119 lines
2.4 KiB
Plaintext
119 lines
2.4 KiB
Plaintext
# 演示系统示例
|
||
|
||
## 概述
|
||
|
||
所有示例通过 Python 接口实现下位机推理,前处理(数据标准化/归一化、通道变换)和反量化都已经加入网络中,下位机推理结果返回PC端做后处理,结果保存在模型工程目录下。提供源码地址、权重文件、nbg文件、测试图片。
|
||
|
||
- 依赖安装
|
||
|
||
```bash
|
||
pip install -r requirements.txt
|
||
```
|
||
|
||
## deeplab_mobilnet_v3
|
||
|
||
语义分割模型,源码地址为:<https://github.com/bubbliiiing/deeplabv3-plus-pytorch.git>
|
||
|
||
- 输入、输出信息
|
||
|
||
```text
|
||
INPUT:0
|
||
DATA_FORMAT:UINT8
|
||
NUM_OF_DIMENSION:4
|
||
SIZES_OF_DIMENSION:1536 512 1 1 0 0
|
||
QUANT_FORMAT:NONE
|
||
OUTPUT:0
|
||
DATA_FORMAT:FP32
|
||
NUM_OF_DIMENSION:4
|
||
SIZES_OF_DIMENSION:512 512 21 1 0 0
|
||
QUANT_FORMAT:NONE
|
||
```
|
||
|
||
- 后处理流程
|
||
- 概率转换
|
||
- 预测类别生成
|
||
- 尺寸还原
|
||
- 标签映射
|
||
- 执行
|
||
|
||
```bash
|
||
python demo_deeplabv3.py
|
||
```
|
||
|
||
- 结果保存在test_src/models/deeplab_mobilnet_v3/result.jpg
|
||

|
||
|
||
## yolov5s-seg
|
||
|
||
实例分割模型,源码地址:<https://github.com/ultralytics/yolov5.git>
|
||
|
||
- 输入、输出信息
|
||
|
||
```text
|
||
INPUT:0
|
||
DATA_FORMAT:UINT8
|
||
NUM_OF_DIMENSION:4
|
||
SIZES_OF_DIMENSION:1920 640 1 1 0 0
|
||
QUANT_FORMAT:NONE
|
||
OUTPUT:0
|
||
DATA_FORMAT:FP32
|
||
NUM_OF_DIMENSION:3
|
||
SIZES_OF_DIMENSION:117 25200 1 0 0 0
|
||
QUANT_FORMAT:NONE
|
||
OUTPUT:1
|
||
DATA_FORMAT:FP32
|
||
NUM_OF_DIMENSION:4
|
||
SIZES_OF_DIMENSION:160 160 32 1 0 0
|
||
QUANT_FORMAT:NONE
|
||
```
|
||
|
||
- 后处理流程
|
||
- NMS
|
||
- 遍历检测预测
|
||
- 颜色和掩码可视化
|
||
- 掩码叠加
|
||
- 绘制检测框和文本标签
|
||
|
||
- 执行
|
||
|
||
```bash
|
||
python demo_yolov5s_seg.py
|
||
```
|
||
|
||
- 结果保存在/yolov5s-seg/result.jpg
|
||

|
||
|
||
## resnet18
|
||
|
||
分类模型,源码地址:<https://github.com/ultralytics/yolov5.git>
|
||
|
||
- 输入、输出信息
|
||
|
||
```text
|
||
INPUT:0
|
||
DATA_FORMAT:UINT8
|
||
NUM_OF_DIMENSION:4
|
||
SIZES_OF_DIMENSION:672 224 1 1 0 0
|
||
QUANT_FORMAT:NONE
|
||
OUTPUT:0
|
||
DATA_FORMAT:FP32
|
||
NUM_OF_DIMENSION:2
|
||
SIZES_OF_DIMENSION:1000 1 0 0 0 0
|
||
QUANT_FORMAT:NONE
|
||
```
|
||
|
||
- 后处理流程
|
||
- softmax
|
||
- topk
|
||
|
||
- 执行
|
||
|
||
```bash
|
||
python demo_resnet18.py
|
||
```
|
||
|
||
- 结果保存在/resnet18/result.jpg
|
||

|
||
|
||
> *作者 {{liangliangou}}*
|