llama : support Jamba hybrid Transformer-Mamba models (#7531)
* wip: llama : separate recurrent states from the KV cache This will be necessary to support Jamba (and other recurrent models mixed with Attention). Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states. * llama : use std::find for seq_nodes in llama_rs_cache * llama : state checkpoints for recurrent models * llama : correctly handle more edge cases for the rs cache * llama : rename many llama_kv_cache_* functions * llama : remove useless return value for some llama_cache_* functions * llama : rethink recurrent state cell counts * llama : begin work on support for variable GQA This will also be useful for Jamba if we consider the Mamba layers to have 0 KV heads. * llama : gracefully fail when not finding hybrid slot * llama : support Jamba * llama : fix BERT inference without KV cache * convert-hf : check for unprocessed Jamba experts * convert-hf : support Mini-Jamba conversion * llama : fix Jamba quantization sanity checks * llama : sequence-length-aware batch splitting * llama : use equal-sequence-length sub-batches for recurrent models * ggml : simplify SSM-related operators * llama : make recurrent state slot allocation contiguous * llama : adapt internal uses of batches to llama_ubatch * llama : fix batch split output count for embeddings * llama : minimize swaps when reordering logits This reduces overhead when running hellaswag on thousands of sequences with very small 100k params Mamba models. * llama : fix edge case finding batch seq_id of split recurrent cell This otherwise was a problem when running the HellaSwag benchmark with small batch sizes, making it crash. * llama : avoid copies for simple batch splits * ggml : make ggml_ssm_scan not modify its source tensors * llama : fix shared recurrent tail cell count for small ubatch sizes Otherwise it was impossible to run the 'parallel' example with '-ub 1' with a Mamba or Jamba model. * llama : fix .base() compilation error on Windows * llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL * ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors The implementation already supported it, and this makes Mamba's conv step slightly faster. * mamba : fix non-contiguous usage of ggml_silu * llama : session saving and reloading for hybrid models * convert_hf : fix Jamba conversion * llama : fix mixed signedness comparison * llama : use unused n_embd_k_gqa in k_shift This also slightly reduces the diff from the master branch * llama : begin renaming llama_past back to llama_kv_cache * llama : remove implicit recurrent state rollbacks * llama : partially apply clang-format style * convert : fix jamba conv1d shape squeezing * graph : add back hybrid memory graph input But this time it contains the sub-cache graph inputs. This *should* make it easier to handle updating the inputs when caching the graph (eventually). * model : add Jamba to Mamba-specific hparams printing * jamba : remove redundant nullptr initializations * model : remove unnecessary prefix for tensor loading constants Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * model : use ggml_swiglu_split for Mamba Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * model : make falcon-h1 use shared mamba2 layer builder * memory : avoid referring to KV in recurrent cache logs * gguf-py : avoid adding duplicate tensor mappings for Jamba Some of the tensor names are common with Llama4 --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
parent
98bab638fb
commit
4a5686da22
|
@ -4974,6 +4974,123 @@ class Mamba2Model(TextModel):
|
|||
yield (new_name, data_torch)
|
||||
|
||||
|
||||
@ModelBase.register("JambaForCausalLM")
|
||||
class JambaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.JAMBA
|
||||
|
||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||||
del tokenizer # unused
|
||||
|
||||
return "gpt-2"
|
||||
|
||||
def set_vocab(self):
|
||||
if (self.dir_model / "tokenizer.model").is_file():
|
||||
# Using Jamba's tokenizer.json causes errors on model load
|
||||
# (something about "byte not found in vocab"),
|
||||
# but there's a working tokenizer.model
|
||||
self._set_vocab_sentencepiece()
|
||||
else:
|
||||
# Some Jamba models only have a tokenizer.json, which works.
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
|
||||
d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
|
||||
d_inner = self.hparams["mamba_expand"] * d_model
|
||||
d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
|
||||
# ceiling division
|
||||
# ref: https://stackoverflow.com/a/17511341/22827863
|
||||
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
|
||||
dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
|
||||
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
|
||||
n_kv_head = self.hparams["num_key_value_heads"]
|
||||
attn_offset = self.hparams["attn_layer_offset"]
|
||||
attn_period = self.hparams["attn_layer_period"]
|
||||
n_kv_vec = [0 for _ in range(attn_offset)] + [
|
||||
n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
|
||||
]
|
||||
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
|
||||
self.gguf_writer.add_embedding_length(d_model)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(n_kv_vec)
|
||||
self.gguf_writer.add_ssm_conv_kernel(d_conv)
|
||||
self.gguf_writer.add_ssm_inner_size(d_inner)
|
||||
self.gguf_writer.add_ssm_state_size(d_state)
|
||||
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
|
||||
self.gguf_writer.add_expert_count(self.hparams["num_experts"])
|
||||
self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
|
||||
# Mini-Jamba
|
||||
name = name.replace(".moe.", ".feed_forward.")
|
||||
if bid is not None:
|
||||
moe_offset = self.hparams["expert_layer_offset"]
|
||||
moe_period = self.hparams["expert_layer_period"]
|
||||
|
||||
if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
|
||||
name = name.replace(".experts.0.", ".")
|
||||
|
||||
# process the experts separately
|
||||
if ".feed_forward.experts." in name:
|
||||
n_experts = self.hparams["num_experts"]
|
||||
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
|
||||
# merge the experts into a single 3d tensor
|
||||
for wid in ["down_proj", "gate_proj", "up_proj"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
# using the same merged name as qwen2moe
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
yield new_name, data_torch
|
||||
return
|
||||
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
|
||||
data_torch = data_torch.squeeze()
|
||||
|
||||
if name.endswith(".A_log"):
|
||||
logger.debug("A_log --> A ==> " + new_name)
|
||||
data_torch = -torch.exp(data_torch)
|
||||
|
||||
yield (new_name, data_torch)
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("CohereForCausalLM")
|
||||
class CommandR2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.COMMAND_R
|
||||
|
|
|
@ -330,6 +330,7 @@ class MODEL_ARCH(IntEnum):
|
|||
ARWKV7 = auto()
|
||||
MAMBA = auto()
|
||||
MAMBA2 = auto()
|
||||
JAMBA = auto()
|
||||
XVERSE = auto()
|
||||
COMMAND_R = auto()
|
||||
COHERE2 = auto()
|
||||
|
@ -432,7 +433,10 @@ class MODEL_TENSOR(IntEnum):
|
|||
SSM_CONV1D = auto()
|
||||
SSM_X = auto()
|
||||
SSM_DT = auto()
|
||||
SSM_DT_NORM = auto()
|
||||
SSM_A = auto()
|
||||
SSM_B_NORM = auto()
|
||||
SSM_C_NORM = auto()
|
||||
SSM_D = auto()
|
||||
SSM_NORM = auto()
|
||||
SSM_OUT = auto()
|
||||
|
@ -635,6 +639,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.ARWKV7: "arwkv7",
|
||||
MODEL_ARCH.MAMBA: "mamba",
|
||||
MODEL_ARCH.MAMBA2: "mamba2",
|
||||
MODEL_ARCH.JAMBA: "jamba",
|
||||
MODEL_ARCH.XVERSE: "xverse",
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
MODEL_ARCH.COHERE2: "cohere2",
|
||||
|
@ -738,7 +743,10 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
|
||||
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
|
||||
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
|
||||
MODEL_TENSOR.SSM_DT_NORM: "blk.{bid}.ssm_dt_norm",
|
||||
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
|
||||
MODEL_TENSOR.SSM_B_NORM: "blk.{bid}.ssm_b_norm",
|
||||
MODEL_TENSOR.SSM_C_NORM: "blk.{bid}.ssm_c_norm",
|
||||
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
|
||||
MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm",
|
||||
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
|
||||
|
@ -1738,6 +1746,34 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.SSM_NORM,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
],
|
||||
MODEL_ARCH.JAMBA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.SSM_IN,
|
||||
MODEL_TENSOR.SSM_CONV1D,
|
||||
MODEL_TENSOR.SSM_X,
|
||||
MODEL_TENSOR.SSM_DT,
|
||||
MODEL_TENSOR.SSM_DT_NORM,
|
||||
MODEL_TENSOR.SSM_A,
|
||||
MODEL_TENSOR.SSM_B_NORM,
|
||||
MODEL_TENSOR.SSM_C_NORM,
|
||||
MODEL_TENSOR.SSM_D,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.XVERSE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
|
|
@ -279,6 +279,8 @@ class TensorNameMap:
|
|||
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
|
||||
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
|
||||
"transformer.layers.{bid}.ffn_norm", # openelm
|
||||
"model.layers.{bid}.pre_ff_layernorm", # jamba
|
||||
"model.layers.{bid}.pre_moe_layernorm", # mini-jamba
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama4
|
||||
"transformer_encoder.{bid}.ffn_norm", # neobert
|
||||
),
|
||||
|
@ -303,7 +305,7 @@ class TensorNameMap:
|
|||
"transformer.decoder_layer.{bid}.router", # Grok
|
||||
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
||||
"model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
|
||||
"model.layers.{bid}.feed_forward.router", # llama4
|
||||
"model.layers.{bid}.feed_forward.router", # llama4 jamba
|
||||
"encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
|
||||
"model.layers.{bid}.mlp.gate.wg", # hunyuan
|
||||
),
|
||||
|
@ -347,7 +349,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.residual_mlp.w3", # arctic
|
||||
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
|
||||
"transformer.h.{bid}.mlp.c_fc_1", # exaone
|
||||
"model.layers.{bid}.feed_forward.up_proj", # llama4
|
||||
"model.layers.{bid}.feed_forward.up_proj", # llama4 jamba
|
||||
"transformer_encoder.{bid}.ffn.w12", # neobert
|
||||
),
|
||||
|
||||
|
@ -387,7 +389,7 @@ class TensorNameMap:
|
|||
"transformer.h.{bid}.mlp.linear_1", # refact
|
||||
"model.layers.{bid}.residual_mlp.w1", # arctic
|
||||
"transformer.h.{bid}.mlp.c_fc_0", # exaone
|
||||
"model.layers.{bid}.feed_forward.gate_proj", # llama4
|
||||
"model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
|
@ -433,7 +435,7 @@ class TensorNameMap:
|
|||
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
|
||||
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
|
||||
"model.layers.h.{bid}.mlp.c_proj", # exaone
|
||||
"model.layers.{bid}.feed_forward.down_proj", # llama4
|
||||
"model.layers.{bid}.feed_forward.down_proj", # llama4 jamba
|
||||
"transformer_encoder.{bid}.ffn.w3", # neobert
|
||||
),
|
||||
|
||||
|
@ -554,38 +556,53 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.SSM_IN: (
|
||||
"model.layers.{bid}.in_proj",
|
||||
"backbone.layers.{bid}.mixer.in_proj",
|
||||
"model.layers.{bid}.mamba.in_proj",
|
||||
"model.layers.{bid}.in_proj", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.in_proj", # mamba
|
||||
"model.layers.{bid}.mamba.in_proj", # jamba falcon-h1
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_CONV1D: (
|
||||
"model.layers.{bid}.conv1d",
|
||||
"backbone.layers.{bid}.mixer.conv1d",
|
||||
"model.layers.{bid}.mamba.conv1d",
|
||||
"model.layers.{bid}.conv1d", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.conv1d", # mamba
|
||||
"model.layers.{bid}.mamba.conv1d", # jamba falcon-h1
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_X: (
|
||||
"model.layers.{bid}.x_proj",
|
||||
"backbone.layers.{bid}.mixer.x_proj",
|
||||
"model.layers.{bid}.x_proj", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.x_proj", # mamba
|
||||
"model.layers.{bid}.mamba.x_proj", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT: (
|
||||
"model.layers.{bid}.dt_proj",
|
||||
"backbone.layers.{bid}.mixer.dt_proj",
|
||||
"model.layers.{bid}.mamba.dt_proj",
|
||||
"model.layers.{bid}.dt_proj", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.dt_proj", # mamba
|
||||
"model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT_NORM: (
|
||||
"model.layers.{bid}.mamba.dt_layernorm", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_A: (
|
||||
"model.layers.{bid}.A_log",
|
||||
"backbone.layers.{bid}.mixer.A_log",
|
||||
"model.layers.{bid}.mamba.A_log",
|
||||
"model.layers.{bid}.A_log", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.A_log", # mamba
|
||||
"model.layers.{bid}.mamba.A_log", # jamba falcon-h1
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_B_NORM: (
|
||||
"model.layers.{bid}.mamba.b_layernorm", # jamba
|
||||
"model.layers.{bid}.mamba.B_layernorm", # mini-jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_C_NORM: (
|
||||
"model.layers.{bid}.mamba.c_layernorm", # jamba
|
||||
"model.layers.{bid}.mamba.C_layernorm", # mini-jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_D: (
|
||||
"model.layers.{bid}.D",
|
||||
"backbone.layers.{bid}.mixer.D",
|
||||
"model.layers.{bid}.mamba.D",
|
||||
"model.layers.{bid}.D", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.D", # mamba
|
||||
"model.layers.{bid}.mamba.D", # jamba falcon-h1
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_NORM: (
|
||||
|
@ -594,9 +611,9 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.SSM_OUT: (
|
||||
"model.layers.{bid}.out_proj",
|
||||
"backbone.layers.{bid}.mixer.out_proj",
|
||||
"model.layers.{bid}.mamba.out_proj", # falcon-h1
|
||||
"model.layers.{bid}.out_proj", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.out_proj", # mamba
|
||||
"model.layers.{bid}.mamba.out_proj", # jamba falcon-h1
|
||||
),
|
||||
|
||||
MODEL_TENSOR.TIME_MIX_W0: (
|
||||
|
|
|
@ -46,6 +46,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_MAMBA2, "mamba2" },
|
||||
{ LLM_ARCH_JAMBA, "jamba" },
|
||||
{ LLM_ARCH_FALCON_H1, "falcon-h1" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||||
|
@ -1025,6 +1026,37 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|||
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_JAMBA,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
|
||||
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
|
||||
{ LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
|
||||
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
|
||||
{ LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" },
|
||||
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
|
||||
{ LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" },
|
||||
{ LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" },
|
||||
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
|
||||
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_FALCON_H1,
|
||||
{
|
||||
|
@ -1845,6 +1877,9 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
|||
{LLM_TENSOR_FFN_ACT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_DIV}},
|
||||
{LLM_TENSOR_SSM_CONV1D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
|
||||
{LLM_TENSOR_SSM_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_SCAN}},
|
||||
{LLM_TENSOR_SSM_DT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_SSM_B_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_SSM_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
|
@ -1994,6 +2029,7 @@ bool llm_arch_is_recurrent(const llm_arch & arch) {
|
|||
bool llm_arch_is_hybrid(const llm_arch & arch) {
|
||||
// List all mamba-attention hybrid models here
|
||||
switch (arch) {
|
||||
case LLM_ARCH_JAMBA:
|
||||
case LLM_ARCH_FALCON_H1:
|
||||
return true;
|
||||
default:
|
||||
|
|
|
@ -50,6 +50,7 @@ enum llm_arch {
|
|||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_MAMBA2,
|
||||
LLM_ARCH_JAMBA,
|
||||
LLM_ARCH_FALCON_H1,
|
||||
LLM_ARCH_XVERSE,
|
||||
LLM_ARCH_COMMAND_R,
|
||||
|
@ -296,7 +297,10 @@ enum llm_tensor {
|
|||
LLM_TENSOR_SSM_CONV1D,
|
||||
LLM_TENSOR_SSM_X,
|
||||
LLM_TENSOR_SSM_DT,
|
||||
LLM_TENSOR_SSM_DT_NORM,
|
||||
LLM_TENSOR_SSM_A,
|
||||
LLM_TENSOR_SSM_B_NORM,
|
||||
LLM_TENSOR_SSM_C_NORM,
|
||||
LLM_TENSOR_SSM_D,
|
||||
LLM_TENSOR_SSM_NORM,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
|
|
|
@ -336,22 +336,8 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
|
|||
}
|
||||
|
||||
void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
|
||||
mctx->get_attn()->set_input_k_idxs(self_k_idxs, ubatch);
|
||||
mctx->get_attn()->set_input_v_idxs(self_v_idxs, ubatch);
|
||||
|
||||
mctx->get_attn()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
|
||||
|
||||
const int64_t n_rs = mctx->get_recr()->get_n_rs();
|
||||
|
||||
if (s_copy) {
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
|
||||
int32_t * data = (int32_t *) s_copy->data;
|
||||
|
||||
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
||||
for (uint32_t i = 0; i < n_rs; ++i) {
|
||||
data[i] = mctx->get_recr()->s_copy(i);
|
||||
}
|
||||
}
|
||||
inp_attn->set_input(ubatch);
|
||||
inp_rs->set_input(ubatch);
|
||||
}
|
||||
|
||||
void llm_graph_input_one::set_input(const llama_ubatch * ubatch) {
|
||||
|
@ -992,35 +978,6 @@ ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_t
|
|||
return pos_bias;
|
||||
}
|
||||
|
||||
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
|
||||
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_mem_hybrid>(hparams, cparams, mctx_cur);
|
||||
|
||||
{
|
||||
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Hybrid recurrent is not supported with SWA attention layers");
|
||||
|
||||
const auto n_kv = inp->mctx->get_attn()->get_n_kv();
|
||||
|
||||
inp->self_k_idxs = mctx_cur->get_attn()->build_input_k_idxs(ctx0, ubatch);
|
||||
inp->self_v_idxs = mctx_cur->get_attn()->build_input_v_idxs(ctx0, ubatch);
|
||||
|
||||
inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
|
||||
ggml_set_input(inp->self_kq_mask);
|
||||
|
||||
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
|
||||
}
|
||||
|
||||
{
|
||||
const auto n_rs = mctx_cur->get_recr()->get_n_rs();
|
||||
|
||||
inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
|
||||
ggml_set_input(inp->s_copy);
|
||||
}
|
||||
|
||||
return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_attn_mha(
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * q,
|
||||
|
@ -1194,8 +1151,12 @@ ggml_tensor * llm_graph_context::build_attn(
|
|||
return cur;
|
||||
}
|
||||
|
||||
llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
|
||||
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
|
||||
static std::unique_ptr<llm_graph_input_attn_kv_unified> build_attn_inp_kv_unified_impl(
|
||||
ggml_context * ctx0,
|
||||
const llama_ubatch & ubatch,
|
||||
const llama_hparams & hparams,
|
||||
const llama_cparams & cparams,
|
||||
const llama_kv_cache_unified_context * mctx_cur) {
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, mctx_cur);
|
||||
|
||||
|
@ -1203,6 +1164,7 @@ llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified()
|
|||
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified_iswa for SWA");
|
||||
|
||||
const auto n_kv = mctx_cur->get_n_kv();
|
||||
const auto n_tokens = ubatch.n_tokens;
|
||||
|
||||
inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
|
||||
inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch);
|
||||
|
@ -1213,6 +1175,14 @@ llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified()
|
|||
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
|
||||
}
|
||||
|
||||
return inp;
|
||||
}
|
||||
|
||||
llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
|
||||
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
|
||||
|
||||
auto inp = build_attn_inp_kv_unified_impl(ctx0, ubatch, hparams, cparams, mctx_cur);
|
||||
|
||||
return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
|
||||
}
|
||||
|
||||
|
@ -1234,7 +1204,7 @@ ggml_tensor * llm_graph_context::build_attn(
|
|||
ggml_build_forward_expand(gf, k_cur);
|
||||
ggml_build_forward_expand(gf, v_cur);
|
||||
|
||||
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
|
||||
const auto * mctx_cur = inp->mctx;
|
||||
|
||||
// store to KV cache
|
||||
{
|
||||
|
@ -1293,7 +1263,7 @@ ggml_tensor * llm_graph_context::build_attn(
|
|||
ggml_build_forward_expand(gf, v_cur);
|
||||
}
|
||||
|
||||
const auto * mctx_iswa = static_cast<const llama_kv_cache_unified_iswa_context *>(mctx);
|
||||
const auto * mctx_iswa = inp->mctx;
|
||||
|
||||
const bool is_swa = hparams.is_swa(il);
|
||||
|
||||
|
@ -1391,59 +1361,9 @@ ggml_tensor * llm_graph_context::build_attn(
|
|||
return cur;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_attn(
|
||||
llm_graph_input_mem_hybrid * inp,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * wo,
|
||||
ggml_tensor * wo_b,
|
||||
ggml_tensor * q_cur,
|
||||
ggml_tensor * k_cur,
|
||||
ggml_tensor * v_cur,
|
||||
ggml_tensor * kq_b,
|
||||
ggml_tensor * v_mla,
|
||||
float kq_scale,
|
||||
int il) const {
|
||||
// these nodes are added to the graph together so that they are not reordered
|
||||
// by doing so, the number of splits in the graph is reduced
|
||||
ggml_build_forward_expand(gf, q_cur);
|
||||
ggml_build_forward_expand(gf, k_cur);
|
||||
ggml_build_forward_expand(gf, v_cur);
|
||||
|
||||
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_attn();
|
||||
|
||||
// store to KV cache
|
||||
{
|
||||
const auto & k_idxs = inp->get_k_idxs();
|
||||
const auto & v_idxs = inp->get_v_idxs();
|
||||
|
||||
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
|
||||
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
|
||||
}
|
||||
|
||||
const auto & kq_mask = inp->get_kq_mask();
|
||||
|
||||
ggml_tensor * q = q_cur;
|
||||
ggml_tensor * k = mctx_cur->get_k(ctx0, il);
|
||||
ggml_tensor * v = mctx_cur->get_v(ctx0, il);
|
||||
|
||||
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
|
||||
cb(cur, "kqv_out", il);
|
||||
|
||||
if (wo) {
|
||||
cur = build_lora_mm(wo, cur);
|
||||
if (arch == LLM_ARCH_GLM4) {
|
||||
// GLM4 seems to have numerical issues with half-precision accumulators
|
||||
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
|
||||
}
|
||||
}
|
||||
|
||||
if (wo_b) {
|
||||
cur = ggml_add(ctx0, cur, wo_b);
|
||||
}
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
// TODO: maybe separate the inner implementation into a separate function
|
||||
// like with the non-sliding window equivalent
|
||||
// once sliding-window hybrid caches are a thing.
|
||||
llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const {
|
||||
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_iswa_context *>(mctx);
|
||||
|
||||
|
@ -1513,8 +1433,9 @@ ggml_tensor * llm_graph_context::build_rs(
|
|||
return output_states;
|
||||
}
|
||||
|
||||
llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
|
||||
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
||||
static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
|
||||
ggml_context * ctx0,
|
||||
const llama_memory_recurrent_context * mctx_cur) {
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);
|
||||
|
||||
|
@ -1523,6 +1444,14 @@ llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
|
|||
inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
|
||||
ggml_set_input(inp->s_copy);
|
||||
|
||||
return inp;
|
||||
}
|
||||
|
||||
llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
|
||||
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
||||
|
||||
auto inp = build_rs_inp_impl(ctx0, mctx_cur);
|
||||
|
||||
return (llm_graph_input_rs *) res->add_input(std::move(inp));
|
||||
}
|
||||
|
||||
|
@ -1533,19 +1462,7 @@ ggml_tensor * llm_graph_context::build_rs(
|
|||
int32_t state_size,
|
||||
int32_t n_seqs,
|
||||
const llm_graph_get_rows_fn & get_state_rows) const {
|
||||
const auto * kv_state = static_cast<const llama_memory_recurrent_context *>(mctx);
|
||||
|
||||
return build_rs(gf, s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), get_state_rows);
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_rs(
|
||||
llm_graph_input_mem_hybrid * inp,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * s,
|
||||
int32_t state_size,
|
||||
int32_t n_seqs,
|
||||
const llm_graph_get_rows_fn & get_state_rows) const {
|
||||
const auto * kv_state = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
|
||||
const auto * kv_state = inp->mctx;
|
||||
|
||||
return build_rs(gf, s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), get_state_rows);
|
||||
}
|
||||
|
@ -1592,6 +1509,17 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
|
|||
);
|
||||
}
|
||||
|
||||
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
|
||||
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
|
||||
|
||||
auto inp_rs = build_rs_inp_impl(ctx0, mctx_cur->get_recr());
|
||||
auto inp_attn = build_attn_inp_kv_unified_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);
|
||||
|
||||
return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
|
||||
}
|
||||
|
||||
void llm_graph_context::build_pooling(
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * cls,
|
||||
|
|
|
@ -322,32 +322,21 @@ public:
|
|||
class llm_graph_input_mem_hybrid : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_mem_hybrid(
|
||||
const llama_hparams & hparams,
|
||||
const llama_cparams & cparams,
|
||||
const llama_memory_hybrid_context * mctx) :
|
||||
hparams(hparams),
|
||||
cparams(cparams),
|
||||
mctx(mctx) {
|
||||
}
|
||||
std::unique_ptr<llm_graph_input_attn_kv_unified> inp_attn,
|
||||
std::unique_ptr<llm_graph_input_rs> inp_rs,
|
||||
const llama_memory_hybrid_context * mctx) :
|
||||
inp_attn(std::move(inp_attn)),
|
||||
inp_rs(std::move(inp_rs)),
|
||||
mctx(mctx) { }
|
||||
virtual ~llm_graph_input_mem_hybrid() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * s_copy; // I32 [kv_size]
|
||||
std::unique_ptr<llm_graph_input_attn_kv_unified> inp_attn;
|
||||
std::unique_ptr<llm_graph_input_rs> inp_rs;
|
||||
|
||||
ggml_tensor * get_k_idxs() const { return self_k_idxs; }
|
||||
ggml_tensor * get_v_idxs() const { return self_v_idxs; }
|
||||
|
||||
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
|
||||
|
||||
ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
|
||||
ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch]
|
||||
|
||||
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch, 1, 1]
|
||||
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch, 1, 1]
|
||||
|
||||
const llama_hparams & hparams;
|
||||
const llama_cparams & cparams;
|
||||
llm_graph_input_attn_kv_unified * get_attn() const { return inp_attn.get(); }
|
||||
llm_graph_input_rs * get_recr() const { return inp_rs.get(); }
|
||||
|
||||
const llama_memory_hybrid_context * mctx;
|
||||
};
|
||||
|
@ -579,8 +568,6 @@ struct llm_graph_context {
|
|||
ggml_tensor * build_inp_pos_bucket_dec() const;
|
||||
ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;
|
||||
|
||||
llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
|
||||
|
||||
//
|
||||
// attention
|
||||
//
|
||||
|
@ -656,18 +643,6 @@ struct llm_graph_context {
|
|||
float kq_scale,
|
||||
int il) const;
|
||||
|
||||
ggml_tensor * build_attn(
|
||||
llm_graph_input_mem_hybrid * inp,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * wo,
|
||||
ggml_tensor * wo_b,
|
||||
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
|
||||
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
|
||||
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
|
||||
ggml_tensor * kq_b,
|
||||
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
||||
float kq_scale,
|
||||
int il) const;
|
||||
//
|
||||
// recurrent
|
||||
//
|
||||
|
@ -700,14 +675,6 @@ struct llm_graph_context {
|
|||
int32_t n_seqs,
|
||||
const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
|
||||
|
||||
ggml_tensor * build_rs(
|
||||
llm_graph_input_mem_hybrid * inp,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * s,
|
||||
int32_t state_size,
|
||||
int32_t n_seqs,
|
||||
const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
|
||||
|
||||
ggml_tensor * build_rwkv_token_shift_load(
|
||||
llm_graph_input_rs * inp,
|
||||
ggml_cgraph * gf,
|
||||
|
@ -718,6 +685,11 @@ struct llm_graph_context {
|
|||
ggml_tensor * token_shift,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const;
|
||||
//
|
||||
// hybrid
|
||||
//
|
||||
|
||||
llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
|
||||
|
||||
//
|
||||
// pooling
|
||||
|
|
|
@ -25,9 +25,6 @@ llama_memory_recurrent::llama_memory_recurrent(
|
|||
uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) {
|
||||
const int32_t n_layer = hparams.n_layer;
|
||||
|
||||
LLAMA_LOG_INFO("%s: mem_size = %u, n_seq_max = %u, type_r = '%s', type_s = '%s', n_layer = %d\n",
|
||||
__func__, mem_size, n_seq_max, ggml_type_name(type_r), ggml_type_name(type_s), n_layer);
|
||||
|
||||
head = 0;
|
||||
size = mem_size;
|
||||
used = 0;
|
||||
|
@ -84,7 +81,7 @@ llama_memory_recurrent::llama_memory_recurrent(
|
|||
|
||||
ggml_context * ctx = ctx_for_buft(buft);
|
||||
if (!ctx) {
|
||||
throw std::runtime_error("failed to create ggml context for kv cache");
|
||||
throw std::runtime_error("failed to create ggml context for rs cache");
|
||||
}
|
||||
|
||||
ggml_tensor * r = ggml_new_tensor_1d(ctx, type_r, hparams.n_embd_r()*mem_size);
|
||||
|
@ -102,10 +99,10 @@ llama_memory_recurrent::llama_memory_recurrent(
|
|||
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
if (!buf) {
|
||||
throw std::runtime_error("failed to allocate buffer for kv cache");
|
||||
throw std::runtime_error("failed to allocate buffer for rs cache");
|
||||
}
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("%s: %10s RS buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
||||
bufs.emplace_back(buf);
|
||||
}
|
||||
|
||||
|
@ -113,8 +110,8 @@ llama_memory_recurrent::llama_memory_recurrent(
|
|||
const size_t memory_size_r = size_r_bytes();
|
||||
const size_t memory_size_s = size_s_bytes();
|
||||
|
||||
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, R (%s): %7.2f MiB, S (%s): %7.2f MiB\n", __func__,
|
||||
(float)(memory_size_r + memory_size_s) / (1024.0f * 1024.0f),
|
||||
LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), R (%s): %7.2f MiB, S (%s): %7.2f MiB\n", __func__,
|
||||
(float)(memory_size_r + memory_size_s) / (1024.0f * 1024.0f), mem_size, n_layer, n_seq_max,
|
||||
ggml_type_name(type_r), (float)memory_size_r / (1024.0f * 1024.0f),
|
||||
ggml_type_name(type_s), (float)memory_size_s / (1024.0f * 1024.0f));
|
||||
}
|
||||
|
|
|
@ -1118,6 +1118,26 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_JAMBA:
|
||||
{
|
||||
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
||||
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
||||
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
||||
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
||||
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
|
||||
hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
|
||||
}
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
// TODO: Jamba layers are a bit heterogenous, so naming this is hard.
|
||||
case 12: // 900M 8x???M
|
||||
case 32: // 51B 16x?B
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_XVERSE:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
@ -3231,10 +3251,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
{
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
// if output is NULL, init from the input tok embed, duplicated to allow offloading
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3261,6 +3281,87 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_JAMBA:
|
||||
{
|
||||
const int64_t d_conv = hparams.ssm_d_conv;
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t d_state = hparams.ssm_d_state;
|
||||
const int64_t dt_rank = hparams.ssm_dt_rank;
|
||||
|
||||
// only an expansion factor of 2 is supported for now
|
||||
GGML_ASSERT(2 * n_embd == d_inner);
|
||||
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
// output
|
||||
{
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
// if output is NULL, init from the input tok embed, duplicated to allow offloading
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
const int64_t n_head_kv = hparams.n_head_kv(i);
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
|
||||
|
||||
auto & layer = layers[i];
|
||||
|
||||
// norm
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
if (n_head_kv == 0) {
|
||||
// Mamba layer
|
||||
layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
|
||||
|
||||
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
|
||||
layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
|
||||
|
||||
layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
|
||||
|
||||
layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);
|
||||
|
||||
layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
|
||||
layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
|
||||
|
||||
layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
|
||||
layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);
|
||||
|
||||
// no "weight" suffix for these
|
||||
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
|
||||
layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
|
||||
|
||||
// out_proj
|
||||
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
|
||||
} else {
|
||||
// Attention layers
|
||||
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
||||
}
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
if (layer.ffn_gate_inp) {
|
||||
// MoE
|
||||
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
|
||||
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
|
||||
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
|
||||
} else {
|
||||
// FFN (no MoE)
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_XVERSE:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
@ -4910,16 +5011,6 @@ void llama_model::print_info() const {
|
|||
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
|
||||
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
|
||||
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
|
||||
}
|
||||
|
||||
if (arch == LLM_ARCH_MAMBA || arch == LLM_ARCH_MAMBA2) {
|
||||
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
||||
LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
|
||||
LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
|
||||
LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
|
||||
|
||||
if (!classifier_labels.empty()) {
|
||||
LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
|
||||
|
||||
|
@ -4930,6 +5021,18 @@ void llama_model::print_info() const {
|
|||
}
|
||||
}
|
||||
|
||||
if (arch == LLM_ARCH_MAMBA ||
|
||||
arch == LLM_ARCH_MAMBA2 ||
|
||||
arch == LLM_ARCH_JAMBA ||
|
||||
arch == LLM_ARCH_FALCON_H1) {
|
||||
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
||||
LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
|
||||
LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
|
||||
LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
|
||||
if (pimpl->n_elements >= 1e12) {
|
||||
LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
|
||||
|
@ -9935,62 +10038,8 @@ struct llm_build_starcoder2 : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_mamba : public llm_graph_context {
|
||||
llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
// {n_embd, n_tokens}
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
auto * rs_inp = build_rs_inp();
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
if (model.arch == LLM_ARCH_MAMBA2) {
|
||||
cur = build_mamba2_layer(rs_inp, gf, cur, model, ubatch, il);
|
||||
} else {
|
||||
cur = build_mamba_layer(rs_inp, gf, cur, model, ubatch, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
}
|
||||
|
||||
// residual
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
// final rmsnorm
|
||||
cur = build_norm(inpL,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
struct llm_graph_context_mamba : public llm_graph_context {
|
||||
llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
|
||||
|
||||
ggml_tensor * build_mamba_layer(
|
||||
llm_graph_input_rs * inp,
|
||||
|
@ -9998,11 +10047,14 @@ struct llm_build_mamba : public llm_graph_context {
|
|||
ggml_tensor * cur,
|
||||
const llama_model & model,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
||||
int il) {
|
||||
|
||||
const auto * mctx_cur = inp->mctx;
|
||||
|
||||
const auto kv_head = mctx_cur->get_head();
|
||||
|
||||
const auto & layer = model.layers[il];
|
||||
|
||||
const int64_t d_conv = hparams.ssm_d_conv;
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t d_state = hparams.ssm_d_state;
|
||||
|
@ -10012,8 +10064,6 @@ struct llm_build_mamba : public llm_graph_context {
|
|||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
|
||||
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
|
||||
// Use the same RMS norm as the final layer norm
|
||||
const float norm_rms_eps = hparams.f_norm_rms_eps;
|
||||
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
|
@ -10031,7 +10081,7 @@ struct llm_build_mamba : public llm_graph_context {
|
|||
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
||||
|
||||
// {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
|
||||
ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
|
||||
ggml_tensor * xz = build_lora_mm(layer.ssm_in, cur);
|
||||
// split the above in two
|
||||
// => {d_inner, n_seq_tokens, n_seqs}
|
||||
ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
|
||||
|
@ -10060,10 +10110,10 @@ struct llm_build_mamba : public llm_graph_context {
|
|||
// then permute away the ne[0] dimension,
|
||||
// and then you're left with the resulting x tensor.
|
||||
// For simultaneous sequences, all sequences need to have the same length.
|
||||
x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
|
||||
x = ggml_ssm_conv(ctx0, conv_x, layer.ssm_conv1d);
|
||||
|
||||
// bias
|
||||
x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
|
||||
x = ggml_add(ctx0, x, layer.ssm_conv1d_b);
|
||||
|
||||
x = ggml_silu(ctx0, x);
|
||||
}
|
||||
|
@ -10071,27 +10121,27 @@ struct llm_build_mamba : public llm_graph_context {
|
|||
// ssm
|
||||
{
|
||||
// {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
|
||||
ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
|
||||
ggml_tensor * x_db = build_lora_mm(layer.ssm_x, x);
|
||||
// split
|
||||
ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
|
||||
ggml_tensor * B = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
|
||||
ggml_tensor * C = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
|
||||
|
||||
// Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
|
||||
if (ssm_dt_b_c_rms) {
|
||||
dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
|
||||
B = ggml_rms_norm(ctx0, B, norm_rms_eps);
|
||||
C = ggml_rms_norm(ctx0, C, norm_rms_eps);
|
||||
// Some Mamba variants (e.g. FalconMamba, Jamba) apply RMS norm in B, C & Dt layers
|
||||
if (ssm_dt_b_c_rms || (layer.ssm_dt_norm && layer.ssm_b_norm && layer.ssm_c_norm)) {
|
||||
dt = build_norm(dt, layer.ssm_dt_norm, NULL, LLM_NORM_RMS, il);
|
||||
B = build_norm(B, layer.ssm_b_norm, NULL, LLM_NORM_RMS, il);
|
||||
C = build_norm(C, layer.ssm_c_norm, NULL, LLM_NORM_RMS, il);
|
||||
}
|
||||
|
||||
// {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
|
||||
dt = build_lora_mm(model.layers[il].ssm_dt, dt);
|
||||
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
|
||||
dt = build_lora_mm(layer.ssm_dt, dt);
|
||||
dt = ggml_add(ctx0, dt, layer.ssm_dt_b);
|
||||
|
||||
cur = x;
|
||||
x = ggml_reshape_4d(ctx0, x, head_dim, n_head, n_seq_tokens, n_seqs);
|
||||
|
||||
ggml_tensor * A = model.layers[il].ssm_a;
|
||||
ggml_tensor * A = layer.ssm_a;
|
||||
|
||||
// use the states and the indices provided by build_recurrent_state
|
||||
// (this is necessary in order to properly use the states before they are overwritten,
|
||||
|
@ -10117,16 +10167,15 @@ struct llm_build_mamba : public llm_graph_context {
|
|||
|
||||
// TODO: skip computing output earlier for unused tokens
|
||||
|
||||
y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, model.layers[il].ssm_d));
|
||||
y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
|
||||
y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, layer.ssm_d));
|
||||
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
||||
|
||||
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
||||
cur = build_lora_mm(model.layers[il].ssm_out, y);
|
||||
cur = build_lora_mm(layer.ssm_out, y);
|
||||
}
|
||||
|
||||
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
||||
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
||||
// cb(cur, "mamba_out", il);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
@ -10138,7 +10187,8 @@ struct llm_build_mamba : public llm_graph_context {
|
|||
const llama_model & model,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
||||
|
||||
const auto * mctx_cur = inp->mctx;
|
||||
|
||||
const auto kv_head = mctx_cur->get_head();
|
||||
|
||||
|
@ -10242,11 +10292,14 @@ struct llm_build_mamba : public llm_graph_context {
|
|||
// TODO: skip computing output earlier for unused tokens
|
||||
|
||||
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
|
||||
y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
|
||||
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
||||
|
||||
// grouped RMS norm
|
||||
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
||||
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
||||
if (model.layers[il].ssm_norm) {
|
||||
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
||||
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
||||
}
|
||||
|
||||
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
|
||||
|
||||
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
||||
|
@ -10261,6 +10314,172 @@ struct llm_build_mamba : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_mamba : public llm_graph_context_mamba {
|
||||
llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
// {n_embd, n_tokens}
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
auto * rs_inp = build_rs_inp();
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
if (model.arch == LLM_ARCH_MAMBA2) {
|
||||
cur = build_mamba2_layer(rs_inp, gf, cur, model, ubatch, il);
|
||||
} else {
|
||||
cur = build_mamba_layer(rs_inp, gf, cur, model, ubatch, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
}
|
||||
|
||||
// residual
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
// final rmsnorm
|
||||
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct llm_build_jamba : public llm_graph_context_mamba {
|
||||
llm_build_jamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
// {n_embd, n_tokens}
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
auto * inp_hybrid = build_inp_mem_hybrid();
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||||
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
if (n_head_kv == 0) {
|
||||
cur = build_mamba_layer(inp_hybrid->get_recr(), gf, cur, model, ubatch, il);
|
||||
} else {
|
||||
// Attention
|
||||
|
||||
struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
// No RoPE :)
|
||||
cur = build_attn(inp_hybrid->get_attn(), gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
}
|
||||
|
||||
// residual
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
|
||||
cb(cur, "ffn_inp", il);
|
||||
|
||||
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
// feed-forward network
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
// FFN
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
// MoE branch
|
||||
cur = build_moe_ffn(cur,
|
||||
model.layers[il].ffn_gate_inp,
|
||||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, false,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
}
|
||||
|
||||
// residual
|
||||
cur = ggml_add(ctx0, ffn_inp, cur);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
// final rmsnorm
|
||||
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_command_r : public llm_graph_context {
|
||||
llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
@ -14706,10 +14925,8 @@ struct llm_build_ernie4_5 : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_falcon_h1 : public llm_graph_context {
|
||||
const llama_model & model;
|
||||
|
||||
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
|
||||
struct llm_build_falcon_h1 : public llm_graph_context_mamba {
|
||||
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
ggml_tensor * cur;
|
||||
|
@ -14765,7 +14982,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
|||
cb(Kcur, "Kcur-post-rope", il);
|
||||
cb(Vcur, "Vcur-post-rope", il);
|
||||
|
||||
ggml_tensor * attn_out = build_attn(inp, gf,
|
||||
ggml_tensor * attn_out = build_attn(inp->get_attn(), gf,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
||||
cb(attn_out, "attn_out", il);
|
||||
|
@ -14776,7 +14993,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
|||
// Mamba2 layer
|
||||
cb(cur, "ssm_in", il);
|
||||
|
||||
ggml_tensor * ssm_out = build_mamba2_layer(inp, gf, cur, ubatch, il);
|
||||
ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), gf, cur, model, ubatch, il);
|
||||
cb(ssm_out, "ssm_out", il);
|
||||
|
||||
// // Aggregation
|
||||
|
@ -14832,139 +15049,6 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
|||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
ggml_tensor * build_mamba2_layer(
|
||||
llm_graph_input_mem_hybrid * inp,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * cur,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const auto * kv_state = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
|
||||
|
||||
const auto kv_head = kv_state->get_head();
|
||||
|
||||
const int64_t d_conv = hparams.ssm_d_conv;
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t d_state = hparams.ssm_d_state;
|
||||
const int64_t n_head = hparams.ssm_dt_rank;
|
||||
const int64_t head_dim = d_inner / n_head;
|
||||
const int64_t n_group = hparams.ssm_n_group;
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
GGML_ASSERT(n_seqs != 0);
|
||||
GGML_ASSERT(ubatch.equal_seqs);
|
||||
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
||||
|
||||
ggml_tensor * conv_states_all = kv_state->get_r_l(il);
|
||||
ggml_tensor * ssm_states_all = kv_state->get_s_l(il);
|
||||
|
||||
ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
|
||||
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
|
||||
|
||||
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
|
||||
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
||||
|
||||
// d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
|
||||
|
||||
// {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
|
||||
ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
|
||||
cb(zxBCdt, "zxBCdt", il);
|
||||
|
||||
// split the above in three
|
||||
ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
|
||||
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
|
||||
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
|
||||
|
||||
// conv
|
||||
{
|
||||
// => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
|
||||
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
|
||||
|
||||
// copy last (d_conv - 1) columns back into the state cache
|
||||
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
|
||||
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0, last_conv,
|
||||
ggml_view_1d(ctx0, conv_states_all,
|
||||
(d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
|
||||
kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
|
||||
|
||||
// 1D convolution
|
||||
// The equivalent is to make a self-overlapping view of conv_x
|
||||
// over d_conv columns at each stride in the 3rd dimension,
|
||||
// then element-wise multiply that with the conv1d weight,
|
||||
// then sum the elements of each row,
|
||||
// (the last two steps are a dot product over rows (also doable with mul_mat))
|
||||
// then permute away the ne[0] dimension,
|
||||
// and then you're left with the resulting x tensor.
|
||||
// For simultaneous sequences, all sequences need to have the same length.
|
||||
xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
|
||||
|
||||
// bias
|
||||
xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
|
||||
|
||||
xBC = ggml_silu(ctx0, xBC);
|
||||
}
|
||||
|
||||
// ssm
|
||||
{
|
||||
// These correspond to V K Q in SSM/attention duality
|
||||
ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
|
||||
|
||||
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
|
||||
|
||||
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
|
||||
|
||||
// {n_head, n_seq_tokens, n_seqs}
|
||||
dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
|
||||
|
||||
ggml_tensor * A = model.layers[il].ssm_a;
|
||||
|
||||
// use the states and the indices provided by build_rs
|
||||
// (this is necessary in order to properly use the states before they are overwritten,
|
||||
// while avoiding to make unnecessary copies of the states)
|
||||
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
|
||||
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, kv_state->get_size());
|
||||
|
||||
// TODO: use semistructured matrices to implement state-space duality
|
||||
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
|
||||
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
|
||||
};
|
||||
|
||||
ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
|
||||
|
||||
// store last states
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0,
|
||||
ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
|
||||
ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
|
||||
|
||||
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
|
||||
|
||||
// TODO: skip computing output earlier for unused tokens
|
||||
|
||||
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
|
||||
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
||||
|
||||
// grouped RMS norm
|
||||
if (model.layers[il].ssm_norm) {
|
||||
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
||||
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
||||
}
|
||||
|
||||
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
|
||||
|
||||
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
||||
cur = build_lora_mm(model.layers[il].ssm_out, y);
|
||||
}
|
||||
|
||||
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
||||
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
||||
cb(cur, "mamba_out", il);
|
||||
return cur;
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_arcee : public llm_graph_context {
|
||||
|
@ -15641,6 +15725,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
|||
{
|
||||
llm = std::make_unique<llm_build_mamba>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_JAMBA:
|
||||
{
|
||||
llm = std::make_unique<llm_build_jamba>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_XVERSE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_xverse>(*this, params, gf);
|
||||
|
@ -15911,6 +15999,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
case LLM_ARCH_BLOOM:
|
||||
case LLM_ARCH_MAMBA:
|
||||
case LLM_ARCH_MAMBA2:
|
||||
case LLM_ARCH_JAMBA:
|
||||
case LLM_ARCH_JINA_BERT_V2:
|
||||
case LLM_ARCH_T5:
|
||||
case LLM_ARCH_T5ENCODER:
|
||||
|
|
|
@ -174,6 +174,9 @@ struct llama_layer {
|
|||
struct ggml_tensor * attn_norm_cross = nullptr;
|
||||
struct ggml_tensor * attn_norm_enc = nullptr;
|
||||
struct ggml_tensor * ssm_norm = nullptr;
|
||||
struct ggml_tensor * ssm_dt_norm = nullptr;
|
||||
struct ggml_tensor * ssm_b_norm = nullptr;
|
||||
struct ggml_tensor * ssm_c_norm = nullptr;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * wq = nullptr;
|
||||
|
|
Loading…
Reference in New Issue