mirror of https://github.com/Jittor/Jittor
232 lines
7.8 KiB
Python
232 lines
7.8 KiB
Python
import jittor as jt
|
|
from jittor import nn
|
|
from jittor import Module
|
|
from jittor import init
|
|
from jittor.contrib import concat, argmax_pool
|
|
import math
|
|
|
|
|
|
model_urls = {
|
|
'res2net50_14w_8s': 'jittorhub://res2net50_14w_8s.pkl',
|
|
'res2net50_26w_4s': 'jittorhub://res2net50_26w_4s.pkl',
|
|
'res2net50_26w_6s': 'jittorhub://res2net50_26w_6s.pkl',
|
|
'res2net50_26w_8s': 'jittorhub://res2net50_26w_8s.pkl',
|
|
'res2net50_48w_2s': 'jittorhub://res2net50_48w_2s.pkl',
|
|
'res2net101_26w_4s': 'jittorhub://res2net101_26w_4s.pkl',
|
|
}
|
|
|
|
|
|
class Bottle2neck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, baseWidth=26, scale = 4, stype='normal'):
|
|
""" Constructor
|
|
Args:
|
|
inplanes: input channel dimensionality
|
|
planes: output channel dimensionality
|
|
stride: conv stride. Replaces pooling layer.
|
|
downsample: None when stride = 1
|
|
baseWidth: basic width of conv3x3
|
|
scale: number of scale.
|
|
type: 'normal': normal set. 'stage': first block of a new stage.
|
|
"""
|
|
super(Bottle2neck, self).__init__()
|
|
|
|
width = int(math.floor(planes * (baseWidth/64.0)))
|
|
self.conv1 = nn.Conv2d(inplanes, width*scale, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(width*scale)
|
|
|
|
if scale == 1:
|
|
self.nums = 1
|
|
else:
|
|
self.nums = scale -1
|
|
if stype == 'stage':
|
|
self.pool = nn.AvgPool2d(kernel_size=3, stride = stride, padding=1)
|
|
convs = []
|
|
bns = []
|
|
for i in range(self.nums):
|
|
convs.append(nn.Conv2d(width, width, kernel_size=3, stride = stride, padding=1, bias=False))
|
|
bns.append(nn.BatchNorm2d(width))
|
|
self.convs = nn.ModuleList(convs)
|
|
self.bns = nn.ModuleList(bns)
|
|
|
|
self.conv3 = nn.Conv2d(width*scale, planes * self.expansion, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
|
|
|
self.relu = nn.ReLU()
|
|
self.downsample = downsample
|
|
self.stype = stype
|
|
self.scale = scale
|
|
self.width = width
|
|
|
|
def execute(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
spx = jt.split(out, self.width, 1)
|
|
for i in range(self.nums):
|
|
if i==0 or self.stype=='stage':
|
|
sp = spx[i]
|
|
else:
|
|
sp = sp + spx[i]
|
|
sp = self.convs[i](sp)
|
|
sp = self.relu(self.bns[i](sp))
|
|
if i==0:
|
|
out = sp
|
|
else:
|
|
out = jt.concat((out, sp), 1)
|
|
if self.scale != 1 and self.stype=='normal':
|
|
out = jt.concat((out, spx[self.nums]),1)
|
|
elif self.scale != 1 and self.stype=='stage':
|
|
out = jt.concat((out, self.pool(spx[self.nums])),1)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
class Res2Net(nn.Module):
|
|
|
|
def __init__(self, block, layers, baseWidth = 26, scale = 4, num_classes=1000):
|
|
self.inplanes = 64
|
|
super(Res2Net, self).__init__()
|
|
self.baseWidth = baseWidth
|
|
self.scale = scale
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
|
bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU()
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
|
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
|
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample=downsample,
|
|
stype='stage', baseWidth = self.baseWidth, scale=self.scale))
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes, baseWidth = self.baseWidth, scale=self.scale))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def execute(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
x = self.avgpool(x)
|
|
x = x.view(x.size(0), -1)
|
|
x = self.fc(x)
|
|
|
|
return x
|
|
|
|
|
|
def res2net50(pretrained=False, **kwargs):
|
|
"""Constructs a Res2Net-50 model.
|
|
Res2Net-50 refers to the Res2Net-50_26w_4s.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth = 26, scale = 4, **kwargs)
|
|
if pretrained:
|
|
model.load(model_urls['res2net50_26w_4s'])
|
|
return model
|
|
|
|
def res2net50_26w_4s(pretrained=False, **kwargs):
|
|
"""Constructs a Res2Net-50_26w_4s model.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth = 26, scale = 4, **kwargs)
|
|
if pretrained:
|
|
model.load(model_urls['res2net50_26w_4s'])
|
|
return model
|
|
|
|
def res2net101_26w_4s(pretrained=False, **kwargs):
|
|
"""Constructs a Res2Net-50_26w_4s model.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = Res2Net(Bottle2neck, [3, 4, 23, 3], baseWidth = 26, scale = 4, **kwargs)
|
|
if pretrained:
|
|
model.load(model_urls['res2net101_26w_4s'])
|
|
return model
|
|
|
|
res2net101 = res2net101_26w_4s
|
|
|
|
def res2net50_26w_6s(pretrained=False, **kwargs):
|
|
"""Constructs a Res2Net-50_26w_4s model.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth = 26, scale = 6, **kwargs)
|
|
if pretrained:
|
|
model.load(model_urls['res2net50_26w_6s'])
|
|
return model
|
|
|
|
def res2net50_26w_8s(pretrained=False, **kwargs):
|
|
"""Constructs a Res2Net-50_26w_4s model.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth = 26, scale = 8, **kwargs)
|
|
if pretrained:
|
|
model.load(model_urls['res2net50_26w_8s'])
|
|
return model
|
|
|
|
def res2net50_48w_2s(pretrained=False, **kwargs):
|
|
"""Constructs a Res2Net-50_48w_2s model.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth = 48, scale = 2, **kwargs)
|
|
if pretrained:
|
|
model.load(model_urls['res2net50_48w_2s'])
|
|
return model
|
|
|
|
def res2net50_14w_8s(pretrained=False, **kwargs):
|
|
"""Constructs a Res2Net-50_14w_8s model.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth = 14, scale = 8, **kwargs)
|
|
if pretrained:
|
|
model.load(model_urls['res2net50_14w_8s'])
|
|
return model
|
|
|