CUDA: add roll (#14919)
* CUDA: add roll * Make everything const, use __restrict__
This commit is contained in:
parent
8ad7b3e65b
commit
0a5036bee9
|
@ -31,6 +31,7 @@
|
|||
#include "ggml-cuda/pool2d.cuh"
|
||||
#include "ggml-cuda/quantize.cuh"
|
||||
#include "ggml-cuda/rope.cuh"
|
||||
#include "ggml-cuda/roll.cuh"
|
||||
#include "ggml-cuda/scale.cuh"
|
||||
#include "ggml-cuda/softmax.cuh"
|
||||
#include "ggml-cuda/ssm-conv.cuh"
|
||||
|
@ -2419,6 +2420,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_OP_ROPE_BACK:
|
||||
ggml_cuda_op_rope_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ROLL:
|
||||
ggml_cuda_op_roll(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_IM2COL:
|
||||
ggml_cuda_op_im2col(ctx, dst);
|
||||
break;
|
||||
|
@ -3411,6 +3415,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
|
||||
return max_bias == 0.0f;
|
||||
}
|
||||
case GGML_OP_ROLL:
|
||||
if(op->src[0]->type == GGML_TYPE_F32) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK: {
|
||||
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
|
||||
|
|
|
@ -0,0 +1,67 @@
|
|||
#include "ggml-cuda/common.cuh"
|
||||
#include "roll.cuh"
|
||||
|
||||
static __forceinline__ __device__ int64_t wrap_index(const int64_t idx, const int64_t ne) {
|
||||
if (idx < 0) {
|
||||
return idx + ne;
|
||||
}
|
||||
if (idx >= ne) {
|
||||
return idx - ne;
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
static __global__ void roll_f32_cuda(const float * __restrict__ src,
|
||||
float * __restrict__ dst,
|
||||
const int64_t ne00,
|
||||
const int64_t ne01,
|
||||
const int64_t ne02,
|
||||
const int64_t ne03,
|
||||
const int s0,
|
||||
const int s1,
|
||||
const int s2,
|
||||
const int s3) {
|
||||
const int64_t idx = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
|
||||
const int64_t n_elements = ne00 * ne01 * ne02 * ne03;
|
||||
|
||||
if (idx >= n_elements) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i0 = idx % ne00;
|
||||
const int64_t i1 = (idx / ne00) % ne01;
|
||||
const int64_t i2 = (idx / (ne00 * ne01)) % ne02;
|
||||
const int64_t i3 = (idx / (ne00 * ne01 * ne02)) % ne03;
|
||||
|
||||
const int64_t d0 = wrap_index(i0 - s0, ne00);
|
||||
const int64_t d1 = wrap_index(i1 - s1, ne01);
|
||||
const int64_t d2 = wrap_index(i2 - s2, ne02);
|
||||
const int64_t d3 = wrap_index(i3 - s3, ne03);
|
||||
|
||||
dst[i3 * (ne00 * ne01 * ne02) + i2 * (ne01 * ne00) + i1 * ne00 + i0] =
|
||||
src[d3 * (ne00 * ne01 * ne02) + d2 * (ne01 * ne00) + d1 * ne00 + d0];
|
||||
}
|
||||
|
||||
void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
int s0 = dst->op_params[0];
|
||||
int s1 = dst->op_params[1];
|
||||
int s2 = dst->op_params[2];
|
||||
int s3 = dst->op_params[3];
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *) dst->src[0]->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_are_same_shape(dst->src[0], dst));
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
int64_t sz = (ne00 * ne01 * ne02 * ne03);
|
||||
int64_t num_blocks = (sz + CUDA_ROLL_BLOCK_SIZE - 1) / CUDA_ROLL_BLOCK_SIZE;
|
||||
|
||||
roll_f32_cuda<<<num_blocks, CUDA_ROLL_BLOCK_SIZE, 0, stream>>>(
|
||||
src0_d, dst_d, ne00, ne01, ne02, ne03, s0, s1, s2, s3);
|
||||
}
|
|
@ -0,0 +1,5 @@
|
|||
#include "common.cuh"
|
||||
|
||||
#define CUDA_ROLL_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
Loading…
Reference in New Issue