ggml : implement GEGLU_ERF and GEGLU_QUICK ops (#14445)

This commit is contained in:
Sigbjørn Skjæret 2025-07-03 23:07:22 +02:00 committed by GitHub
parent bee28421be
commit 28657a8229
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
20 changed files with 789 additions and 32 deletions

View File

@ -557,6 +557,8 @@ extern "C" {
GGML_GLU_OP_REGLU,
GGML_GLU_OP_GEGLU,
GGML_GLU_OP_SWIGLU,
GGML_GLU_OP_GEGLU_ERF,
GGML_GLU_OP_GEGLU_QUICK,
GGML_GLU_OP_COUNT,
};
@ -1147,6 +1149,22 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu_erf(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a);
// A: n columns, r rows,
// B: n columns, r rows,
GGML_API struct ggml_tensor * ggml_glu_split(
@ -1170,6 +1188,16 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_geglu_erf_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_geglu_quick_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// normalize along rows
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,

View File

@ -2172,6 +2172,8 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
{
n_tasks = n_threads;
} break;

View File

@ -3614,6 +3614,292 @@ static void ggml_compute_forward_swiglu(
}
}
// ggml_compute_forward_geglu_erf
static void ggml_compute_forward_geglu_erf_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * src0_p = (float *) (src0_d + i1*src0_o);
float * src1_p = (float *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_geglu_erf_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_geglu_erf_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_geglu_erf_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_geglu_erf(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_geglu_erf_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_geglu_erf_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_geglu_quick
static void ggml_compute_forward_geglu_quick_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * src0_p = (float *) (src0_d + i1*src0_o);
float * src1_p = (float *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_geglu_quick_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_geglu_quick_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_geglu_quick_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_geglu_quick(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_geglu_quick_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_geglu_quick_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_norm
static void ggml_compute_forward_norm_f32(
@ -8779,6 +9065,14 @@ void ggml_compute_forward_glu(
{
ggml_compute_forward_swiglu(params, dst);
} break;
case GGML_GLU_OP_GEGLU_ERF:
{
ggml_compute_forward_geglu_erf(params, dst);
} break;
case GGML_GLU_OP_GEGLU_QUICK:
{
ggml_compute_forward_geglu_quick(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");

View File

@ -959,6 +959,46 @@ inline static void ggml_vec_swiglu_f16(const int n, ggml_fp16_t * y, const ggml_
}
}
inline static void ggml_vec_geglu_erf_f32(const int n, float * y, const float * x, const float * g) {
for (int i = 0; i < n; ++i) {
float xi = x[i];
y[i] = 0.5f * xi * (1.0f + erff(xi*SQRT_2_INV)) * g[i];
}
}
inline static void ggml_vec_geglu_erf_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
for (int i = 0; i < n; ++i) {
float xi = GGML_CPU_FP16_TO_FP32(x[i]);
float gi = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16(0.5f * xi * (1.0f + erff(xi*SQRT_2_INV)) * gi);
}
}
#ifdef GGML_GELU_QUICK_FP16
inline static void ggml_vec_geglu_quick_f32(const int n, float * y, const float * x, const float * g) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_CPU_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_CPU_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]) * g[i];
}
}
#else
inline static void ggml_vec_geglu_quick_f32(const int n, float * y, const float * x, const float * g) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_quick_f32(x[i]) * g[i];
}
}
#endif
inline static void ggml_vec_geglu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
const uint16_t * i16 = (const uint16_t *) x;
for (int i = 0; i < n; ++i) {
float v = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(ggml_table_gelu_quick_f16[i16[i]]) * v);
}
}
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
ggml_float sum = 0.0;

View File

@ -2314,6 +2314,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_GLU_OP_SWIGLU:
ggml_cuda_op_swiglu(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_ERF:
ggml_cuda_op_geglu_erf(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_QUICK:
ggml_cuda_op_geglu_quick(ctx, dst);
break;
default:
return false;
}
@ -3116,6 +3122,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]);
default:
return false;

View File

@ -285,6 +285,14 @@ void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_silu>(ctx, dst);
}
void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_gelu_erf>(ctx, dst);
}
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary_gated<op_gelu_quick>(ctx, dst);
}
/* silu_back */
static __device__ __forceinline__ float op_silu_back(float grad, float x) {

View File

@ -64,3 +64,7 @@ void ggml_cuda_op_reglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -530,6 +530,8 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_REGLU,
GGML_METAL_KERNEL_TYPE_GEGLU,
GGML_METAL_KERNEL_TYPE_SWIGLU,
GGML_METAL_KERNEL_TYPE_GEGLU_ERF,
GGML_METAL_KERNEL_TYPE_GEGLU_QUICK,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_MEAN,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
@ -1510,6 +1512,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REGLU, reglu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU, geglu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SWIGLU, swiglu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_ERF, geglu_erf, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_QUICK, geglu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MEAN, mean, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
@ -1693,6 +1697,8 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
@ -2456,6 +2462,12 @@ static bool ggml_metal_encode_node(
case GGML_GLU_OP_SWIGLU:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SWIGLU].pipeline;
break;
case GGML_GLU_OP_GEGLU_ERF:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU_ERF].pipeline;
break;
case GGML_GLU_OP_GEGLU_QUICK:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU_QUICK].pipeline;
break;
default:
GGML_ABORT("fatal error");
}

View File

@ -1258,6 +1258,50 @@ kernel void kernel_swiglu(
}
}
kernel void kernel_geglu_erf(
device const char * src0,
device const char * src1,
device char * dst,
constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
const float x0 = src0_row[i0];
const float x1 = src1_row[i0];
const float gelu_erf = 0.5f*x0*(1.0f+erf_approx<float>(x0*SQRT_2_INV));
dst_row[i0] = gelu_erf*x1;
}
}
kernel void kernel_geglu_quick(
device const char * src0,
device const char * src1,
device char * dst,
constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
const float x0 = src0_row[i0];
const float x1 = src1_row[i0];
const float gelu_quick = x0*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x0)));
dst_row[i0] = gelu_quick*x1;
}
}
template <bool norm>
kernel void kernel_sum_rows(
constant ggml_metal_kargs_sum_rows & args,

View File

@ -402,8 +402,8 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_relu;
cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
cl_kernel kernel_clamp;
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu,
kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16;
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_geglu_erf, kernel_geglu_quick,
kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
cl_kernel kernel_norm;
cl_kernel kernel_rms_norm;
cl_kernel kernel_group_norm;
@ -753,12 +753,16 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
backend_ctx->program_glu =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
GGML_LOG_CONT(".");
}
@ -2277,6 +2281,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
default:
return false;
@ -6254,6 +6260,20 @@ static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const
kernel = backend_ctx->kernel_swiglu_f16;
}
break;
case GGML_GLU_OP_GEGLU_ERF:
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_geglu_erf;
} else {
kernel = backend_ctx->kernel_geglu_erf_f16;
}
break;
case GGML_GLU_OP_GEGLU_QUICK:
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_geglu_quick;
} else {
kernel = backend_ctx->kernel_geglu_quick_f16;
}
break;
default:
GGML_ABORT("Unsupported glu op");
}

View File

@ -1,7 +1,9 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define GELU_COEF_A 0.044715f
#define GELU_QUICK_COEF -1.702f
#define SQRT_2_OVER_PI 0.79788456080286535587989211986876f
#define SQRT_2_INV 0.70710678118654752440084436210484f
//------------------------------------------------------------------------------
// geglu
@ -199,3 +201,137 @@ kernel void kernel_swiglu_f16(
dst_row[i0] = silu*x1;
}
}
//------------------------------------------------------------------------------
// geglu_erf
//------------------------------------------------------------------------------
kernel void kernel_geglu_erf(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb01,
ulong nb11,
int ne0,
ulong nb1,
int ne00_off,
int ne10_off
) {
src0 = (global char*)((global char*)src0 + offset0);
src1 = (global char*)((global char*)src1 + offset1);
dst = (global char*)((global char*)dst + offsetd);
global float * src0_row = (global float *) ((global char *) src0 + get_group_id(0)*nb01) + ne00_off;
global float * src1_row = (global float *) ((global char *) src1 + get_group_id(0)*nb11) + ne10_off;
global float * dst_row = (global float *) ((global char *) dst + get_group_id(0)*nb1);
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const float x0 = src0_row[i0];
const float x1 = src1_row[i0];
const float gelu_erf = 0.5f*x0*(1.0f + erf(x0*SQRT_2_INV));
dst_row[i0] = gelu_erf*x1;
}
}
kernel void kernel_geglu_erf_f16(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb01,
ulong nb11,
int ne0,
ulong nb1,
int ne00_off,
int ne10_off
) {
src0 = (global char*)((global char*)src0 + offset0);
src1 = (global char*)((global char*)src1 + offset1);
dst = (global char*)((global char*)dst + offsetd);
global half * src0_row = (global half *) ((global char *) src0 + get_group_id(0)*nb01) + ne00_off;
global half * src1_row = (global half *) ((global char *) src1 + get_group_id(0)*nb11) + ne10_off;
global half * dst_row = (global half *) ((global char *) dst + get_group_id(0)*nb1);
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const half x0 = src0_row[i0];
const half x1 = src1_row[i0];
const half gelu_erf = 0.5f*x0*(1.0f + erf(x0*SQRT_2_INV));
dst_row[i0] = gelu_erf*x1;
}
}
//------------------------------------------------------------------------------
// geglu_quick
//------------------------------------------------------------------------------
kernel void kernel_geglu_quick(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb01,
ulong nb11,
int ne0,
ulong nb1,
int ne00_off,
int ne10_off
) {
src0 = (global char*)((global char*)src0 + offset0);
src1 = (global char*)((global char*)src1 + offset1);
dst = (global char*)((global char*)dst + offsetd);
global float * src0_row = (global float *) ((global char *) src0 + get_group_id(0)*nb01) + ne00_off;
global float * src1_row = (global float *) ((global char *) src1 + get_group_id(0)*nb11) + ne10_off;
global float * dst_row = (global float *) ((global char *) dst + get_group_id(0)*nb1);
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const float x0 = src0_row[i0];
const float x1 = src1_row[i0];
const float gelu_quick = x0*(1.0f/(1.0f + exp(GELU_QUICK_COEF*x0)));
dst_row[i0] = gelu_quick*x1;
}
}
kernel void kernel_geglu_quick_f16(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb01,
ulong nb11,
int ne0,
ulong nb1,
int ne00_off,
int ne10_off
) {
src0 = (global char*)((global char*)src0 + offset0);
src1 = (global char*)((global char*)src1 + offset1);
dst = (global char*)((global char*)dst + offsetd);
global half * src0_row = (global half *) ((global char *) src0 + get_group_id(0)*nb01) + ne00_off;
global half * src1_row = (global half *) ((global char *) src1 + get_group_id(0)*nb11) + ne10_off;
global half * dst_row = (global half *) ((global char *) dst + get_group_id(0)*nb1);
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const half x0 = src0_row[i0];
const half x1 = src1_row[i0];
const half gelu_quick = x0*(1.0f/(1.0f + exp(GELU_QUICK_COEF*x0)));
dst_row[i0] = gelu_quick*x1;
}
}

View File

@ -383,6 +383,24 @@ static void gated_op_fused_swiglu(const T * x, const T * g, T * dst, const uint6
}
}
template<typename T>
static void gated_op_fused_geglu_erf(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
dst[i] = op_gelu_erf(x[j0]) * g[j1];
}
}
template<typename T>
static void gated_op_fused_geglu_quick(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
dst[i] = op_gelu_quick(x[j0]) * g[j1];
}
}
namespace ggml_sycl_detail {
static void acc_f32_sycl(const float *x, const float *y, float *dst,
const int n_elements, const int ne10, const int ne11,
@ -978,6 +996,28 @@ static inline void ggml_sycl_op_swiglu(ggml_backend_sycl_context & ctx, ggml_ten
});
}
static inline void ggml_sycl_op_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
sycl_parallel_for(main_stream,
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
gated_op_fused_geglu_erf(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
});
});
}
static inline void ggml_sycl_op_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
sycl_parallel_for(main_stream,
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
gated_op_fused_geglu_quick(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
});
});
}
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
@ -1118,3 +1158,13 @@ void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_swiglu(ctx, dst);
}
void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_geglu_erf(ctx, dst);
}
void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_geglu_quick(ctx, dst);
}

View File

@ -80,5 +80,7 @@ void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_geglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_ELEMENTWISE_HPP

View File

@ -3687,6 +3687,12 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_GLU_OP_SWIGLU:
ggml_sycl_swiglu(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_ERF:
ggml_sycl_geglu_erf(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_QUICK:
ggml_sycl_geglu_quick(ctx, dst);
break;
default:
return false;
}
@ -4232,6 +4238,8 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]);
default:
return false;

View File

@ -456,6 +456,8 @@ struct vk_device_struct {
vk_pipeline pipeline_geglu[2];
vk_pipeline pipeline_reglu[2];
vk_pipeline pipeline_swiglu[2];
vk_pipeline pipeline_geglu_erf[2];
vk_pipeline pipeline_geglu_quick[2];
vk_pipeline pipeline_leaky_relu_f32;
vk_pipeline pipeline_silu_back_f32;
@ -2821,6 +2823,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_GLU(geglu)
CREATE_GLU(reglu)
CREATE_GLU(swiglu)
CREATE_GLU(geglu_erf)
CREATE_GLU(geglu_quick)
#undef CREATE_GLU
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
@ -6575,6 +6579,10 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_reglu[dst->type == GGML_TYPE_F16];
case GGML_GLU_OP_SWIGLU:
return ctx->device->pipeline_swiglu[dst->type == GGML_TYPE_F16];
case GGML_GLU_OP_GEGLU_ERF:
return ctx->device->pipeline_geglu_erf[dst->type == GGML_TYPE_F16];
case GGML_GLU_OP_GEGLU_QUICK:
return ctx->device->pipeline_geglu_quick[dst->type == GGML_TYPE_F16];
default:
break;
}
@ -8919,6 +8927,8 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
break;
default:
return false;
@ -9166,6 +9176,8 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
ggml_vk_glu(ctx, compute_ctx, src0, src1, node, dryrun);
break;
default:
@ -9384,6 +9396,8 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
buf = tensor->buffer;
break;
default:
@ -10194,6 +10208,8 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous(op->src[0]) &&
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&

View File

@ -0,0 +1,27 @@
#version 450
#include "glu_head.comp"
// based on Abramowitz and Stegun formula 7.1.26 or similar Hastings' approximation
// ref: https://www.johndcook.com/blog/python_erf/
const float p_erf = 0.3275911f;
const float a1_erf = 0.254829592f;
const float a2_erf = -0.284496736f;
const float a3_erf = 1.421413741f;
const float a4_erf = -1.453152027f;
const float a5_erf = 1.061405429f;
const float SQRT_2_INV = 0.70710678118654752440084436210484f;
float op(float a, float b) {
const float a_div_sqr2 = a * SQRT_2_INV;
const float sign_x = sign(a_div_sqr2);
const float x = abs(a_div_sqr2);
const float t = 1.0f / (1.0f + p_erf * x);
const float y = 1.0f - (((((a5_erf * t + a4_erf) * t) + a3_erf) * t + a2_erf) * t + a1_erf) * t * exp(-x * x);
const float erf_approx = sign_x * y;
return 0.5f * a * (1.0f + erf_approx) * b;
}
#include "glu_main.comp"

View File

@ -0,0 +1,11 @@
#version 450
#include "glu_head.comp"
const float GELU_QUICK_COEF = -1.702f;
float op(float a, float b) {
return a * (1.0f / (1.0f + exp(GELU_QUICK_COEF * a))) * b;
}
#include "glu_main.comp"

View File

@ -593,6 +593,10 @@ void process_shaders() {
string_to_spv("reglu_f32", "reglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("swiglu_f16", "swiglu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("swiglu_f32", "swiglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("geglu_erf_f16", "geglu_erf.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("geglu_erf_f32", "geglu_erf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("geglu_quick_f16","geglu_quick.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("geglu_quick_f32","geglu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("silu_back_f32", "silu_back.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});

View File

@ -1140,9 +1140,11 @@ static const char * GGML_GLU_OP_NAME[GGML_GLU_OP_COUNT] = {
"REGLU",
"GEGLU",
"SWIGLU",
"GEGLU_ERF",
"GEGLU_QUICK",
};
static_assert(GGML_GLU_OP_COUNT == 3, "GGML_GLU_OP_COUNT != 3");
static_assert(GGML_GLU_OP_COUNT == 5, "GGML_GLU_OP_COUNT != 5");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
@ -2768,6 +2770,48 @@ struct ggml_tensor * ggml_swiglu_split(
return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_SWIGLU, false);
}
// ggml_geglu_erf
struct ggml_tensor * ggml_geglu_erf(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_ERF, false);
}
struct ggml_tensor * ggml_geglu_erf_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_ERF, true);
}
struct ggml_tensor * ggml_geglu_erf_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_GEGLU_ERF, false);
}
// ggml_geglu_quick
struct ggml_tensor * ggml_geglu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_QUICK, false);
}
struct ggml_tensor * ggml_geglu_quick_swapped(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_QUICK, true);
}
struct ggml_tensor * ggml_geglu_quick_split(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_GEGLU_QUICK, false);
}
// ggml_norm
static struct ggml_tensor * ggml_norm_impl(

View File

@ -1405,8 +1405,7 @@ struct clip_graph {
ggml_tensor * x = embeddings;
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
embeddings = ggml_silu_inplace(ctx0, embeddings);
embeddings = ggml_mul(ctx0, embeddings,x);
embeddings = ggml_swiglu_split(ctx0, embeddings, x);
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
}
// arrangement of BOI/EOI token embeddings
@ -1502,15 +1501,8 @@ struct clip_graph {
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
// swiglu
{
int64_t split_point = cur->ne[0] / 2;
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
// see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
x1 = ggml_silu(ctx0, x1);
cur = ggml_mul(ctx0, x0, x1);
}
// see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
cur = ggml_swiglu_swapped(ctx0, cur);
// mid-norm
cur = ggml_rms_norm(ctx0, cur, 1e-6);
@ -1769,35 +1761,42 @@ private:
cur = tmp;
}
// we only support parallel ffn for now
switch (type_op) {
case FFN_SILU:
{
if (gate) {
cur = ggml_swiglu_split(ctx0, cur, tmp);
cb(cur, "ffn_swiglu", il);
} else {
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_silu", il);
} break;
case FFN_GELU:
{
if (gate) {
cur = ggml_geglu_split(ctx0, cur, tmp);
cb(cur, "ffn_geglu", il);
} else {
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_gelu", il);
} break;
case FFN_GELU_ERF:
{
if (gate) {
cur = ggml_geglu_erf_split(ctx0, cur, tmp);
cb(cur, "ffn_geglu_erf", il);
} else {
cur = ggml_gelu_erf(ctx0, cur);
cb(cur, "ggml_gelu_erf", il);
cb(cur, "ffn_gelu_erf", il);
} break;
case FFN_GELU_QUICK:
{
if (gate) {
cur = ggml_geglu_quick_split(ctx0, cur, tmp);
cb(cur, "ffn_geglu_quick", il);
} else {
cur = ggml_gelu_quick(ctx0, cur);
cb(cur, "ffn_relu", il);
cb(cur, "ffn_gelu_quick", il);
} break;
}
// we only support parallel ffn for now
if (gate) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
}
if (down) {
cur = ggml_mul_mat(ctx0, down, cur);
}