ggml: Add initial WebGPU backend (#14521)

* Minimal setup of webgpu backend with dawn. Just prints out the adapter and segfaults

* Initialize webgpu device

* Making progress on setting up the backend

* Finish more boilerplate/utility functions

* Organize file and work on alloc buffer

* Add webgpu_context to prepare for actually running some shaders

* Work on memset and add shader loading

* Work on memset polyfill

* Implement set_tensor as webgpu WriteBuffer, remove host_buffer stubs since webgpu doesn't support it

* Implement get_tensor and buffer_clear

* Finish rest of setup

* Start work on compute graph

* Basic mat mul working

* Work on emscripten build

* Basic WebGPU backend instructions

* Use EMSCRIPTEN flag

* Work on passing ci, implement 4d tensor multiplication

* Pass thread safety test

* Implement permuting for mul_mat and cpy

* minor cleanups

* Address feedback

* Remove division by type size in cpy op

* Fix formatting and add github action workflows for vulkan and metal (m-series) webgpu backends

* Fix name

* Fix macos dawn prefix path
This commit is contained in:
Reese Levine 2025-07-16 08:18:51 -07:00 committed by GitHub
parent b0f0ecc3dc
commit 21c021745d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 1337 additions and 0 deletions

View File

@ -135,6 +135,69 @@ jobs:
cd build cd build
ctest -L main --verbose --timeout 900 ctest -L main --verbose --timeout 900
macOS-latest-cmake-arm64-webgpu:
runs-on: macos-14
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-arm64-webgpu
evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Dawn Dependency
id: dawn-depends
run: |
ARTIFACTS_JSON=$(curl -s -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"https://api.github.com/repos/google/dawn/actions/artifacts")
echo "Finding latest macos-latest-Release artifact..."
DOWNLOAD_URL=$(echo "$ARTIFACTS_JSON" | jq -r '.artifacts
| sort_by(.created_at)
| reverse
| map(select(.name | test("macos-latest-Release$")))
| .[0].archive_download_url')
if [ "$DOWNLOAD_URL" = "null" ] || [ -z "$DOWNLOAD_URL" ]; then
echo "No suitable Dawn artifact found!"
exit 1
fi
echo "Downloading from: $DOWNLOAD_URL"
curl -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-o artifact.zip "$DOWNLOAD_URL"
unzip artifact.zip
mkdir dawn
tar_file=$(find . -name '*.tar.gz' | head -n 1)
echo "Extracting: $tar_file"
tar -xvf "$tar_file" -C dawn --strip-components=1
- name: Build
id: cmake_build
run: |
export CMAKE_PREFIX_PATH=dawn
cmake -B build -DGGML_WEBGPU=ON -DGGML_METAL=OFF -DGGML_BLAS=OFF
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-cpu-cmake: ubuntu-cpu-cmake:
strategy: strategy:
matrix: matrix:
@ -344,6 +407,72 @@ jobs:
# This is using llvmpipe and runs slower than other backends # This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 4200 ctest -L main --verbose --timeout 4200
ubuntu-22-cmake-webgpu:
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-webgpu
evict-old-files: 1d
- name: Vulkan SDK Dependencies
id: vulkan-depends
run: |
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
- name: Dawn Dependency
id: dawn-depends
run: |
sudo apt-get install -y libxrandr-dev libxinerama-dev libxcursor-dev mesa-common-dev libx11-xcb-dev libxi-dev
ARTIFACTS_JSON=$(curl -s -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"https://api.github.com/repos/google/dawn/actions/artifacts")
echo "Finding latest ubuntu-latest-Release artifact..."
DOWNLOAD_URL=$(echo "$ARTIFACTS_JSON" | jq -r '.artifacts
| sort_by(.created_at)
| reverse
| map(select(.name | test("ubuntu-latest-Release$")))
| .[0].archive_download_url')
if [ "$DOWNLOAD_URL" = "null" ] || [ -z "$DOWNLOAD_URL" ]; then
echo "No suitable Dawn artifact found!"
exit 1
fi
echo "Downloading from: $DOWNLOAD_URL"
curl -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-o artifact.zip "$DOWNLOAD_URL"
unzip artifact.zip
mkdir dawn
tar_file=$(find . -name '*.tar.gz' | head -n 1)
echo "Extracting: $tar_file"
tar -xvf "$tar_file" -C dawn --strip-components=1
- name: Build
id: cmake_build
run: |
export Dawn_DIR=dawn/lib64/cmake/Dawn
cmake -B build -DGGML_WEBGPU=ON
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 3600
ubuntu-22-cmake-hip: ubuntu-22-cmake-hip:
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
container: rocm/dev-ubuntu-22.04:6.0.2 container: rocm/dev-ubuntu-22.04:6.0.2

View File

@ -269,6 +269,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU | | [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU | | [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU | | [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All | | [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
## Obtaining and quantizing models ## Obtaining and quantizing models

View File

@ -16,6 +16,9 @@
# # with VULKAN support # # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt # GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# #
# # with WebGPU support
# GG_BUILD_WEBGPU=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with MUSA support # # with MUSA support
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt # GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# #
@ -81,6 +84,10 @@ if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1" CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi fi
if [ ! -z ${GG_BUILD_WEBGPU} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_WEBGPU=1"
fi
if [ ! -z ${GG_BUILD_MUSA} ]; then if [ ! -z ${GG_BUILD_MUSA} ]; then
# Use qy1 by default (MTT S80) # Use qy1 by default (MTT S80)
MUSA_ARCH=${MUSA_ARCH:-21} MUSA_ARCH=${MUSA_ARCH:-21}

View File

@ -557,6 +557,23 @@ ninja
To read documentation for how to build on Android, [click here](./android.md) To read documentation for how to build on Android, [click here](./android.md)
## WebGPU [In Progress]
The WebGPU backend relies on [Dawn](https://dawn.googlesource.com/dawn). Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/docs/quickstart-cmake.md) to install Dawn locally so that llama.cpp can find it using CMake. The currrent implementation is up-to-date with Dawn commit `bed1a61`.
In the llama.cpp directory, build with CMake:
```
cmake -B build -DGGML_WEBGPU=ON
cmake --build build --config Release
```
### Browser Support
WebGPU allows cross-platform access to the GPU from supported browsers. We utilize [Emscripten](https://emscripten.org/) to compile ggml's WebGPU backend to WebAssembly. Emscripten does not officially support WebGPU bindings yet, but Dawn currently maintains its own WebGPU bindings called emdawnwebgpu.
Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/src/emdawnwebgpu/) to download or build the emdawnwebgpu package (Note that it might be safer to build the emdawbwebgpu package locally, so that it stays in sync with the version of Dawn you have installed above). When building using CMake, the path to the emdawnwebgpu port file needs to be set with the flag `EMDAWNWEBGPU_DIR`.
## IBM Z & LinuxONE ## IBM Z & LinuxONE
To read documentation for how to build on IBM Z & LinuxONE, [click here](./build-s390x.md) To read documentation for how to build on IBM Z & LinuxONE, [click here](./build-s390x.md)

View File

@ -181,6 +181,8 @@ option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug ou
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF) option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF) option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF) option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT}) option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF) option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF) option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
@ -270,6 +272,7 @@ set(GGML_PUBLIC_HEADERS
include/ggml-rpc.h include/ggml-rpc.h
include/ggml-sycl.h include/ggml-sycl.h
include/ggml-vulkan.h include/ggml-vulkan.h
include/ggml-webgpu.h
include/gguf.h) include/gguf.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}") set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")

View File

@ -0,0 +1,19 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_WEBGPU_NAME "WebGPU"
// Needed for examples in ggml
GGML_BACKEND_API ggml_backend_t ggml_backend_webgpu_init(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_webgpu_reg(void);
#ifdef __cplusplus
}
#endif

View File

@ -370,6 +370,7 @@ ggml_add_backend(MUSA)
ggml_add_backend(RPC) ggml_add_backend(RPC)
ggml_add_backend(SYCL) ggml_add_backend(SYCL)
ggml_add_backend(Vulkan) ggml_add_backend(Vulkan)
ggml_add_backend(WebGPU)
ggml_add_backend(OpenCL) ggml_add_backend(OpenCL)
foreach (target ggml-base ggml) foreach (target ggml-base ggml)

View File

@ -45,6 +45,10 @@
#include "ggml-vulkan.h" #include "ggml-vulkan.h"
#endif #endif
#ifdef GGML_USE_WEBGPU
#include "ggml-webgpu.h"
#endif
#ifdef GGML_USE_OPENCL #ifdef GGML_USE_OPENCL
#include "ggml-opencl.h" #include "ggml-opencl.h"
#endif #endif
@ -173,6 +177,9 @@ struct ggml_backend_registry {
#ifdef GGML_USE_VULKAN #ifdef GGML_USE_VULKAN
register_backend(ggml_backend_vk_reg()); register_backend(ggml_backend_vk_reg());
#endif #endif
#ifdef GGML_USE_WEBGPU
register_backend(ggml_backend_webgpu_reg());
#endif
#ifdef GGML_USE_OPENCL #ifdef GGML_USE_OPENCL
register_backend(ggml_backend_opencl_reg()); register_backend(ggml_backend_opencl_reg());
#endif #endif

View File

@ -0,0 +1,54 @@
cmake_minimum_required(VERSION 3.13)
find_package(Python3 REQUIRED)
# Shader locations
set(SHADER_DIR "${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders")
set(SHADER_OUTPUT_DIR "${CMAKE_CURRENT_BINARY_DIR}/generated")
set(SHADER_HEADER "${SHADER_OUTPUT_DIR}/ggml-wgsl-shaders.hpp")
file(MAKE_DIRECTORY ${SHADER_OUTPUT_DIR})
message(STATUS "Shader output dir: ${SHADER_OUTPUT_DIR}")
# Find all WGSL files
file(GLOB WGSL_SHADER_FILES "${SHADER_DIR}/*.wgsl")
# Generate the header using a Python script
add_custom_command(
OUTPUT ${SHADER_HEADER}
COMMAND ${CMAKE_COMMAND} -E echo "Embedding WGSL shaders to ggml-wgsl-shaders.hpp"
COMMAND ${CMAKE_COMMAND} -E make_directory ${SHADER_OUTPUT_DIR}
COMMAND ${CMAKE_COMMAND} -E env PYTHONIOENCODING=utf-8
${Python3_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders/embed_wgsl.py
--input "${SHADER_DIR}"
--output "${SHADER_HEADER}"
DEPENDS ${WGSL_SHADER_FILES} ${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders/embed_wgsl.py
VERBATIM
)
add_custom_target(generate_shaders DEPENDS ${SHADER_HEADER})
ggml_add_backend_library(ggml-webgpu
ggml-webgpu.cpp
${SHADER_HEADER}
../../include/ggml-webgpu.h
)
add_dependencies(ggml-webgpu generate_shaders)
if(EMSCRIPTEN)
set(EMDAWNWEBGPU_DIR "" CACHE PATH "Path to emdawnwebgpu_pkg")
target_compile_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
target_link_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
else()
find_package(Dawn REQUIRED)
set(DawnWebGPU_TARGET dawn::webgpu_dawn)
endif()
if (GGML_WEBGPU_DEBUG)
target_compile_definitions(ggml-webgpu PRIVATE GGML_WEBGPU_DEBUG=1)
endif()
target_include_directories(ggml-webgpu PRIVATE ${SHADER_OUTPUT_DIR})
target_link_libraries(ggml-webgpu PRIVATE ${DawnWebGPU_TARGET})

View File

@ -0,0 +1,907 @@
#include "ggml-webgpu.h"
#include <webgpu/webgpu_cpp.h>
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include "ggml-wgsl-shaders.hpp"
#include <cstring>
#include <iostream>
#include <mutex>
#include <vector>
#ifdef GGML_WEBGPU_DEBUG
#define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
#else
#define WEBGPU_LOG_DEBUG(msg) ((void) 0)
#endif // GGML_WEBGPU_DEBUG
/* Constants */
#define WEBGPU_MUL_MAT_WG_SIZE 64
#define WEBGPU_MUL_MAT_PARAMS_SIZE (13 * sizeof(uint32_t)) // M, N, K, batch sizes, broadcasts
#define WEBGPU_CPY_PARAMS_SIZE (15 * sizeof(uint32_t)) // strides and offsets
#define WEBGPU_STORAGE_BUF_BINDING_MULT 4 // a storage buffer binding size must be a multiple of 4
/* End Constants */
// This is a "fake" base pointer, since WebGPU buffers do not have pointers to their locations.
static void * const webgpu_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
// Always returns the base offset of a tensor, regardless of views.
static uint64_t webgpu_tensor_offset(const ggml_tensor * tensor) {
if (tensor->view_src) {
return (uint8_t *) tensor->view_src->data - (uint8_t *) webgpu_ptr_base;
}
return (uint8_t *) tensor->data - (uint8_t *) webgpu_ptr_base;
}
/* Struct definitions */
// All the base objects needed to run operations on a WebGPU device
struct webgpu_context_struct {
wgpu::Instance instance;
wgpu::Adapter adapter;
wgpu::Device device;
wgpu::Queue queue;
wgpu::Limits limits;
wgpu::SupportedFeatures features;
std::mutex mutex;
bool device_initialized = false;
// pipelines and parameter buffers
// TODO: reuse params buffers for different pipelines when possible
wgpu::ComputePipeline memset_pipeline;
wgpu::Buffer memset_params_dev_buf;
wgpu::Buffer memset_params_host_buf;
wgpu::ComputePipeline mul_mat_pipeline;
wgpu::Buffer mul_mat_params_dev_buf;
wgpu::Buffer mul_mat_params_host_buf;
wgpu::ComputePipeline cpy_pipeline;
wgpu::Buffer cpy_params_dev_buf;
wgpu::Buffer cpy_params_host_buf;
size_t memset_bytes_per_thread;
// Staging buffer for reading data from the GPU
wgpu::Buffer get_tensor_staging_buf;
};
typedef std::shared_ptr<webgpu_context_struct> webgpu_context;
struct ggml_backend_webgpu_reg_context {
webgpu_context webgpu_ctx;
size_t device_count;
const char * name;
};
struct ggml_backend_webgpu_device_context {
webgpu_context webgpu_ctx;
std::string device_name;
std::string device_desc;
};
struct ggml_backend_webgpu_context {
webgpu_context webgpu_ctx;
std::string name;
};
struct ggml_backend_webgpu_buffer_context {
webgpu_context webgpu_ctx;
wgpu::Buffer buffer;
ggml_backend_webgpu_buffer_context(webgpu_context ctx, wgpu::Buffer buf) :
webgpu_ctx(ctx), buffer(buf) {
}
};
/* End struct definitions */
/* WebGPU object initializations */
static void ggml_webgpu_create_pipeline(wgpu::Device &device, wgpu::ComputePipeline &pipeline, const char * shader_code, const char * label, const std::vector<wgpu::ConstantEntry> &constants = {}) {
WEBGPU_LOG_DEBUG("ggml_webgpu_create_pipeline()");
wgpu::ShaderSourceWGSL shader_source;
shader_source.code = shader_code;
wgpu::ShaderModuleDescriptor shader_desc;
shader_desc.nextInChain = &shader_source;
wgpu::ShaderModule shader_module = device.CreateShaderModule(&shader_desc);
wgpu::ComputePipelineDescriptor pipeline_desc;
pipeline_desc.label = label;
pipeline_desc.compute.module = shader_module;
pipeline_desc.compute.entryPoint = "main"; // Entry point in the WGSL code
pipeline_desc.layout = nullptr; // nullptr means auto layout
if (constants.size() > 0) {
pipeline_desc.compute.constants = constants.data();
pipeline_desc.compute.constantCount = constants.size();
}
pipeline = device.CreateComputePipeline(&pipeline_desc);
}
static void ggml_webgpu_create_buffer(wgpu::Device &device, wgpu::Buffer &buffer, size_t size, wgpu::BufferUsage usage, const char* label) {
WEBGPU_LOG_DEBUG("ggml_webgpu_create_buffer()");
wgpu::BufferDescriptor buffer_desc;
buffer_desc.size = size;
buffer_desc.usage = usage;
buffer_desc.label = label;
buffer_desc.mappedAtCreation = false;
// TODO: error handling
buffer = device.CreateBuffer(&buffer_desc);
}
/** End WebGPU object initializations */
/** WebGPU Actions */
static void ggml_backend_webgpu_map_buffer(webgpu_context ctx, wgpu::Buffer buffer, wgpu::MapMode mode, size_t offset, size_t size) {
ctx->instance.WaitAny(buffer.MapAsync(
mode, offset, size, wgpu::CallbackMode::WaitAnyOnly,
[](wgpu::MapAsyncStatus status, wgpu::StringView message) {
if (status != wgpu::MapAsyncStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to map buffer: %s\n", message.data);
}
}),
UINT64_MAX
);
}
static void ggml_backend_webgpu_buffer_memset(webgpu_context ctx, wgpu::Buffer buf, uint32_t value, size_t offset, size_t size) {
std::lock_guard<std::mutex> lock(ctx->mutex);
wgpu::Device device = ctx->device;
// map the host parameters buffer
ggml_backend_webgpu_map_buffer(ctx, ctx->memset_params_host_buf, wgpu::MapMode::Write, 0, ctx->memset_params_host_buf.GetSize());
uint32_t * params = (uint32_t *) ctx->memset_params_host_buf.GetMappedRange();
params[0] = (uint32_t)offset;
params[1] = (uint32_t)size;
params[2] = value;
ctx->memset_params_host_buf.Unmap();
wgpu::BindGroupEntry entries[2];
entries[0].binding = 0; // binding for the buffer to memset
entries[0].buffer = buf;
entries[0].offset = 0;
entries[0].size = buf.GetSize();
entries[1].binding = 1; // binding for the parameters
entries[1].buffer = ctx->memset_params_dev_buf;
entries[1].offset = 0;
entries[1].size = ctx->memset_params_dev_buf.GetSize();
wgpu::BindGroupDescriptor bind_group_desc;
bind_group_desc.layout = ctx->memset_pipeline.GetBindGroupLayout(0);
bind_group_desc.entryCount = 2;
bind_group_desc.label = "ggml_memset";
bind_group_desc.entries = entries;
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(
ctx->memset_params_host_buf, 0,
ctx->memset_params_dev_buf, 0,
ctx->memset_params_dev_buf.GetSize()
);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(ctx->memset_pipeline);
pass.SetBindGroup(0, bind_group);
size_t bytes_per_wg = ctx->limits.maxComputeWorkgroupSizeX * ctx->memset_bytes_per_thread;
pass.DispatchWorkgroups(((size + 3) + bytes_per_wg - 1) / bytes_per_wg, 1, 1);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
ctx->queue.Submit(1, &commands);
}
static void ggml_backend_webgpu_wait_on_submission(webgpu_context ctx) {
// Wait for the queue to finish processing all commands
ctx->instance.WaitAny(ctx->queue.OnSubmittedWorkDone(wgpu::CallbackMode::WaitAnyOnly,
[](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) {
if (status != wgpu::QueueWorkDoneStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to wait on queue: %s\n", message.data);
}
}),
UINT64_MAX
);
}
/** End WebGPU Actions */
/** GGML Backend Interface */
static const char * ggml_backend_webgpu_name(ggml_backend_t backend) {
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *)backend->context;
return ctx->name.c_str();
}
static void ggml_backend_webgpu_free(ggml_backend_t backend) {
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *)backend->context;
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")");
// TODO: cleanup
GGML_UNUSED(ctx);
}
// Returns true if node has enqueued work into the queue, false otherwise
static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node){
if (ggml_is_empty(node)) {
return false;
}
WEBGPU_LOG_DEBUG("ggml_webgpu_encode_node(" << node << ", " << ggml_op_name(node->op) << ")");
switch (node->op) {
// no-ops
case GGML_OP_NONE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
return false;
case GGML_OP_CPY: {
std::lock_guard<std::mutex> lock(ctx->mutex);
const ggml_tensor * src = node->src[0];
ggml_backend_webgpu_buffer_context * src_ctx = (ggml_backend_webgpu_buffer_context *) src->buffer->context;
size_t src_offset = webgpu_tensor_offset(src) + src->view_offs;
// assumes power of 2 offset alignment
size_t src_misalignment = src_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
// align to minimum offset alignment
src_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
ggml_backend_webgpu_buffer_context * dst_ctx = (ggml_backend_webgpu_buffer_context *) node->buffer->context;
size_t dst_offset = webgpu_tensor_offset(node) + node->view_offs;
size_t dst_misalignment = dst_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
dst_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
wgpu::Device device = ctx->device;
ggml_backend_webgpu_map_buffer(ctx, ctx->cpy_params_host_buf,
wgpu::MapMode::Write, 0, ctx->cpy_params_host_buf.GetSize());
uint32_t * params = (uint32_t *) ctx->cpy_params_host_buf.GetMappedRange();
uint32_t ne = (uint32_t)ggml_nelements(node);
params[0] = ne;
params[1] = src_misalignment/ggml_type_size(src->type);
params[2] = dst_misalignment/ggml_type_size(node->type);
// Convert byte-strides to element-strides
params[3] = (uint32_t)src->nb[0]/ggml_type_size(src->type);
params[4] = (uint32_t)src->nb[1]/ggml_type_size(src->type);
params[5] = (uint32_t)src->nb[2]/ggml_type_size(src->type);
params[6] = (uint32_t)src->nb[3]/ggml_type_size(src->type);
params[7] = (uint32_t)node->nb[0]/ggml_type_size(node->type);
params[8] = (uint32_t)node->nb[1]/ggml_type_size(node->type);
params[9] = (uint32_t)node->nb[2]/ggml_type_size(node->type);
params[10] = (uint32_t)node->nb[3]/ggml_type_size(node->type);
// Logical shape — same for both tensors even if permuted
params[11] = (uint32_t)(src->ne[0]);
params[12] = (uint32_t)(src->ne[1]);
params[13] = (uint32_t)(src->ne[2]);
params[14] = (uint32_t)(src->ne[3]);
ctx->cpy_params_host_buf.Unmap();
wgpu::BindGroupEntry entries[3];
entries[0].binding = 0;
entries[0].buffer = src_ctx->buffer;
entries[0].offset = src_offset;
entries[0].size = (ggml_nbytes(src) + src_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1);
entries[1].binding = 1;
entries[1].buffer = dst_ctx->buffer;
entries[1].offset = dst_offset;
entries[1].size = (ggml_nbytes(node) + dst_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1);
entries[2].binding = 2;
entries[2].buffer = ctx->cpy_params_dev_buf;
entries[2].offset = 0;
entries[2].size = ctx->cpy_params_dev_buf.GetSize();
wgpu::BindGroupDescriptor bind_group_desc;
bind_group_desc.layout = ctx->cpy_pipeline.GetBindGroupLayout(0);
bind_group_desc.label = "ggml_op_cpy";
bind_group_desc.entryCount = 3;
bind_group_desc.entries = entries;
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(
ctx->cpy_params_host_buf, 0,
ctx->cpy_params_dev_buf, 0,
ctx->cpy_params_dev_buf.GetSize()
);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(ctx->cpy_pipeline);
pass.SetBindGroup(0, bind_group);
size_t max_wg_size = ctx->limits.maxComputeWorkgroupSizeX;
pass.DispatchWorkgroups((ne + max_wg_size - 1) / max_wg_size);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
// TODO, don't submit here, batch submissions
ctx->queue.Submit(1, &commands);
// TODO, don't wait on submission here
ggml_backend_webgpu_wait_on_submission(ctx);
return true;
}
case GGML_OP_MUL_MAT:
{
const ggml_tensor * src0 = node->src[0];
ggml_backend_webgpu_buffer_context * src0_ctx = (ggml_backend_webgpu_buffer_context *) src0->buffer->context;
size_t src0_offset = webgpu_tensor_offset(src0) + src0->view_offs;
const ggml_tensor * src1 = node->src[1];
ggml_backend_webgpu_buffer_context * src1_ctx = (ggml_backend_webgpu_buffer_context *) src1->buffer->context;
size_t src1_offset = webgpu_tensor_offset(src1) + src1->view_offs;
ggml_backend_webgpu_buffer_context * dst_ctx = (ggml_backend_webgpu_buffer_context *) node->buffer->context;
size_t dst_offset = webgpu_tensor_offset(node) + node->view_offs;
wgpu::Device device = ctx->device;
// map the host parameters buffer
ggml_backend_webgpu_map_buffer(ctx, ctx->mul_mat_params_host_buf,
wgpu::MapMode::Write, 0, ctx->mul_mat_params_host_buf.GetSize());
uint32_t * params = (uint32_t *) ctx->mul_mat_params_host_buf.GetMappedRange();
params[0] = (uint32_t)node->ne[1]; // number of rows in result (M)
params[1] = (uint32_t)node->ne[0]; // number of columns in result (N)
params[2] = (uint32_t)src0->ne[0]; // number of columns in src0/src1 (K)
params[3] = (uint32_t)src0->nb[1]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 1
params[4] = (uint32_t)src1->nb[1]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 1
params[5] = (uint32_t)src0->nb[2]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 2
params[6] = (uint32_t)src1->nb[2]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 2
params[7] = (uint32_t)src0->nb[3]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 3
params[8] = (uint32_t)src1->nb[3]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 3
params[9] = (uint32_t)src0->ne[2]; // batch size in dimension 2
params[10] = (uint32_t)src0->ne[3]; // batch size in dimension 3
params[11] = (uint32_t)(src1->ne[2]/src0->ne[2]); // broadcast in dimension 2
params[12] = (uint32_t)(src1->ne[3]/src0->ne[3]); // broadcast in dimension 3
ctx->mul_mat_params_host_buf.Unmap();
wgpu::BindGroupEntry entries[4];
entries[0].binding = 0;
entries[0].buffer = src0_ctx->buffer;
entries[0].offset = src0_offset;
entries[0].size = ggml_nbytes(src0);
entries[1].binding = 1;
entries[1].buffer = src1_ctx->buffer;
entries[1].offset = src1_offset;
entries[1].size = ggml_nbytes(src1);
entries[2].binding = 2;
entries[2].buffer = dst_ctx->buffer;
entries[2].offset = dst_offset;
entries[2].size = ggml_nbytes(node);
entries[3].binding = 3;
entries[3].buffer = ctx->mul_mat_params_dev_buf;
entries[3].offset = 0;
entries[3].size = ctx->mul_mat_params_dev_buf.GetSize();
wgpu::BindGroupDescriptor bind_group_desc;
bind_group_desc.layout = ctx->mul_mat_pipeline.GetBindGroupLayout(0);
bind_group_desc.entryCount = 4;
bind_group_desc.label = "ggml_op_mul_mat";
bind_group_desc.entries = entries;
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(
ctx->mul_mat_params_host_buf, 0,
ctx->mul_mat_params_dev_buf, 0,
ctx->mul_mat_params_dev_buf.GetSize()
);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(ctx->mul_mat_pipeline);
pass.SetBindGroup(0, bind_group);
pass.DispatchWorkgroups((node->ne[0] * node->ne[1] * node->ne[2] * node->ne[3] + WEBGPU_MUL_MAT_WG_SIZE - 1) / WEBGPU_MUL_MAT_WG_SIZE);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
// TODO, don't submit here, batch submissions
ctx->queue.Submit(1, &commands);
// TODO, don't wait on submission here
ggml_backend_webgpu_wait_on_submission(ctx);
return true;
}
default:
return false;
}
}
static ggml_status ggml_backend_webgpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_graph_compute(" << cgraph->n_nodes << " nodes)");
ggml_backend_webgpu_context * backend_ctx = static_cast<ggml_backend_webgpu_context *>(backend->context);
webgpu_context ctx = backend_ctx->webgpu_ctx;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_webgpu_encode_node(ctx, cgraph->nodes[i]);
}
return GGML_STATUS_SUCCESS;
}
static ggml_backend_i ggml_backend_webgpu_i = {
/* .get_name = */ ggml_backend_webgpu_name,
/* .free = */ ggml_backend_webgpu_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_webgpu_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
/* End GGML Backend Interface */
/* GGML Backend Buffer Interface */
static void ggml_backend_webgpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_free_buffer()");
ggml_backend_webgpu_buffer_context * ctx = static_cast<ggml_backend_webgpu_buffer_context *>(buffer->context);
ctx->buffer.Destroy();
}
// Returns the "fake" base pointer.
static void * ggml_backend_webgpu_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_UNUSED(buffer);
return webgpu_ptr_base;
}
static void ggml_backend_webgpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
if (size == 0) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor: size is zero, nothing to do.");
return;
}
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor(" << buffer << ", " << tensor << ", " << value << ", " << offset << ", " << size << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
// This is a trick to set all bytes of a u32 to the same 1 byte value.
uint32_t val32 = (uint32_t)value * 0x01010101;
ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, val32, total_offset, size);
}
static void ggml_backend_webgpu_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
webgpu_ctx->queue.WriteBuffer(buf_ctx->buffer, total_offset, data, (size/4)*4);
if (size % 4 != 0) {
// If size is not a multiple of 4, we need to memset the remaining bytes
size_t remaining_size = size % 4;
// pack the remaining bytes into a uint32_t
uint32_t val32 = 0;
for (size_t i = 0; i < remaining_size; i++) {
((uint8_t *)&val32)[i] = ((const uint8_t *)data)[size - remaining_size + i];
}
// memset the remaining bytes
ggml_backend_webgpu_buffer_memset(webgpu_ctx, buf_ctx->buffer, val32, total_offset + (size - remaining_size), remaining_size);
}
}
static void ggml_backend_webgpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
wgpu::Device device = webgpu_ctx->device;
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
size_t final_size = size;
if (size % 4 != 0) {
// If size is not a multiple of 4, we need to round it up to the next multiple of 4
final_size = size + (4 - (size % 4));
}
std::lock_guard<std::mutex> lock(webgpu_ctx->mutex);
if (webgpu_ctx->get_tensor_staging_buf == nullptr ||
webgpu_ctx->get_tensor_staging_buf.GetSize() < final_size) {
// Create a new staging buffer if it doesn't exist or is too small
if (webgpu_ctx->get_tensor_staging_buf) {
webgpu_ctx->get_tensor_staging_buf.Destroy();
}
ggml_webgpu_create_buffer(device, webgpu_ctx->get_tensor_staging_buf, final_size,
wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "get_tensor_staging_buf");
}
// Copy the data from the buffer to the staging buffer
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(buf_ctx->buffer, total_offset, webgpu_ctx->get_tensor_staging_buf, 0, final_size);
wgpu::CommandBuffer commands = encoder.Finish();
// Submit the command buffer to the queue
webgpu_ctx->queue.Submit(1, &commands);
// Map the staging buffer to read the data
ggml_backend_webgpu_map_buffer(webgpu_ctx, webgpu_ctx->get_tensor_staging_buf, wgpu::MapMode::Read, 0, final_size);
// Must specify size here since the staging buffer might be larger than the tensor size
const void * mapped_range = webgpu_ctx->get_tensor_staging_buf.GetConstMappedRange(0, final_size);
// Copy the data from the mapped range to the output buffer
std::memcpy(data, mapped_range, size);
webgpu_ctx->get_tensor_staging_buf.Unmap();
}
static void ggml_backend_webgpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_clear(" << buffer << ", " << (uint32_t) value << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, value, 0, buffer->size);
}
static ggml_backend_buffer_i ggml_backend_webgpu_buffer_interface = {
/* .free_buffer = */ ggml_backend_webgpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_webgpu_buffer_get_base,
/* .init_tensor = */ NULL, // TODO: optional, needed?
/* .memset_tensor = */ ggml_backend_webgpu_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_webgpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_webgpu_buffer_get_tensor,
/* .cpy_tensor = */ NULL, // TODO: optional, implement this
/* .clear = */ ggml_backend_webgpu_buffer_clear,
/* .reset = */ NULL, // TODO: optional, think it coordinates with .init_tensor
};
/* End GGML Backend Buffer Interface */
/* GGML Backend Buffer Type Interface */
static const char * ggml_backend_webgpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
return ctx->device_name.c_str();
}
static ggml_backend_buffer_t ggml_backend_webgpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_type_alloc_buffer(" << size << ")");
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
wgpu::Buffer buf;
ggml_webgpu_create_buffer(ctx->webgpu_ctx->device, buf, size,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst, "allocated_buffer");
ggml_backend_webgpu_buffer_context * buf_ctx = new ggml_backend_webgpu_buffer_context(ctx->webgpu_ctx, buf);
return ggml_backend_buffer_init(buft, ggml_backend_webgpu_buffer_interface, buf_ctx, size);
}
static size_t ggml_backend_webgpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
return ctx->webgpu_ctx->limits.minStorageBufferOffsetAlignment;
}
// maxBufferSize might be larger, but you can't bind more than maxStorageBufferBindingSize to a single binding.
static size_t ggml_backend_webgpu_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
return ctx->webgpu_ctx->limits.maxStorageBufferBindingSize;
}
/* End GGML Backend Buffer Type Interface */
/* GGML Backend Device Interface */
static const char * ggml_backend_webgpu_device_get_name(ggml_backend_dev_t dev) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
return ctx->device_name.c_str();
}
static const char * ggml_backend_webgpu_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
return ctx->device_desc.c_str();
}
static void ggml_backend_webgpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
// TODO: what do we actually want to return here? maxBufferSize might not be the full available memory.
*free = ctx->webgpu_ctx->limits.maxBufferSize;
*total = ctx->webgpu_ctx->limits.maxBufferSize;
}
static enum ggml_backend_dev_type ggml_backend_webgpu_device_get_type(ggml_backend_dev_t dev) {
GGML_UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
static void ggml_backend_webgpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_webgpu_device_get_name(dev);
props->description = ggml_backend_webgpu_device_get_description(dev);
props->type = ggml_backend_webgpu_device_get_type(dev);
ggml_backend_webgpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ false,
/* .events = */ false,
};
}
static ggml_guid_t ggml_backend_webgpu_guid(void) {
static const char * guid_str = "__ggml_webgpu :)";
return reinterpret_cast<ggml_guid_t>((void *)guid_str);
}
static void ggml_webgpu_init_memset_pipeline(webgpu_context webgpu_ctx) {
// we use the maximum workgroup size for the memset pipeline
size_t max_wg_size = webgpu_ctx->limits.maxComputeWorkgroupSizeX;
size_t max_threads = max_wg_size * webgpu_ctx->limits.maxComputeWorkgroupsPerDimension;
// Size the bytes_per_thread so that the largest buffer size can be handled
webgpu_ctx->memset_bytes_per_thread = (webgpu_ctx->limits.maxStorageBufferBindingSize + max_threads - 1) / max_threads;
std::vector<wgpu::ConstantEntry> constants(2);
constants[0].key = "wg_size";
constants[0].value = max_wg_size;
constants[1].key = "bytes_per_thread";
constants[1].value = webgpu_ctx->memset_bytes_per_thread;
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->memset_pipeline, wgsl_memset, "memset", constants);
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->memset_params_dev_buf,
3 * sizeof(uint32_t), // 3 parameters: buffer size, offset, value
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "memset_params_dev_buf");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->memset_params_host_buf,
3 * sizeof(uint32_t), wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "memset_params_host_buf");
}
static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context webgpu_ctx) {
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline, wgsl_mul_mat, "mul_mat");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->mul_mat_params_dev_buf, WEBGPU_MUL_MAT_PARAMS_SIZE,
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "mul_mat_params_dev_buf");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->mul_mat_params_host_buf, WEBGPU_MUL_MAT_PARAMS_SIZE,
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "mul_mat_params_host_buf");
}
static void ggml_webgpu_init_cpy_pipeline(webgpu_context webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants(1);
constants[0].key = "wg_size";
constants[0].value = webgpu_ctx->limits.maxComputeWorkgroupSizeX;
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline, wgsl_cpy, "cpy", constants);
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->cpy_params_dev_buf, WEBGPU_CPY_PARAMS_SIZE,
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "cpy_params_dev_buf");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->cpy_params_host_buf, WEBGPU_CPY_PARAMS_SIZE,
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "cpy_params_host_buf");
}
// TODO: Make thread safe if multiple devices are used
static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_device_init()");
ggml_backend_webgpu_device_context * dev_ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
webgpu_context webgpu_ctx = dev_ctx->webgpu_ctx;
std::lock_guard<std::mutex> lock(webgpu_ctx->mutex);
if (!webgpu_ctx->device_initialized) {
// Initialize device
wgpu::DeviceDescriptor dev_desc;
dev_desc.requiredLimits = &webgpu_ctx->limits;
dev_desc.requiredFeatures = webgpu_ctx->features.features;
dev_desc.requiredFeatureCount = webgpu_ctx->features.featureCount;
dev_desc.SetDeviceLostCallback(wgpu::CallbackMode::AllowSpontaneous,
[](const wgpu::Device& device, wgpu::DeviceLostReason reason, wgpu::StringView message) {
GGML_UNUSED(device);
GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason), message.data);
});
dev_desc.SetUncapturedErrorCallback(
[](const wgpu::Device& device, wgpu::ErrorType reason, wgpu::StringView message) {
GGML_UNUSED(device);
GGML_LOG_ERROR("ggml_webgpu: Device error! Reason: %d, Message: %s\n", static_cast<int>(reason), message.data);
});
webgpu_ctx->instance.WaitAny(webgpu_ctx->adapter.RequestDevice(&dev_desc, wgpu::CallbackMode::WaitAnyOnly,
[webgpu_ctx](wgpu::RequestDeviceStatus status, wgpu::Device device, wgpu::StringView message) {
if (status != wgpu::RequestDeviceStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to get a device: %s\n", message.data);
return;
}
webgpu_ctx->device = device;
}),
UINT64_MAX
);
GGML_ASSERT(webgpu_ctx->device != nullptr);
// Initialize (compute) queue
webgpu_ctx->queue = webgpu_ctx->device.GetQueue();
ggml_webgpu_init_memset_pipeline(webgpu_ctx);
ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx);
ggml_webgpu_init_cpy_pipeline(webgpu_ctx);
webgpu_ctx->device_initialized = true;
}
static ggml_backend_webgpu_context backend_ctx;
backend_ctx.name = GGML_WEBGPU_NAME + std::string(": ") + dev_ctx->device_name;
backend_ctx.webgpu_ctx = webgpu_ctx;
// See GGML Backend Interface section
static ggml_backend backend = {
/* .guid = */ ggml_backend_webgpu_guid(),
/* .interface = */ ggml_backend_webgpu_i,
/* .device = */ dev,
/* .context = */ &backend_ctx,
};
return &backend;
}
static ggml_backend_buffer_type_t ggml_backend_webgpu_device_get_buffer_type(ggml_backend_dev_t dev) {
// See GGML Backend Buffer Type Interface section
static struct ggml_backend_buffer_type ggml_backend_webgpu_buffer_type = {
/* .iface = */ {
/* .get_name = */ ggml_backend_webgpu_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_webgpu_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_webgpu_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_webgpu_buffer_type_get_max_size,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ NULL, // defaults to false
},
/* .device = */ dev,
/* .context = */ NULL,
};
return &ggml_backend_webgpu_buffer_type;
}
static bool ggml_backend_webgpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
GGML_UNUSED(dev);
return buft->iface.get_name == ggml_backend_webgpu_buffer_type_get_name;
}
static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
GGML_UNUSED(dev);
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
return true;
case GGML_OP_CPY:
return op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_MUL_MAT:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
default:
return false;
}
}
static struct ggml_backend_device_i ggml_backend_webgpu_device_i = {
/* .get_name = */ ggml_backend_webgpu_device_get_name,
/* .get_description = */ ggml_backend_webgpu_device_get_description,
/* .get_memory = */ ggml_backend_webgpu_device_get_memory,
/* .get_type = */ ggml_backend_webgpu_device_get_type,
/* .get_props = */ ggml_backend_webgpu_device_get_props,
/* .init_backend = */ ggml_backend_webgpu_device_init,
/* .get_buffer_type = */ ggml_backend_webgpu_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_webgpu_device_supports_op,
/* .supports_buft = */ ggml_backend_webgpu_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
/* End GGML Backend Device Interface */
/* GGML Backend Registration Interface */
static const char * ggml_backend_webgpu_reg_get_name(ggml_backend_reg_t reg) {
ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
return ctx->name;
}
static size_t ggml_backend_webgpu_reg_get_device_count(ggml_backend_reg_t reg) {
ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
return ctx->device_count;
}
// TODO: Does this need to be thread safe? Is it only called once?
// Only one device is supported for now
static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
WEBGPU_LOG_DEBUG("ggml_backend_reg_get_device()");
ggml_backend_webgpu_reg_context * reg_ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
webgpu_context ctx = reg_ctx->webgpu_ctx;
wgpu::RequestAdapterOptions options = {};
auto callback = [](wgpu::RequestAdapterStatus status, wgpu::Adapter adapter, const char *message, void *userdata) {
if (status != wgpu::RequestAdapterStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to get an adapter: %s\n", message);
return;
}
*static_cast<wgpu::Adapter *>(userdata) = adapter;
};
void *userdata = &ctx->adapter;
ctx->instance.WaitAny(ctx->instance.RequestAdapter(&options, wgpu::CallbackMode::WaitAnyOnly, callback, userdata), UINT64_MAX);
GGML_ASSERT(ctx->adapter != nullptr);
ctx->adapter.GetLimits(&ctx->limits);
ctx->adapter.GetFeatures(&ctx->features);
wgpu::AdapterInfo info{};
ctx->adapter.GetInfo(&info);
static ggml_backend_webgpu_device_context device_ctx;
device_ctx.webgpu_ctx = ctx;
device_ctx.device_name = GGML_WEBGPU_NAME;
device_ctx.device_desc = std::string(info.description.data);
GGML_LOG_INFO("ggml_webgpu: adapter_info: vendor_id: %u | vendor: %s | architecture: %s | device_id: %u | name: %s | device_desc: %s\n",
info.vendorID, info.vendor.data, info.architecture.data, info.deviceID, info.device.data, info.description.data);
// See GGML Backend Device Interface section
static ggml_backend_device device = {
/* .iface = */ ggml_backend_webgpu_device_i,
/* .reg = */ reg,
/* .context = */ &device_ctx,
};
return &device;
}
static const struct ggml_backend_reg_i ggml_backend_webgpu_reg_i = {
/* .get_name = */ ggml_backend_webgpu_reg_get_name,
/* .get_device_count = */ ggml_backend_webgpu_reg_get_device_count,
/* .get_device = */ ggml_backend_webgpu_reg_get_device,
/* .get_proc_address = */ NULL,
};
/* End GGML Backend Registration Interface */
// TODO: Does this need to be thread safe? Is it only called once?
ggml_backend_reg_t ggml_backend_webgpu_reg() {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_reg()");
webgpu_context webgpu_ctx = std::make_shared<webgpu_context_struct>();
webgpu_ctx->device_initialized = false;
static ggml_backend_webgpu_reg_context ctx;
ctx.webgpu_ctx = webgpu_ctx;
ctx.name = GGML_WEBGPU_NAME;
ctx.device_count = 1;
wgpu::InstanceDescriptor instance_descriptor{};
std::vector<wgpu::InstanceFeatureName> instance_features = {wgpu::InstanceFeatureName::TimedWaitAny};
instance_descriptor.requiredFeatures = instance_features.data();
instance_descriptor.requiredFeatureCount = instance_features.size();
webgpu_ctx->instance = wgpu::CreateInstance(&instance_descriptor);
GGML_ASSERT(webgpu_ctx->instance != nullptr);
static ggml_backend_reg reg = {
/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_webgpu_reg_i,
/* .context = */ &ctx,
};
return &reg;
}
ggml_backend_t ggml_backend_webgpu_init(void) {
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_webgpu_reg(), 0);
return ggml_backend_webgpu_device_init(dev, nullptr);
}
GGML_BACKEND_DL_IMPL(ggml_backend_webgpu_reg)

View File

@ -0,0 +1,60 @@
enable f16;
@group(0) @binding(0)
var<storage, read_write> src: array<f32>;
@group(0) @binding(1)
var<storage, read_write> dst: array<f16>;
struct Params {
ne: u32, // total number of elements
offset_src: u32, // in elements
offset_dst: u32, // in elements
// Strides (in elements) may be permuted
stride_src0: u32,
stride_src1: u32,
stride_src2: u32,
stride_src3: u32,
stride_dst0: u32,
stride_dst1: u32,
stride_dst2: u32,
stride_dst3: u32,
// Logical shape (same for both tensors)
ne0: u32,
ne1: u32,
ne2: u32,
ne3: u32,
};
@group(0) @binding(2)
var<uniform> params: Params;
override wg_size: u32;
@compute @workgroup_size(wg_size)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
if (gid.x >= params.ne) {
return;
}
var i = gid.x;
let i3 = i / (params.ne2 * params.ne1 * params.ne0);
i = i % (params.ne2 * params.ne1 * params.ne0);
let i2 = i / (params.ne1 * params.ne0);
i = i % (params.ne1 * params.ne0);
let i1 = i / params.ne0;
let i0 = i % params.ne0;
let src_idx = i0 * params.stride_src0 + i1 * params.stride_src1 +
i2 * params.stride_src2 + i3 * params.stride_src3;
let dst_idx = i0 * params.stride_dst0 + i1 * params.stride_dst1 +
i2 * params.stride_dst2 + i3 * params.stride_dst3;
dst[params.offset_dst + dst_idx] = f16(src[params.offset_src + src_idx]);
}

View File

@ -0,0 +1,35 @@
import os
import argparse
def escape_triple_quotes(wgsl):
# Simple defense in case of embedded """
return wgsl.replace('"""', '\\"""')
def to_cpp_string_literal(varname, content):
return f'const char* wgsl_{varname} = R"({content})";\n'
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--input', required=True)
parser.add_argument('--output', required=True)
args = parser.parse_args()
with open(args.output, 'w', encoding='utf-8') as out:
out.write("// Auto-generated shader embedding \n\n")
for fname in sorted(os.listdir(args.input)):
if not fname.endswith('.wgsl'):
continue
shader_path = os.path.join(args.input, fname)
varname = os.path.splitext(fname)[0]
with open(shader_path, 'r', encoding='utf-8') as f:
content = f.read()
content = escape_triple_quotes(content)
out.write(to_cpp_string_literal(varname, content))
out.write('\n')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,40 @@
@group(0) @binding(0)
var<storage, read_write> output_buffer: array<u32>;
struct Params {
offset: u32, // in bytes
size: u32, // in bytes
value: u32, // 4 8-bit values, which are either repeating (memset_tensor) or may be separate (cleaning up unaligned set_tensor operations)
};
@group(0) @binding(1)
var<uniform> params: Params;
override wg_size: u32;
override bytes_per_thread: u32;
@compute @workgroup_size(wg_size)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
let i = gid.x * bytes_per_thread;
let start = params.offset;
let end = params.offset + params.size;
for (var j: u32 = 0u; j < bytes_per_thread; j = j + 1u) {
let byte_index = start + i + j;
if (byte_index + 4u <= end) {
output_buffer[(byte_index >> 2u)] = params.value;
} else {
// Handle tail (unaligned)
for (var k: u32 = 0u; k < 4u; k = k + 1u) {
let idx = byte_index + k;
if (idx < end) {
let word_idx = idx >> 2u;
let byte_offset = (idx & 3u) * 8u;
let mask = ~(0xffu << byte_offset);
let existing = output_buffer[word_idx];
output_buffer[word_idx] = (existing & mask) | ((params.value & 0xffu) << byte_offset);
}
}
}
}
}

View File

@ -0,0 +1,56 @@
struct MulMatParams {
m: u32,
n: u32,
k: u32,
// all strides are in elements
stride_01: u32,
stride_11: u32,
stride_02: u32,
stride_12: u32,
stride_03: u32,
stride_13: u32,
bs02: u32,
bs03: u32,
broadcast2: u32,
broadcast3: u32
};
@group(0) @binding(0) var<storage, read_write> src0: array<f32>; // N rows, K columns
@group(0) @binding(1) var<storage, read_write> src1: array<f32>; // M rows, K columns (transposed)
@group(0) @binding(2) var<storage, read_write> dst: array<f32>; // M rows, N columns
@group(0) @binding(3) var<uniform> params: MulMatParams;
@compute @workgroup_size(64)
fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
let total = params.m * params.n * params.bs02 * params.broadcast2 * params.bs03 * params.broadcast3;
if (global_id.x >= total) {
return;
}
let dst2_stride = params.m * params.n;
let dst3_stride = dst2_stride * params.bs02 * params.broadcast2;
let dst3_idx = global_id.x / dst3_stride;
let src03_idx = dst3_idx / params.broadcast3; // src0 may be broadcast along the third dimension
let src13_idx = dst3_idx; // src1 is not broadcast
let dst3_rem = global_id.x % dst3_stride;
let dst2_idx = dst3_rem / dst2_stride;
let src02_idx = dst2_idx / params.broadcast2; // src0 may also be broadcast along the second dimension
let src12_idx = dst2_idx; // src1 is not broadcast
let dst2_rem = dst3_rem % dst2_stride;
let row = dst2_rem / params.n; // output row
let col = dst2_rem % params.n; // output column
var sum = 0.0;
for (var i: u32 = 0u; i < params.k; i = i + 1u) {
let src0_idx = src03_idx * params.stride_03 + src02_idx * params.stride_02 + col * params.stride_01 + i;
let src1_idx = src13_idx * params.stride_13 + src12_idx * params.stride_12 + row * params.stride_11 + i;
sum = sum + src0[src0_idx] * src1[src1_idx];
}
dst[dst3_idx * dst3_stride + dst2_idx * dst2_stride + row * params.n + col] = sum;
}