vulkan: support mixed/deepseekR1 FA head sizes (#14509)
* vulkan: better parameterize FA by head sizes * vulkan: support mixed/deepseekR1 FA head sizes
This commit is contained in:
parent
c8c4495b8d
commit
2b72bedec1
|
@ -224,6 +224,21 @@ enum vk_device_architecture {
|
|||
INTEL_XE2,
|
||||
};
|
||||
|
||||
// HSK x HSV
|
||||
enum FaHeadSizes {
|
||||
FA_HEAD_SIZE_64,
|
||||
FA_HEAD_SIZE_80,
|
||||
FA_HEAD_SIZE_96,
|
||||
FA_HEAD_SIZE_112,
|
||||
FA_HEAD_SIZE_128,
|
||||
FA_HEAD_SIZE_192,
|
||||
FA_HEAD_SIZE_192_128,
|
||||
FA_HEAD_SIZE_256,
|
||||
FA_HEAD_SIZE_576_512,
|
||||
FA_HEAD_SIZE_UNSUPPORTED,
|
||||
FA_HEAD_SIZE_COUNT = FA_HEAD_SIZE_UNSUPPORTED,
|
||||
};
|
||||
|
||||
static vk_device_architecture get_device_architecture(const vk::PhysicalDevice& device) {
|
||||
vk::PhysicalDeviceProperties props = device.getProperties();
|
||||
|
||||
|
@ -467,26 +482,11 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_conv2d_dw_cwhn_f32;
|
||||
|
||||
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D64_cm2[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D80_cm2[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D96_cm2[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D112_cm2[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D128_cm2[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D256_cm2[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_cm2[GGML_TYPE_COUNT][FA_HEAD_SIZE_COUNT][2][2][2];
|
||||
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D64_cm1[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D80_cm1[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D96_cm1[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D112_cm1[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D128_cm1[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D256_cm1[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_cm1[GGML_TYPE_COUNT][FA_HEAD_SIZE_COUNT][2][2][2];
|
||||
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D80[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D96[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D112[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D128[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D256[GGML_TYPE_COUNT][2][2][2];
|
||||
vk_pipeline pipeline_flash_attn_f32_f16[GGML_TYPE_COUNT][FA_HEAD_SIZE_COUNT][2][2][2];
|
||||
|
||||
vk_pipeline pipeline_flash_attn_split_k_reduce;
|
||||
|
||||
|
@ -1003,7 +1003,7 @@ struct ggml_backend_vk_context {
|
|||
|
||||
// number of additional consecutive nodes that are being fused with the
|
||||
// node currently being processed
|
||||
uint32_t num_additional_fused_ops {};
|
||||
int num_additional_fused_ops {};
|
||||
};
|
||||
|
||||
static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
|
||||
|
@ -1699,6 +1699,35 @@ enum FaCodePath {
|
|||
FA_COOPMAT2,
|
||||
};
|
||||
|
||||
static FaHeadSizes fa_get_head_sizes(uint32_t hsk, uint32_t hsv) {
|
||||
if (hsk != 192 && hsk != 576 && hsk != hsv) {
|
||||
return FA_HEAD_SIZE_UNSUPPORTED;
|
||||
}
|
||||
switch (hsk) {
|
||||
case 64: return FA_HEAD_SIZE_64;
|
||||
case 80: return FA_HEAD_SIZE_80;
|
||||
case 96: return FA_HEAD_SIZE_96;
|
||||
case 112: return FA_HEAD_SIZE_112;
|
||||
case 128: return FA_HEAD_SIZE_128;
|
||||
case 192:
|
||||
if (hsv == 192) {
|
||||
return FA_HEAD_SIZE_192;
|
||||
} else if (hsv == 128) {
|
||||
return FA_HEAD_SIZE_192_128;
|
||||
} else {
|
||||
return FA_HEAD_SIZE_UNSUPPORTED;
|
||||
}
|
||||
case 256: return FA_HEAD_SIZE_256;
|
||||
case 576:
|
||||
if (hsv == 512) {
|
||||
return FA_HEAD_SIZE_576_512;
|
||||
} else {
|
||||
return FA_HEAD_SIZE_UNSUPPORTED;
|
||||
}
|
||||
default: return FA_HEAD_SIZE_UNSUPPORTED;
|
||||
}
|
||||
}
|
||||
|
||||
// number of rows/cols for flash attention shader
|
||||
static constexpr uint32_t flash_attention_num_small_rows = 32;
|
||||
static constexpr uint32_t scalar_flash_attention_num_small_rows = 1;
|
||||
|
@ -1719,8 +1748,9 @@ static uint32_t get_fa_num_small_rows(FaCodePath path) {
|
|||
}
|
||||
}
|
||||
|
||||
static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) {
|
||||
static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows) {
|
||||
GGML_UNUSED(clamp);
|
||||
GGML_UNUSED(hsv);
|
||||
|
||||
if (path == FA_SCALAR) {
|
||||
if (small_rows) {
|
||||
|
@ -1744,7 +1774,7 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t D, uint32_
|
|||
}
|
||||
|
||||
// small cols to reduce register count
|
||||
if (ggml_is_quantized(type) || D == 256) {
|
||||
if (ggml_is_quantized(type) || hsk >= 256) {
|
||||
return {64, 32};
|
||||
}
|
||||
return {64, 64};
|
||||
|
@ -2037,19 +2067,21 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
parameter_count, wg_denoms, specialization_constants, disable_robustness, require_full_subgroups, required_subgroup_size));
|
||||
};
|
||||
|
||||
auto const &fa_wg_denoms = [&](FaCodePath path, uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) -> std::array<uint32_t, 3> {
|
||||
return {fa_rows_cols(path, D, clamp, type, small_rows)[0], 1, 1};
|
||||
auto const &fa_wg_denoms = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows) -> std::array<uint32_t, 3> {
|
||||
return {fa_rows_cols(path, hsk, hsv, clamp, type, small_rows)[0], 1, 1};
|
||||
};
|
||||
|
||||
auto const &fa_spec_constants = [&](FaCodePath path, uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) -> std::vector<uint32_t> {
|
||||
auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows) -> std::vector<uint32_t> {
|
||||
// For large number of rows, 128 invocations seems to work best.
|
||||
// For small number of rows (e.g. N==1), 256 works better. But matrix granularity for 256 is 32, so we
|
||||
// can't use 256 for D==80.
|
||||
// For scalar, use 128 (arbitrary)
|
||||
// The same D_split value is used for both HSK and HSV, so just base it on the union of the LSBs.
|
||||
const uint32_t D = (hsk|hsv);
|
||||
uint32_t wg_size = (path == FA_SCALAR || path == FA_COOPMAT1)
|
||||
? scalar_flash_attention_workgroup_size
|
||||
: ((small_rows && (D % 32) == 0) ? 256 : 128);
|
||||
auto rows_cols = fa_rows_cols(path, D, clamp, type, small_rows);
|
||||
auto rows_cols = fa_rows_cols(path, hsk, hsv, clamp, type, small_rows);
|
||||
|
||||
// D_split can't be larger than a subgroup because we use subgroupShuffle to reduce it.
|
||||
// D_split can't be larger than the LSB of D divided by 4 due to vectorization in the shader.
|
||||
|
@ -2058,26 +2090,29 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
// mask dim1 is padded to 64, we rely on this to avoid clamping mask loads
|
||||
GGML_ASSERT((GGML_KQ_MASK_PAD % rows_cols[0]) == 0);
|
||||
return {wg_size, rows_cols[0], rows_cols[1], (D), clamp, D_split};
|
||||
return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split};
|
||||
};
|
||||
|
||||
#define CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, D) \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D ## SUFFIX[TYPE][0][0][0], "flash_attn_f32_f16_D" #D "_f16acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, D,1,TYPE,false), fa_spec_constants(FAPATH, D,1,TYPE,false), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D ## SUFFIX[TYPE][0][0][1], "flash_attn_f32_f16_D" #D "_aligned_f16acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, D,0,TYPE,false), fa_spec_constants(FAPATH, D,0,TYPE,false), fa_rows_cols(FAPATH,D,0,TYPE,false)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D ## SUFFIX[TYPE][1][0][0], "flash_attn_f32_f16_D" #D "_f32acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, D,1,TYPE,false), fa_spec_constants(FAPATH, D,1,TYPE,false), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D ## SUFFIX[TYPE][1][0][1], "flash_attn_f32_f16_D" #D "_aligned_f32acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, D,0,TYPE,false), fa_spec_constants(FAPATH, D,0,TYPE,false), fa_rows_cols(FAPATH,D,0,TYPE,false)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D ## SUFFIX[TYPE][0][1][0], "flash_attn_f32_f16_D" #D "_f16acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, D,1,TYPE,true), fa_spec_constants(FAPATH, D,1,TYPE,true), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D ## SUFFIX[TYPE][0][1][1], "flash_attn_f32_f16_D" #D "_aligned_f16acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, D,0,TYPE,true), fa_spec_constants(FAPATH, D,0,TYPE,true), fa_rows_cols(FAPATH,D,0,TYPE,true)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D ## SUFFIX[TYPE][1][1][0], "flash_attn_f32_f16_D" #D "_f32acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, D,1,TYPE,true), fa_spec_constants(FAPATH, D,1,TYPE,true), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D ## SUFFIX[TYPE][1][1][1], "flash_attn_f32_f16_D" #D "_aligned_f32acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, D,0,TYPE,true), fa_spec_constants(FAPATH, D,0,TYPE,true), fa_rows_cols(FAPATH,D,0,TYPE,true)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
#define CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, HSK, HSV, HEAD_SIZES) \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][0][0][0], "flash_attn_f32_f16_" #HEAD_SIZES "_f16acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,false), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,false), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][0][0][1], "flash_attn_f32_f16_" #HEAD_SIZES "_aligned_f16acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,false), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,false), fa_rows_cols(FAPATH,HSK,HSV,0,TYPE,false)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][1][0][0], "flash_attn_f32_f16_" #HEAD_SIZES "_f32acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,false), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,false), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][1][0][1], "flash_attn_f32_f16_" #HEAD_SIZES "_aligned_f32acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,false), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,false), fa_rows_cols(FAPATH,HSK,HSV,0,TYPE,false)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][0][1][0], "flash_attn_f32_f16_" #HEAD_SIZES "_f16acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,true), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,true), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][0][1][1], "flash_attn_f32_f16_" #HEAD_SIZES "_aligned_f16acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,true), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,true), fa_rows_cols(FAPATH,HSK,HSV,0,TYPE,true)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][1][1][0], "flash_attn_f32_f16_" #HEAD_SIZES "_f32acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,true), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,true), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][1][1][1], "flash_attn_f32_f16_" #HEAD_SIZES "_aligned_f32acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,true), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,true), fa_rows_cols(FAPATH,HSK,HSV,0,TYPE,true)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
|
||||
|
||||
#define CREATE_FA(TYPE, NAMELC, FAPATH, SUFFIX) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 64) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 80) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 96) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 112) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 128) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 256)
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 64, 64, 64) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 80, 80, 80) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 96, 96, 96) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 112, 112, 112) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 128, 128, 128) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 192, 192, 192) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 192, 128, 192_128) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 256, 256, 256) \
|
||||
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 576, 512, 576_512)
|
||||
|
||||
CREATE_FA(GGML_TYPE_F16, f16, FA_SCALAR, )
|
||||
CREATE_FA(GGML_TYPE_Q4_0, q4_0, FA_SCALAR, )
|
||||
|
@ -3688,7 +3723,6 @@ static void ggml_vk_instance_init() {
|
|||
|
||||
}
|
||||
|
||||
size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size();
|
||||
vk_perf_logger_enabled = getenv("GGML_VK_PERF_LOGGER") != nullptr;
|
||||
|
||||
// Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan
|
||||
|
@ -6002,24 +6036,47 @@ static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
}
|
||||
}
|
||||
|
||||
static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, const uint32_t D, bool f32acc) {
|
||||
static bool ggml_vk_flash_attn_scalar_shmem_support(const vk_device& device, const uint32_t hsk, uint32_t hsv) {
|
||||
// Needs to be kept up to date on shader changes
|
||||
GGML_UNUSED(hsv);
|
||||
const uint32_t wg_size = scalar_flash_attention_workgroup_size;
|
||||
const uint32_t Br = scalar_flash_attention_num_large_rows;
|
||||
const uint32_t Bc = scalar_flash_attention_Bc;
|
||||
|
||||
const uint32_t tmpsh = wg_size * sizeof(float);
|
||||
const uint32_t tmpshv4 = wg_size * 4 * sizeof(float);
|
||||
|
||||
const uint32_t masksh = Bc * Br * sizeof(float);
|
||||
|
||||
const uint32_t Qf = Br * (hsk / 4 + 2) * 4 * sizeof(float);
|
||||
|
||||
const uint32_t total_size = tmpsh + tmpshv4 + masksh + Qf;
|
||||
const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize;
|
||||
|
||||
VK_LOG_DEBUG("ggml_vk_flash_attn_coopmat_shmem_support(HSK=" << hsk << ", HSV=" << hsv << ", total_size=" << total_size << ", supported=" << supported);
|
||||
|
||||
return supported;
|
||||
}
|
||||
|
||||
static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, const uint32_t hsk, uint32_t hsv, bool f32acc) {
|
||||
// Needs to be kept up to date on shader changes
|
||||
GGML_UNUSED(hsv);
|
||||
const uint32_t wg_size = scalar_flash_attention_workgroup_size;
|
||||
const uint32_t Br = coopmat1_flash_attention_num_large_rows;
|
||||
const uint32_t Bc = scalar_flash_attention_Bc;
|
||||
|
||||
const uint32_t acctype = f32acc ? 4 : 2;
|
||||
const uint32_t f16vec4 = 8;
|
||||
|
||||
const uint32_t tmpsh = wg_size * sizeof(float);
|
||||
const uint32_t tmpshv4 = wg_size * 4 * acctype;
|
||||
|
||||
const uint32_t Qf = Br * (D / 4 + 2) * f16vec4;
|
||||
const uint32_t Qf = Br * (hsk / 4 + 2) * f16vec4;
|
||||
|
||||
const uint32_t sfshstride = (D <= 128) ? (Br + 8) : Br;
|
||||
const uint32_t sfshstride = (hsk <= 128) ? (Br + 8) : Br;
|
||||
const uint32_t sfsh = Bc * sfshstride * acctype;
|
||||
|
||||
const uint32_t kshstride = D / 4 + 2;
|
||||
const uint32_t kshstride = hsk / 4 + 2;
|
||||
const uint32_t ksh = Bc * kshstride * f16vec4;
|
||||
|
||||
const uint32_t slope = Br * sizeof(float);
|
||||
|
@ -6027,7 +6084,7 @@ static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, co
|
|||
const uint32_t total_size = tmpsh + tmpshv4 + Qf + sfsh + ksh + slope;
|
||||
const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize;
|
||||
|
||||
VK_LOG_DEBUG("ggml_vk_flash_attn_coopmat_shmem_support(D=" << D << ", f32acc=" << f32acc << ", total_size=" << total_size << ", supported=" << supported);
|
||||
VK_LOG_DEBUG("ggml_vk_flash_attn_coopmat_shmem_support(HSK=" << hsk << ", HSV=" << hsv << ", f32acc=" << f32acc << ", total_size=" << total_size << ", supported=" << supported);
|
||||
|
||||
return supported;
|
||||
}
|
||||
|
@ -6051,11 +6108,12 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
const uint32_t nem1 = mask ? mask->ne[1] : 0;
|
||||
const uint32_t nem2 = mask ? mask->ne[2] : 0;
|
||||
|
||||
const uint32_t D = neq0;
|
||||
const uint32_t HSK = nek0;
|
||||
const uint32_t HSV = nev0;
|
||||
uint32_t N = neq1;
|
||||
const uint32_t KV = nek1;
|
||||
|
||||
GGML_ASSERT(ne0 == D);
|
||||
GGML_ASSERT(ne0 == HSV);
|
||||
GGML_ASSERT(ne2 == N);
|
||||
|
||||
// input tensor rows must be contiguous
|
||||
|
@ -6063,12 +6121,9 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
GGML_ASSERT(nbk0 == ggml_type_size(k->type));
|
||||
GGML_ASSERT(nbv0 == ggml_type_size(v->type));
|
||||
|
||||
GGML_ASSERT(neq0 == D);
|
||||
GGML_ASSERT(nek0 == D);
|
||||
GGML_ASSERT(nev0 == D);
|
||||
GGML_ASSERT(neq0 == HSK);
|
||||
|
||||
GGML_ASSERT(neq1 == N);
|
||||
GGML_ASSERT(nev0 == D);
|
||||
|
||||
GGML_ASSERT(nev1 == nek1);
|
||||
|
||||
|
@ -6089,7 +6144,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
const bool coopmat_shape_supported = (dst->op_params[3] == GGML_PREC_F32 && ctx->device->coopmat_support_16x16x16_f32acc) ||
|
||||
(dst->op_params[3] != GGML_PREC_F32 && ctx->device->coopmat_support_16x16x16_f16acc);
|
||||
|
||||
const bool coopmat_shmem_supported = ggml_vk_flash_attn_coopmat_shmem_support(ctx->device, D, dst->op_params[3] == GGML_PREC_F32);
|
||||
const bool coopmat_shmem_supported = ggml_vk_flash_attn_coopmat_shmem_support(ctx->device, HSK, HSV, dst->op_params[3] == GGML_PREC_F32);
|
||||
|
||||
if (!coopmat_shape_supported || !coopmat_shmem_supported) {
|
||||
path = FA_SCALAR;
|
||||
|
@ -6142,47 +6197,25 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
path = FA_SCALAR;
|
||||
}
|
||||
|
||||
// with large hsk/hsv, scalar path may need to use small_rows to fit in shared memory
|
||||
if (path == FA_SCALAR &&
|
||||
!ggml_vk_flash_attn_scalar_shmem_support(ctx->device, HSK, HSV)) {
|
||||
small_rows = true;
|
||||
}
|
||||
|
||||
bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32;
|
||||
|
||||
FaHeadSizes head_sizes = fa_get_head_sizes(k->ne[0], v->ne[0]);
|
||||
|
||||
switch (path) {
|
||||
case FA_SCALAR:
|
||||
switch (D) {
|
||||
case 64: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D64[k->type][f32acc][small_rows][0]; break;
|
||||
case 80: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D80[k->type][f32acc][small_rows][0]; break;
|
||||
case 96: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D96[k->type][f32acc][small_rows][0]; break;
|
||||
case 112: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D112[k->type][f32acc][small_rows][0]; break;
|
||||
case 128: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D128[k->type][f32acc][small_rows][0]; break;
|
||||
case 256: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D256[k->type][f32acc][small_rows][0]; break;
|
||||
default:
|
||||
GGML_ASSERT(!"unsupported D value");
|
||||
return;
|
||||
}
|
||||
pipelines = &ctx->device->pipeline_flash_attn_f32_f16[k->type][head_sizes][f32acc][small_rows][0];
|
||||
break;
|
||||
case FA_COOPMAT1:
|
||||
switch (D) {
|
||||
case 64: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D64_cm1[k->type][f32acc][small_rows][0]; break;
|
||||
case 80: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D80_cm1[k->type][f32acc][small_rows][0]; break;
|
||||
case 96: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D96_cm1[k->type][f32acc][small_rows][0]; break;
|
||||
case 112: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D112_cm1[k->type][f32acc][small_rows][0]; break;
|
||||
case 128: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D128_cm1[k->type][f32acc][small_rows][0]; break;
|
||||
case 256: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D256_cm1[k->type][f32acc][small_rows][0]; break;
|
||||
default:
|
||||
GGML_ASSERT(!"unsupported D value");
|
||||
return;
|
||||
}
|
||||
pipelines = &ctx->device->pipeline_flash_attn_f32_f16_cm1[k->type][head_sizes][f32acc][small_rows][0];
|
||||
break;
|
||||
case FA_COOPMAT2:
|
||||
switch (D) {
|
||||
case 64: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D64_cm2[k->type][f32acc][small_rows][0]; break;
|
||||
case 80: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D80_cm2[k->type][f32acc][small_rows][0]; break;
|
||||
case 96: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D96_cm2[k->type][f32acc][small_rows][0]; break;
|
||||
case 112: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D112_cm2[k->type][f32acc][small_rows][0]; break;
|
||||
case 128: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D128_cm2[k->type][f32acc][small_rows][0]; break;
|
||||
case 256: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D256_cm2[k->type][f32acc][small_rows][0]; break;
|
||||
default:
|
||||
GGML_ASSERT(!"unsupported D value");
|
||||
return;
|
||||
}
|
||||
pipelines = &ctx->device->pipeline_flash_attn_f32_f16_cm2[k->type][head_sizes][f32acc][small_rows][0];
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(0);
|
||||
|
@ -6212,7 +6245,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
// Try to use split_k when KV is large enough to be worth the overhead
|
||||
if (workgroups_x == 1 && shader_core_count > 0 && KV >= 512) {
|
||||
// Try to run two workgroups per SM.
|
||||
split_k = ctx->device->shader_core_count * 2 / (workgroups_y * workgroups_z);
|
||||
split_k = shader_core_count * 2 / (workgroups_y * workgroups_z);
|
||||
if (split_k > 1) {
|
||||
// Try to evenly split KV into split_k chunks, but it needs to be a multiple
|
||||
// of "align", so recompute split_k based on that.
|
||||
|
@ -6224,7 +6257,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
|
||||
// Reserve space for split_k temporaries. For each split x batch, we need to store the O matrix (D x ne1)
|
||||
// and the per-row m and L values (ne1 rows). We store all the matrices first, followed by the rows.
|
||||
const uint64_t split_k_size = split_k > 1 ? (D * ne1 * sizeof(float) + ne1 * sizeof(float) * 2) * split_k * ne3 : 0;
|
||||
const uint64_t split_k_size = split_k > 1 ? (HSV * ne1 * sizeof(float) + ne1 * sizeof(float) * 2) * split_k * ne3 : 0;
|
||||
if (split_k_size > ctx->device->max_memory_allocation_size) {
|
||||
GGML_ABORT("Requested preallocation size is too large");
|
||||
}
|
||||
|
@ -6342,7 +6375,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
pc, { workgroups_x * pipeline->wg_denoms[0], workgroups_y, workgroups_z });
|
||||
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
const std::array<uint32_t, 4> pc2 = { D, (uint32_t)ne1, (uint32_t)ne3, split_k };
|
||||
const std::array<uint32_t, 4> pc2 = { HSV, (uint32_t)ne1, (uint32_t)ne3, split_k };
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_flash_attn_split_k_reduce,
|
||||
{
|
||||
vk_subbuffer{ctx->prealloc_split_k, 0, VK_WHOLE_SIZE},
|
||||
|
@ -10241,19 +10274,8 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
||||
auto device = ggml_vk_get_device(ctx->device);
|
||||
bool coopmat2 = device->coopmat2;
|
||||
switch (op->src[0]->ne[0]) {
|
||||
case 64:
|
||||
case 80:
|
||||
case 96:
|
||||
case 112:
|
||||
case 128:
|
||||
case 256:
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
|
||||
// different head sizes of K and V are not supported yet
|
||||
FaHeadSizes head_sizes = fa_get_head_sizes(op->src[1]->ne[0], op->src[2]->ne[0]);
|
||||
if (head_sizes == FA_HEAD_SIZE_UNSUPPORTED) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->type != GGML_TYPE_F32) {
|
||||
|
|
|
@ -11,7 +11,8 @@
|
|||
#include "types.comp"
|
||||
#include "flash_attn_base.comp"
|
||||
|
||||
const uint32_t D_per_thread = D / D_split;
|
||||
const uint32_t HSK_per_thread = HSK / D_split;
|
||||
const uint32_t HSV_per_thread = HSV / D_split;
|
||||
|
||||
const uint32_t cols_per_iter = WorkGroupSize / D_split;
|
||||
const uint32_t cols_per_thread = Bc / cols_per_iter;
|
||||
|
@ -29,7 +30,7 @@ layout (binding = 3) readonly buffer M {float16_t data_m[];};
|
|||
// Rows index by Q's dimension 2, and the first N rows are valid.
|
||||
D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TYPE elem, const in uint32_t o_offset, const in uint32_t iq2, const in uint32_t N)
|
||||
{
|
||||
uint32_t offset = (iq2 + r) * D + c;
|
||||
uint32_t offset = (iq2 + r) * HSV + c;
|
||||
data_o[o_offset + offset] = D_TYPE(elem);
|
||||
return elem;
|
||||
}
|
||||
|
@ -38,7 +39,7 @@ shared FLOAT_TYPE tmpsh[WorkGroupSize];
|
|||
shared vec4 tmpshv4[WorkGroupSize];
|
||||
|
||||
shared float masksh[Bc][Br];
|
||||
shared vec4 Qf[Br][D / 4];
|
||||
shared vec4 Qf[Br][HSK / 4];
|
||||
|
||||
void main() {
|
||||
#ifdef NEEDS_INIT_IQ_SHMEM
|
||||
|
@ -53,18 +54,18 @@ void main() {
|
|||
|
||||
uint32_t q_offset = (iq2*p.nb02+iq3*p.nb03) / 4;
|
||||
|
||||
[[unroll]] for (uint32_t idx = 0; idx < Br * D / 4; idx += gl_WorkGroupSize.x) {
|
||||
uint32_t d = (idx + tid) % (D / 4);
|
||||
uint32_t r = (idx + tid) / (D / 4);
|
||||
if (r < Br && d < D / 4 &&
|
||||
[[unroll]] for (uint32_t idx = 0; idx < Br * HSK / 4; idx += gl_WorkGroupSize.x) {
|
||||
uint32_t d = (idx + tid) % (HSK / 4);
|
||||
uint32_t r = (idx + tid) / (HSK / 4);
|
||||
if (r < Br && d < HSK / 4 &&
|
||||
i * Br + r < N) {
|
||||
Qf[r][d] = vec4(data_qv4[q_offset / 4 + (i * Br + r) * q_stride / 4 + d]) * p.scale;
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
|
||||
vec4 Of[Br][D_per_thread / 4];
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
vec4 Of[Br][HSV_per_thread / 4];
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
|
||||
Of[r][d] = vec4(0.0);
|
||||
}
|
||||
|
@ -116,7 +117,7 @@ void main() {
|
|||
|
||||
|
||||
[[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) {
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSK_per_thread / 4; ++d) {
|
||||
#if BLOCK_SIZE > 1
|
||||
uint coord = (j * Bc + c * cols_per_iter + col_tid) * k_stride * BLOCK_SIZE + 4 * (d * D_split + d_tid);
|
||||
uint ib = coord / BLOCK_SIZE;
|
||||
|
@ -195,14 +196,14 @@ void main() {
|
|||
Lf[r] = eMf[r]*Lf[r] + rowsumf[r];
|
||||
}
|
||||
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
|
||||
Of[r][d] = eMf[r] * Of[r][d];
|
||||
}
|
||||
}
|
||||
|
||||
[[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) {
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
#if BLOCK_SIZE > 1
|
||||
uint coord = (j * Bc + c * cols_per_iter + col_tid) * v_stride * BLOCK_SIZE + 4 * (d * D_split + d_tid);
|
||||
uint ib = coord / BLOCK_SIZE;
|
||||
|
@ -259,7 +260,7 @@ void main() {
|
|||
Lf[r] = tmpsh[d_tid];
|
||||
barrier();
|
||||
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
|
||||
Of[r][d] = eMf * Of[r][d];
|
||||
tmpshv4[tid] = Of[r][d];
|
||||
|
@ -281,11 +282,11 @@ void main() {
|
|||
// If there is split_k, then the split_k resolve shader does the final
|
||||
// division by L. Store the intermediate O value and per-row m and L values.
|
||||
if (p.k_num > 1) {
|
||||
uint32_t o_offset = D * p.ne1 * (split_k_index + iq3 * p.k_num);
|
||||
uint32_t o_offset = HSV * p.ne1 * (split_k_index + iq3 * p.k_num);
|
||||
|
||||
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
|
||||
if (r < N) {
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t comp = 0; comp < 4; ++comp) {
|
||||
perElemOpGqaStore(r, 4*(d * D_split + d_tid) + comp, Of[r][d][comp], o_offset, iq2, N);
|
||||
}
|
||||
|
@ -293,7 +294,7 @@ void main() {
|
|||
}
|
||||
}
|
||||
|
||||
o_offset = D * p.ne1 * p.ne3 * p.k_num + p.ne1 * (split_k_index + iq3 * p.k_num) * 2;
|
||||
o_offset = HSV * p.ne1 * p.ne3 * p.k_num + p.ne1 * (split_k_index + iq3 * p.k_num) * 2;
|
||||
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
|
||||
if (r < N) {
|
||||
perElemOpStoreCol0(r, 0u, ACC_TYPE(Lf[r]), o_offset, iq2, N);
|
||||
|
@ -309,18 +310,18 @@ void main() {
|
|||
Lfrcp[r] = 1.0 / Lf[r];
|
||||
}
|
||||
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
|
||||
Of[r][d] *= Lfrcp[r];
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t o_offset = iq3*p.ne2*p.ne1*D;
|
||||
uint32_t o_offset = iq3*p.ne2*p.ne1*HSV;
|
||||
|
||||
if (p.gqa_ratio > 1) {
|
||||
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
|
||||
if (r < N) {
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t comp = 0; comp < 4; ++comp) {
|
||||
perElemOpGqaStore(r, 4*(d * D_split + d_tid) + comp, Of[r][d][comp], o_offset, iq2, N);
|
||||
}
|
||||
|
@ -330,9 +331,9 @@ void main() {
|
|||
} else {
|
||||
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
|
||||
if (i * Br + r < N) {
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t comp = 0; comp < 4; ++comp) {
|
||||
data_o[o_offset + iq2 * D + (i * Br + r) * p.ne1 * D + 4*(d * D_split + d_tid) + comp] = D_TYPE(Of[r][d][comp]);
|
||||
data_o[o_offset + iq2 * HSV + (i * Br + r) * p.ne1 * HSV + 4*(d * D_split + d_tid) + comp] = D_TYPE(Of[r][d][comp]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -4,10 +4,10 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
|||
layout (constant_id = 0) const uint32_t WorkGroupSize = 128;
|
||||
layout (constant_id = 1) const uint32_t Br = 1;
|
||||
layout (constant_id = 2) const uint32_t Bc = 32;
|
||||
layout (constant_id = 3) const uint32_t D = 32;
|
||||
layout (constant_id = 4) const uint32_t Clamp = 0;
|
||||
layout (constant_id = 5) const uint32_t D_split = 16;
|
||||
|
||||
layout (constant_id = 3) const uint32_t HSK = 32;
|
||||
layout (constant_id = 4) const uint32_t HSV = 32;
|
||||
layout (constant_id = 5) const uint32_t Clamp = 0;
|
||||
layout (constant_id = 6) const uint32_t D_split = 16;
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint32_t N;
|
||||
|
|
|
@ -13,7 +13,9 @@
|
|||
#include "types.comp"
|
||||
#include "flash_attn_base.comp"
|
||||
|
||||
const uint32_t D_per_thread = D / D_split;
|
||||
const uint32_t HSK_per_thread = HSK / D_split;
|
||||
const uint32_t HSV_per_thread = HSV / D_split;
|
||||
|
||||
const uint32_t row_split = 4;
|
||||
const uint32_t rows_per_thread = Br / row_split;
|
||||
const uint32_t cols_per_iter = gl_WorkGroupSize.x / D_split / row_split;
|
||||
|
@ -32,7 +34,7 @@ layout (binding = 3) readonly buffer M {float16_t data_m[];};
|
|||
// Rows index by Q's dimension 2, and the first N rows are valid.
|
||||
D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TYPE elem, const in uint32_t o_offset, const in uint32_t iq2, const in uint32_t N)
|
||||
{
|
||||
uint32_t offset = (iq2 + r) * D + c;
|
||||
uint32_t offset = (iq2 + r) * HSV + c;
|
||||
data_o[o_offset + offset] = D_TYPE(elem);
|
||||
return elem;
|
||||
}
|
||||
|
@ -44,14 +46,14 @@ const uint32_t MatBc = 16;
|
|||
shared FLOAT_TYPE tmpsh[gl_WorkGroupSize.x];
|
||||
shared ACC_TYPEV4 tmpshv4[gl_WorkGroupSize.x];
|
||||
|
||||
const uint32_t qstride = D / 4 + 2; // in units of f16vec4
|
||||
const uint32_t qstride = HSK / 4 + 2; // in units of f16vec4
|
||||
shared f16vec4 Qf[Br * qstride];
|
||||
|
||||
// Avoid padding for D==256 to make it fit in 48KB shmem.
|
||||
const uint32_t sfshstride = (D <= 128) ? (Br + 8) : Br;
|
||||
// Avoid padding for hsk==256 to make it fit in 48KB shmem.
|
||||
const uint32_t sfshstride = (HSK <= 128) ? (Br + 8) : Br;
|
||||
shared ACC_TYPE sfsh[Bc * sfshstride];
|
||||
|
||||
const uint32_t kshstride = D / 4 + 2; // in units of f16vec4
|
||||
const uint32_t kshstride = HSK / 4 + 2; // in units of f16vec4
|
||||
shared f16vec4 ksh[Bc * kshstride];
|
||||
|
||||
shared float slope[Br];
|
||||
|
@ -74,18 +76,18 @@ void main() {
|
|||
|
||||
uint32_t q_offset = (iq2*p.nb02+iq3*p.nb03) / 4;
|
||||
|
||||
[[unroll]] for (uint32_t idx = 0; idx < Br * D / 4; idx += gl_WorkGroupSize.x) {
|
||||
uint32_t d = (idx + tid) % (D / 4);
|
||||
uint32_t r = (idx + tid) / (D / 4);
|
||||
if (r < Br && d < D / 4 &&
|
||||
[[unroll]] for (uint32_t idx = 0; idx < Br * HSK / 4; idx += gl_WorkGroupSize.x) {
|
||||
uint32_t d = (idx + tid) % (HSK / 4);
|
||||
uint32_t r = (idx + tid) / (HSK / 4);
|
||||
if (r < Br && d < HSK / 4 &&
|
||||
i * Br + r < N) {
|
||||
Qf[r * qstride + d] = f16vec4(data_qv4[q_offset / 4 + (i * Br + r) * q_stride / 4 + d] * p.scale);
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
|
||||
ACC_TYPEV4 Of[rows_per_thread][D_per_thread / 4];
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
ACC_TYPEV4 Of[rows_per_thread][HSV_per_thread / 4];
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
|
||||
Of[r][d] = ACC_TYPEV4(0.0);
|
||||
}
|
||||
|
@ -131,10 +133,10 @@ void main() {
|
|||
[[dont_unroll]]
|
||||
for (uint32_t j = start_j; j < end_j; ++j) {
|
||||
|
||||
[[unroll]] for (uint32_t idx = 0; idx < Bc * D / 4; idx += gl_WorkGroupSize.x) {
|
||||
uint32_t d = (idx + tid) % (D / 4);
|
||||
uint32_t c = (idx + tid) / (D / 4);
|
||||
if (c < Bc && d < D / 4) {
|
||||
[[unroll]] for (uint32_t idx = 0; idx < Bc * HSK / 4; idx += gl_WorkGroupSize.x) {
|
||||
uint32_t d = (idx + tid) % (HSK / 4);
|
||||
uint32_t c = (idx + tid) / (HSK / 4);
|
||||
if (c < Bc && d < HSK / 4) {
|
||||
#if BLOCK_SIZE > 1
|
||||
uint coord = (j * Bc + c) * k_stride * BLOCK_SIZE + 4 * d;
|
||||
uint ib = coord / BLOCK_SIZE;
|
||||
|
@ -149,14 +151,14 @@ void main() {
|
|||
}
|
||||
barrier();
|
||||
|
||||
// K * Q^T -> S^T: Bc x D * D x Br -> Bc x Br
|
||||
// Bc split across workgroup (four subgroups), loop over D in chunks of 16: 16 x 16 * 16 x 16 -> 16 x 16
|
||||
// K * Q^T -> S^T: Bc x HSK * HSK x Br -> Bc x Br
|
||||
// Bc split across workgroup (four subgroups), loop over HSK in chunks of 16: 16 x 16 * 16 x 16 -> 16 x 16
|
||||
// This is written transposed in order to allow for N being 8 if implementations need it
|
||||
coopmat<ACC_TYPE, gl_ScopeSubgroup, MatBc, MatBr, gl_MatrixUseAccumulator> SfMat = coopmat<ACC_TYPE, gl_ScopeSubgroup, MatBc, MatBr, gl_MatrixUseAccumulator>(0);
|
||||
coopmat<float16_t, gl_ScopeSubgroup, MatBc, 16, gl_MatrixUseA> KMat;
|
||||
coopmat<float16_t, gl_ScopeSubgroup, 16, MatBr, gl_MatrixUseB> QMat;
|
||||
|
||||
for (uint32_t d = 0; d < D / 16; ++d) {
|
||||
for (uint32_t d = 0; d < HSK / 16; ++d) {
|
||||
coopMatLoad(QMat, Qf, d * 16 / 4, qstride, gl_CooperativeMatrixLayoutColumnMajor);
|
||||
|
||||
uint coord = (gl_SubgroupID * MatBc) * kshstride + d * 16 / 4;
|
||||
|
@ -206,7 +208,7 @@ void main() {
|
|||
eMf[r] = exp(Moldf - Mf[r]);
|
||||
}
|
||||
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
|
||||
Of[r][d] = float16_t(eMf[r]) * Of[r][d];
|
||||
}
|
||||
|
@ -221,7 +223,7 @@ void main() {
|
|||
Pf[r] = exp(sfsh[tile_row(r) + (c * cols_per_iter + col_tid) * sfshstride] - Mf[r]);
|
||||
Lf[r] += Pf[r];
|
||||
}
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
#if BLOCK_SIZE > 1
|
||||
uint coord = (j * Bc + c * cols_per_iter + col_tid) * v_stride * BLOCK_SIZE + 4 * (d * D_split + d_tid);
|
||||
uint ib = coord / BLOCK_SIZE;
|
||||
|
@ -284,7 +286,7 @@ void main() {
|
|||
}
|
||||
|
||||
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
|
||||
Of[r][d] = float16_t(eMf[r]) * Of[r][d];
|
||||
tmpshv4[tid] = Of[r][d];
|
||||
|
@ -304,11 +306,11 @@ void main() {
|
|||
// If there is split_k, then the split_k resolve shader does the final
|
||||
// division by L. Store the intermediate O value and per-row m and L values.
|
||||
if (p.k_num > 1) {
|
||||
uint32_t o_offset = D * p.ne1 * (split_k_index + iq3 * p.k_num);
|
||||
uint32_t o_offset = HSV * p.ne1 * (split_k_index + iq3 * p.k_num);
|
||||
|
||||
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
|
||||
if (tile_row(r) < N) {
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t comp = 0; comp < 4; ++comp) {
|
||||
perElemOpGqaStore(tile_row(r), 4*(d * D_split + d_tid) + comp, float(Of[r][d][comp]), o_offset, iq2, N);
|
||||
}
|
||||
|
@ -316,7 +318,7 @@ void main() {
|
|||
}
|
||||
}
|
||||
|
||||
o_offset = D * p.ne1 * p.ne3 * p.k_num + p.ne1 * (split_k_index + iq3 * p.k_num) * 2;
|
||||
o_offset = HSV * p.ne1 * p.ne3 * p.k_num + p.ne1 * (split_k_index + iq3 * p.k_num) * 2;
|
||||
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
|
||||
if (tile_row(r) < N) {
|
||||
perElemOpStoreCol0(tile_row(r), 0u, ACC_TYPE(Lf[r]), o_offset, iq2, N);
|
||||
|
@ -332,18 +334,18 @@ void main() {
|
|||
Lfrcp[r] = 1.0 / Lf[r];
|
||||
}
|
||||
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
|
||||
Of[r][d] *= float16_t(Lfrcp[r]);
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t o_offset = iq3*p.ne2*p.ne1*D;
|
||||
uint32_t o_offset = iq3*p.ne2*p.ne1*HSV;
|
||||
|
||||
if (p.gqa_ratio > 1) {
|
||||
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
|
||||
if (tile_row(r) < N) {
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t comp = 0; comp < 4; ++comp) {
|
||||
perElemOpGqaStore(tile_row(r), 4*(d * D_split + d_tid) + comp, float(Of[r][d][comp]), o_offset, iq2, N);
|
||||
}
|
||||
|
@ -353,9 +355,9 @@ void main() {
|
|||
} else {
|
||||
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
|
||||
if (i * Br + tile_row(r) < N) {
|
||||
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
|
||||
[[unroll]] for (uint32_t comp = 0; comp < 4; ++comp) {
|
||||
data_o[o_offset + iq2 * D + (i * Br + tile_row(r)) * p.ne1 * D + 4*(d * D_split + d_tid) + comp] = D_TYPE(Of[r][d][comp]);
|
||||
data_o[o_offset + iq2 * HSV + (i * Br + tile_row(r)) * p.ne1 * HSV + 4*(d * D_split + d_tid) + comp] = D_TYPE(Of[r][d][comp]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -61,8 +61,8 @@ ACC_TYPE Max(const in uint32_t row, const in uint32_t col, const in ACC_TYPE ele
|
|||
// Rows index by Q's dimension 2, and the first N rows are valid.
|
||||
D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TYPE elem, const in uint32_t o_offset, const in uint32_t iq2, const in uint32_t N)
|
||||
{
|
||||
if (r < N && c < D) {
|
||||
uint32_t offset = (iq2 + r) * D + c;
|
||||
if (r < N && c < HSV) {
|
||||
uint32_t offset = (iq2 + r) * HSV + c;
|
||||
data_o[o_offset + offset] = D_TYPE(elem);
|
||||
}
|
||||
return elem;
|
||||
|
@ -86,9 +86,9 @@ void main() {
|
|||
tensorLayoutV = setTensorLayoutBlockSizeNV(tensorLayoutV, 1, BLOCK_SIZE);
|
||||
#endif
|
||||
|
||||
tensorLayoutQ = setTensorLayoutDimensionNV(tensorLayoutQ, N, D);
|
||||
tensorLayoutK = setTensorLayoutDimensionNV(tensorLayoutK, KV, D);
|
||||
tensorLayoutV = setTensorLayoutDimensionNV(tensorLayoutV, KV, D);
|
||||
tensorLayoutQ = setTensorLayoutDimensionNV(tensorLayoutQ, N, HSK);
|
||||
tensorLayoutK = setTensorLayoutDimensionNV(tensorLayoutK, KV, HSK);
|
||||
tensorLayoutV = setTensorLayoutDimensionNV(tensorLayoutV, KV, HSV);
|
||||
|
||||
// hint to the compiler that strides are aligned for the aligned variant of the shader
|
||||
if (Clamp != gl_CooperativeMatrixClampModeConstantNV)
|
||||
|
@ -104,16 +104,16 @@ void main() {
|
|||
tensorLayoutK = setTensorLayoutStrideNV(tensorLayoutK, k_stride, 1);
|
||||
tensorLayoutV = setTensorLayoutStrideNV(tensorLayoutV, v_stride, 1);
|
||||
|
||||
coopmat<Q_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> Q;
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, Br, D, gl_MatrixUseA> Qf16;
|
||||
coopmat<Q_TYPE, gl_ScopeWorkgroup, Br, HSK, gl_MatrixUseAccumulator> Q;
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK, gl_MatrixUseA> Qf16;
|
||||
|
||||
uint32_t q_offset = iq2*p.nb02+iq3*p.nb03;
|
||||
coopMatLoadTensorNV(Q, data_q, q_offset, sliceTensorLayoutNV(tensorLayoutQ, i * Br, Br, 0, D));
|
||||
coopMatLoadTensorNV(Q, data_q, q_offset, sliceTensorLayoutNV(tensorLayoutQ, i * Br, Br, 0, HSK));
|
||||
|
||||
Qf16 = coopmat<float16_t, gl_ScopeWorkgroup, Br, D, gl_MatrixUseA>(Q);
|
||||
Qf16 = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK, gl_MatrixUseA>(Q);
|
||||
Qf16 *= float16_t(p.scale);
|
||||
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> O = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator>(0);
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> O = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(0);
|
||||
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> L, M;
|
||||
|
||||
|
@ -140,10 +140,10 @@ void main() {
|
|||
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> S = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0);
|
||||
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, D, Bc, gl_MatrixUseB> K_T;
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, HSK, Bc, gl_MatrixUseB> K_T;
|
||||
|
||||
uint32_t k_offset = ik2*p.nb12 + ik3*p.nb13;
|
||||
coopMatLoadTensorNV(K_T, data_k, k_offset, sliceTensorLayoutNV(tensorLayoutK, j * Bc, Bc, 0, D), tensorViewTranspose DECODEFUNC);
|
||||
coopMatLoadTensorNV(K_T, data_k, k_offset, sliceTensorLayoutNV(tensorLayoutK, j * Bc, Bc, 0, HSK), tensorViewTranspose DECODEFUNC);
|
||||
S = coopMatMulAdd(Qf16, K_T, S);
|
||||
|
||||
if (p.logit_softcap != 0.0f) {
|
||||
|
@ -208,42 +208,42 @@ void main() {
|
|||
rowsum = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0.0);
|
||||
rowsum = coopMatMulAdd(P_A, One, rowsum);
|
||||
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, Bc, D, gl_MatrixUseB> V;
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, Bc, HSV, gl_MatrixUseB> V;
|
||||
uint32_t v_offset = iv2*p.nb22 + iv3*p.nb23;
|
||||
coopMatLoadTensorNV(V, data_v, v_offset, sliceTensorLayoutNV(tensorLayoutV, j * Bc, Bc, 0, D) DECODEFUNC);
|
||||
coopMatLoadTensorNV(V, data_v, v_offset, sliceTensorLayoutNV(tensorLayoutV, j * Bc, Bc, 0, HSV) DECODEFUNC);
|
||||
|
||||
L = eM*L + rowsum;
|
||||
|
||||
// This is the "diagonal" matrix in the paper, but since we do componentwise
|
||||
// multiply rather than matrix multiply it has the diagonal element smeared
|
||||
// across the row
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> eMdiag;
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> eMdiag;
|
||||
|
||||
// resize eM by using smear/reduce
|
||||
coopMatReduceNV(eMdiag, eM, gl_CooperativeMatrixReduceRowNV, smearReduce);
|
||||
|
||||
// multiply with fp16 accumulation, then add to O.
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> PV = coopmat<float16_t, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator>(0);
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> PV = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(0);
|
||||
PV = coopMatMulAdd(P_A, V, PV);
|
||||
|
||||
O = eMdiag * O + coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator>(PV);
|
||||
O = eMdiag * O + coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(PV);
|
||||
}
|
||||
|
||||
// If there is split_k, then the split_k resolve shader does the final
|
||||
// division by L. Store the intermediate O value and per-row m and L values.
|
||||
if (p.k_num > 1) {
|
||||
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator>(O);
|
||||
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(O);
|
||||
|
||||
uint32_t o_offset = D * p.ne1 * (split_k_index + iq3 * p.k_num);
|
||||
uint32_t o_offset = HSV * p.ne1 * (split_k_index + iq3 * p.k_num);
|
||||
coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N);
|
||||
|
||||
o_offset = D * p.ne1 * p.ne3 * p.k_num + p.ne1 * (split_k_index + iq3 * p.k_num) * 2;
|
||||
o_offset = HSV * p.ne1 * p.ne3 * p.k_num + p.ne1 * (split_k_index + iq3 * p.k_num) * 2;
|
||||
coopMatPerElementNV(L, L, perElemOpStoreCol0, o_offset, iq2, N);
|
||||
coopMatPerElementNV(M, M, perElemOpStoreCol0, o_offset + p.ne1, iq2, N);
|
||||
return;
|
||||
}
|
||||
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> Ldiag;
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> Ldiag;
|
||||
|
||||
// resize L by using smear/reduce
|
||||
coopMatReduceNV(Ldiag, L, gl_CooperativeMatrixReduceRowNV, smearReduce);
|
||||
|
@ -255,18 +255,18 @@ void main() {
|
|||
|
||||
O = Ldiag*O;
|
||||
|
||||
uint32_t o_offset = iq3*p.ne2*p.ne1*D;
|
||||
uint32_t o_offset = iq3*p.ne2*p.ne1*HSV;
|
||||
|
||||
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator>(O);
|
||||
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(O);
|
||||
if (p.gqa_ratio > 1) {
|
||||
coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N);
|
||||
} else {
|
||||
tensorLayoutNV<3, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutD = createTensorLayoutNV(3, gl_CooperativeMatrixClampModeConstantNV);
|
||||
tensorLayoutD = setTensorLayoutDimensionNV(tensorLayoutD, p.ne2, p.ne1, D);
|
||||
tensorLayoutD = setTensorLayoutDimensionNV(tensorLayoutD, p.ne2, p.ne1, HSV);
|
||||
|
||||
// permute dimensions
|
||||
tensorViewNV<3, false, 1, 0, 2> tensorViewPermute = createTensorViewNV(3, false, 1, 0, 2);
|
||||
|
||||
coopMatStoreTensorNV(O_D, data_o, o_offset, sliceTensorLayoutNV(tensorLayoutD, i * Br, Br, iq2, N, 0, D), tensorViewPermute);
|
||||
coopMatStoreTensorNV(O_D, data_o, o_offset, sliceTensorLayoutNV(tensorLayoutD, i * Br, Br, iq2, N, 0, HSV), tensorViewPermute);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue