [[7,8],[1,2],[3,4],[5,6]]).all()
y = x.roll(-1, 0)
assert (y.numpy() == [[3,4],[5,6],[7,8],[1,2]]).all()
y = x.roll(shifts=(2, 1), dims=(0, 1))
assert (y.numpy() == [[6,5],[8,7],[2,1],[4,3]]).all()
'''
if isinstance(shifts, int):
shifts = (shifts,)
if dims is None:
dims = tuple(range(len(shifts)))
elif isinstance(dims, int):
dims = (dims,)
assert len(dims) == len(shifts)
ids = [ f'i{i}' for i in range(x.ndim) ]
for i in range(len(dims)):
shift = shifts[i]
d = dims[i]
size = x.shape[d]
shift = shift % size
if shift<0: shift += size
ids[d] = f'(i{d}<{shift}?i{d}+{size-shift}:(i{d}-{shift}))'
return x.reindex(x.shape, ids)
jt.Var.roll = roll
def safe_log(x):
return jt.safe_clip(x, 1e-30, 1e30).log()
jt.Var.safe_log = safe_log
class _CTCLossFunction(jt.Function):
def execute(self, log_probs, targets, input_lengths, target_lengths, blank=0, zero_infinity=False):
self.blank = blank
T, N, C = log_probs.shape
_N, S = targets.shape
assert _N == N
log_alpha = jt.full([T,N,S*2+1], -1e30)
result = jt.empty((N,))
jt.code([log_probs, targets, input_lengths, target_lengths], [log_alpha, result], cpu_src=f"""
constexpr int blank = {blank};
for (int i=0; i<in0_shape1; i++) {{
int input_len = @in2(i);
int target_len = @in3(i);
@out0(0,i,0) = @in0(0,i,blank);
if (target_len)
@out0(0,i,1) = @in0(0,i,@in1(i,0));
for (int j=1; j<input_len; j++)
for (int k=0; k<target_len*2+1; k++) {{
int target = k%2 ? @in1(i,k/2) : blank;
int target_2 = target;
if (k>1 && k%2) target_2 = @in1(i,k/2-1);
out_type l1 = @out0(j-1,i,k);
out_type l2 = -1e30;
if (k>0) l2 = @out0(j-1,i,k-1);
out_type l3 = -1e30;
if (k>1 && target_2 != target)
l3 = @out0(j-1,i,k-2);
out_type m = std::max(l1, std::max(l2, l3));
@out0(j,i,k) = std::log(
std::exp(l1-m) +
std::exp(l2-m) +
std::exp(l3-m)
) + m + @in0(j,i,target);
}}
if (input_len==0)
@out1(i) = @out0(0,i,0);
else {{
out_type l1 = @out0(input_len-1, i, target_len*2);
out_type l2 = -1e30;
if (target_len)
l2 = @out0(input_len-1, i, target_len*2-1);
out_type m = std::max(l1, l2);
out_type log_likelihood = std::log(std::exp(l1-m)+std::exp(l2-m))+m;
@out1(i) = -log_likelihood;
}}
}}
""", cuda_src=f"""
__global__ void kernel(@ARGS_DEF) {{
@PRECALC;
constexpr int blank = {blank};
for (int i=blockIdx.x; i<in0_shape1; i+=gridDim.x) {{
int input_len = @in2(i);
int target_len = @in3(i);
@out0(0,i,0) = @in0(0,i,blank);
if (target_len)
@out0(0,i,1) = @in0(0,i,@in1(i,0));
for (int j=1; j<input_len; j++)
for (int k=threadIdx.x; k-threadIdx.x<target_len*2+1; k+=blockDim.x) {{
__syncthreads();
if (k>=target_len*2+1)
continue;
int target = k%2 ? @in1(i,k/2) : blank;
int target_2 = target;
if (k>1 && k%2) target_2 = @in1(i,k/2-1);
out_type l1 = @out0(j-1,i,k);
out_type l2 = -1e30;
if (k>0) l2 = @out0(j-1,i,k-1);
out_type l3 = -1e30;
if (k>1 && target_2 != target)
l3 = @out0(j-1,i,k-2);
out_type m = ::max(l1, ::max(l2, l3));
@out0(j,i,k) = ::log(
::exp(l1-m) +
::exp(l2-m) +
::exp(l3-m)
) + m + @in0(j,i,target);
}}
__syncthreads();
if (input_len==0)
@out1(i) = @out0(0,i,0);
else {{
out_type l1 = @out0(input_len-1, i, target_len*2);
out_type l2 = -1e30;
if (target_len)
l2 = @out0(input_len-1, i, target_len*2-1);
out_type m = ::max(l1, l2);
out_type log_likelihood = ::log(::exp(l1-m)+::exp(l2-m))+m;
@out1(i) = -log_likelihood;
}}
}}
}}
kernel<<<std::min(in0_shape1, 1024), std::min(in1_shape1*2+1, 1024)>>>(@ARGS);
""")
self.saved_var = [log_probs, targets, input_lengths, target_lengths, log_alpha, result]
return result
def grad(self, dout):
blank = self.blank
inputs = self.saved_var + [dout]
dlog_probs = jt.zeros_like(inputs[0])
dlog_alpha = jt.zeros_like(inputs[4])
jt.code(inputs, [dlog_probs, dlog_alpha], cpu_src=f"""
constexpr int blank = {blank};
for (int i=0; i<in0_shape1; i++) {{
int input_len = @in2(i);
int target_len = @in3(i);
if (input_len==0)
// write out1 --> read in6
// out1(i) = out0(0,i,0);
@out1(0,i,0) = @in6(i);
else {{
out_type l1 = @in4(input_len-1, i, target_len*2);
out_type l2 = -1e30;
if (target_len)
l2 = @in4(input_len-1, i, target_len*2-1);
out_type m = std::max(l1, l2);
// out_type log_likelihood = std::log(std::exp(l1-m)+std::exp(l2-m))+m;
// out1(i) = -log_likelihood;
out_type l1_exp = std::exp(l1-m);
out_type l2_exp = std::exp(l2-m);
out_type sumexp = l1_exp + l2_exp;
out_type dlog_likelihood = -@in6(i);
out_type dl1 = dlog_likelihood * l1_exp / sumexp;
out_type dl2 = dlog_likelihood * l2_exp / sumexp;
@out1(input_len-1, i, target_len*2) = dl1;
if (target_len)
@out1(input_len-1, i, target_len*2-1) = dl2;
}}
for (int j=input_len-1; j>0; j--)
for (int k=0; k<target_len*2+1; k++) {{
int target = k%2 ? @in1(i,k/2) : blank;
int target_2 = target;
if (k>1 && k%2) target_2 = @in1(i,k/2-1);
out_type l1 = @in4(j-1,i,k);
out_type l2 = -1e30;
if (k>0) l2 = @in4(j-1,i,k-1);
out_type l3 = -1e30;
if (k>1 && target_2 != target)
l3 = @in4(j-1,i,k-2);
out_type m = std::max(l1, std::max(l2, l3));
out_type l1_exp = std::exp(l1-m);
out_type l2_exp = std::exp(l2-m);
out_type l3_exp = std::exp(l3-m);
out_type sumexp = l1_exp + l2_exp + l3_exp;
out_type dalpha = @out1(j,i,k);
@out0(j,i,target) += dalpha;
@out1(j-1,i,k) += dalpha * l1_exp / sumexp;
if (k>0)
@out1(j-1,i,k-1) += dalpha * l2_exp / sumexp;
if (k>1 && target_2 != target)
@out1(j-1,i,k-2) += dalpha * l3_exp / sumexp;
}}
// read in0 -> white out0
// write out0 ->read out1
// out0(0,i,0) = in0(0,i,blank);
@out0(0,i,blank) += @out1(0,i,0);
if (target_len)
@out0(0,i,@in1(i,0)) += @out1(0,i,1);
}}
""", cuda_src=f"""
__global__ void kernel(@ARGS_DEF) {{
@PRECALC;
constexpr int blank = {blank};
for (int i=blockIdx.x; i<in0_shape1; i+=gridDim.x) {{
int input_len = @in2(i);
int target_len = @in3(i);
if (input_len==0)
// write out1 --> read in6
// out1(i) = out0(0,i,0);
@out1(0,i,0) = @in6(i);
else {{
out_type l1 = @in4(input_len-1, i, target_len*2);
out_type l2 = -1e30;
if (target_len)
l2 = @in4(input_len-1, i, target_len*2-1);
out_type m = ::max(l1, l2);
// out_type log_likelihood = ::log(::exp(l1-m)+::exp(l2-m))+m;
// out1(i) = -log_likelihood;
out_type l1_exp = ::exp(l1-m);
out_type l2_exp = ::exp(l2-m);
out_type sumexp = l1_exp + l2_exp;
out_type dlog_likelihood = -@in6(i);
out_type dl1 = dlog_likelihood * l1_exp / sumexp;
out_type dl2 = dlog_likelihood * l2_exp / sumexp;
@out1(input_len-1, i, target_len*2) = dl1;
if (target_len)
@out1(input_len-1, i, target_len*2-1) = dl2;
}}
for (int j=input_len-1; j>0; j--)
for (int k=threadIdx.x; k-threadIdx.x<target_len*2+1; k+=blockDim.x) {{
__syncthreads();
if (k>=target_len*2+1)
continue;
int target = k%2 ? @in1(i,k/2) : blank;
int target_2 = target;
if (k>1 && k%2) target_2 = @in1(i,k/2-1);
out_type l1 = @in4(j-1,i,k);
out_type l2 = -1e30;
if (k>0) l2 = @in4(j-1,i,k-1);
out_type l3 = -1e30;
if (k>1 && target_2 != target)
l3 = @in4(j-1,i,k-2);
out_type m = ::max(l1, ::max(l2, l3));
out_type l1_exp = ::exp(l1-m);
out_type l2_exp = ::exp(l2-m);
out_type l3_exp = ::exp(l3-m);
out_type sumexp = l1_exp + l2_exp + l3_exp;
out_type dalpha = @out1(j,i,k);
atomicAdd(&@out0(j,i,target), dalpha);
atomicAdd(&@out1(j-1,i,k), dalpha * l1_exp / sumexp);
if (k>0)
atomicAdd(&@out1(j-1,i,k-1), dalpha * l2_exp / sumexp);
if (k>1 && target_2 != target)
atomicAdd(&@out1(j-1,i,k-2), dalpha * l3_exp / sumexp);
}}
// read in0 -> white out0
// write out0 ->read out1
// out0(0,i,0) = in0(0,i,blank);
__syncthreads();
if (threadIdx.x==0) {{
@out0(0,i,blank) += @out1(0,i,0);
if (target_len)
@out0(0,i,@in1(i,0)) += @out1(0,i,1);
}}
}}
}}
kernel<<<std::min(in0_shape1, 1024), std::min(in1_shape1*2+1, 1024)>>>(@ARGS);
""")
return (dlog_probs,)
def ctc_loss(log_probs, targets, input_lengths, target_lengths, blank=0, reduction='mean', zero_infinity=False):
'''The Connectionist Temporal Classification loss.
Reference:
A. Graves et al.: Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with Recurrent Neural Networks:
https://www.cs.toronto.edu/~graves/icml_2006.pdf
Input:
log_probs: shape is [T, N, C], T is the sequence length, N is the batch size, C is the class number.
targets: shape is [N, S], N is the batch size, S is the target sequence length, element should between [0,C).
input_lengths: shape is [N], which represents the length of input, element should between [0,T].
target_lengths: shape is N, which represents the length of target, element should between [0,S].
blank (int, default 0): blank label index
reduction (string): reduce batch loss,
if reduction is none, it will return (N,) array,
if reduction is mean or sum, it will return one scalar
zero_infinity (bool, default False):
zero_infinity for grad
Example:
import jittor as jt
T = 50 # Input sequence length
C = 20 # Number of classes (including blank)
N = 16 # Batch size
S = 30 # Target sequence length of longest target in batch (padding length)
S_min = 10 # Minimum target length, for demonstration purposes
input = jt.randn(T, N, C).log_softmax(2)
# Initialize random batch of targets (0 = blank, 1:C = classes)
target = jt.randint(low=1, high=C, shape=(N, S), dtype=jt.int)
input_lengths = jt.full((N,), T, dtype=jt.int)
target_lengths = jt.randint(low=S_min, high=S+1, shape=(N,), dtype=jt.int)
loss = jt.ctc_loss(input, target, input_lengths, target_lengths)
dinput = jt.grad(loss, input)
'''
result = _CTCLossFunction.apply(log_probs, targets, input_lengths, target_lengths, blank, zero_infinity)
if reduction=="mean":
return result.mean()
elif reduction=="sum":
return result.sum()
assert reduction=="none"
return result
class CTCLoss(jt.Module):
'''The Connectionist Temporal Classification loss.
Reference:
A. Graves et al.: Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with Recurrent Neural Networks:
https://www.cs.toronto.edu/~graves/icml_2006.pdf
Args:
blank (int, default 0): blank label index
reduction (string): reduce batch loss,
if reduction is none, it will return (N,) array,
if reduction is mean or sum, it will return one scalar
zero_infinity (bool, default False):
zero_infinity for grad
Input:
log_probs: shape is [T, N, C], T is the sequence length, N is the batch size, C is the class number.
targets: shape is [N, S], N is the batch size, S is the target sequence length, element should between [0,C).
input_lengths: shape is [N], which represents the length of input, element should between [0,T].
target_lengths: shape is N, which represents the length of target, element should between [0,S].
Example:
import jittor as jt
T = 50 # Input sequence length
C = 20 # Number of classes (including blank)
N = 16 # Batch size
S = 30 # Target sequence length of longest target in batch (padding length)
S_min = 10 # Minimum target length, for demonstration purposes
input = jt.randn(T, N, C).log_softmax(2)
# Initialize random batch of targets (0 = blank, 1:C = classes)
target = jt.randint(low=1, high=C, shape=(N, S), dtype=jt.int)
input_lengths = jt.full((N,), T, dtype=jt.int)
target_lengths = jt.randint(low=S_min, high=S+1, shape=(N,), dtype=jt.int)
ctc_loss = jt.CTCLoss()
loss = ctc_loss(input, target, input_lengths, target_lengths)
dinput = jt.grad(loss, input)
'''
def __init__(self, blank=0, reduction='mean', zero_infinity=False):
self.blank = blank
self.reduction = reduction
self.zero_infinity = zero_infinity
def execute(self, log_probs, targets, input_lengths, target_lengths):
return ctc_loss(log_probs, targets, input_lengths, target_lengths, self.blank, self.reduction, self.zero_infinity)