HIP: Enable Matrix cores for MMQ Kernels, Enable stream-K for CDNA 3 (#14624)

This commit adds support for MFMA instructions to MMQ. CDNA1/GFX908 CDNA2/GFX90a and CDNA3/GFX942 are supported by the MFMA-enabled code path added by this commit. The code path and stream-k is only enabled on CDNA3 for now as it fails to outperform blas in all cases on the other devices.
Blas is currently only consistently outperformed on CDNA3 due to issues in the amd-provided blas libraries.
This commit also improves the awareness of MMQ towards different warp sizes and as a side effect improves the performance of all quant formats besides q4_0 and q4_1, which regress slightly, on GCN gpus.
This commit is contained in:
deepsek 2025-07-26 18:28:14 -04:00 committed by GitHub
parent 11dd5a44eb
commit 66906cd82a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 1305 additions and 710 deletions

View File

@ -1,8 +1,8 @@
ARG UBUNTU_VERSION=24.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=6.3
ARG AMDGPU_VERSION=6.3
ARG ROCM_VERSION=6.4
ARG AMDGPU_VERSION=6.4
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete

View File

@ -56,7 +56,7 @@
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 0x803) // Tonga, Fiji, Polaris, minimum for fast fp16
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 0x900) // Vega56/64, minimum for fp16 dual issue
#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 0x906) // MI50/Radeon VII, minimum for dp4a
#define GGML_CUDA_CC_CDNA (GGML_CUDA_CC_OFFSET_AMD + 0x908) // MI100, minimum for MFMA, acc registers
#define GGML_CUDA_CC_CDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x908) // MI100, minimum for MFMA, acc registers
#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x910) // MI210, minimum acc register renameing
#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x942) // MI300
@ -72,8 +72,9 @@
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA1)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA1 && cc < GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_CDNA3(cc) (cc >= GGML_CUDA_CC_CDNA3 && cc < GGML_CUDA_CC_RDNA1)
// Moore Threads
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
@ -226,6 +227,10 @@ typedef float2 dfloat2;
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && defined(CDNA3)
#define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && defined(CDNA3)
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define NEW_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
@ -288,6 +293,11 @@ static bool fp32_mma_hardware_available(const int cc) {
return GGML_CUDA_CC_IS_CDNA(cc);
}
// AMD CDNA3 matrix cores.. Will add support for other CDNA generations later.
static bool amd_mfma_available(const int cc) {
return cc >= GGML_CUDA_CC_OFFSET_AMD && GGML_CUDA_CC_IS_CDNA3(cc);
}
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
static bool new_mma_available(const int cc) {
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;

View File

@ -12,7 +12,8 @@
// The methods get_i and get_j can be used to get the physical 32 bit index of the lth element of a thread within a tile.
// All matrix tiles have ne physical 32 bit elements per warp.
//
// As described in the documentation, all pointers for load_ldmatrix must be to shared memory and aligned to 16 bytes.
// As described in the PTX documentation, all pointers for load_ldmatrix must be to shared memory and aligned to 16 bytes.
// The API in this file also assumes that the pointers for load_generic are aligned to 16 bytes, unaligned pointers are considered undefined behavior.
#include "common.cuh"
@ -66,7 +67,44 @@ namespace ggml_cuda_mma {
struct tile {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr int ne = I * J / WARP_SIZE;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
static constexpr int ne = I * J / 64;
T x[ne] = {0};
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 64 && J == 2) { // Special tile size to load <16, 4> as <16, 8>
return threadIdx.x % 16;
} else if constexpr (I == 16 && J == 8) {
return threadIdx.x % 16;
} else if constexpr (I == 32 && J == 4) {
return threadIdx.x % 32;
} else if constexpr (I == 16 && J == 16) {
return 4 * (threadIdx.x / 16) + l;
} else if constexpr (I == 32 && J == 32) {
return 4 * (threadIdx.x / 32) + 8 * (l / 4) + (l % 4);
} else {
static_assert(I == -1 && J == -1, "template specialization not implemented");
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 64 && J == 2) { // Special tile size to load <16, 4> as <16, 8>
return (2 * ((threadIdx.x / 16) % 2) + l);
} else if constexpr (I == 16 && J == 8) {
return 2 * (threadIdx.x / 16) + l;
} else if constexpr (I == 32 && J == 4) {
return 2 * (threadIdx.x / 32) + l;
} else if constexpr (I == 16 && J == 16) {
return threadIdx.x % 16;
} else if constexpr (I == 32 && J == 32) {
return threadIdx.x % 32;
} else {
static_assert(I == -1 && J == -1, "template specialization not implemented");
}
}
#else
static constexpr int ne = I * J / 32;
T x[ne] = {0};
static __device__ __forceinline__ int get_i(const int l) {
@ -94,6 +132,7 @@ namespace ggml_cuda_mma {
static_assert(I == -1 && J == -1, "template specialization not implemented");
}
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
};
template <int I_, int J_>
@ -148,10 +187,23 @@ namespace ggml_cuda_mma {
template <int I, int J, typename T>
static __device__ __forceinline__ void load_generic(tile<I, J, T> & t, const T * __restrict__ xs0, const int stride) {
#if defined(AMD_MFMA_AVAILABLE)
if constexpr (I == 64 && J == 2) { // Special tile size to load <16, 4> as <16, 8>
#pragma unroll
for (int l = 0; l < t.ne; ++l) {
t.x[l] = xs0[t.get_i(l)*stride + t.get_j(l)];
}
} else {
int64_t * xi = (int64_t *) t.x;
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 2 * (threadIdx.x / t.I));
xi[0] = xs[0];
}
#else
#pragma unroll
for (int l = 0; l < t.ne; ++l) {
t.x[l] = xs0[t.get_i(l)*stride + t.get_j(l)];
}
#endif // defined(AMD_MFMA_AVAILABLE)
}
template <typename T>
@ -186,7 +238,7 @@ namespace ggml_cuda_mma {
template <typename T>
static __device__ __forceinline__ void load_ldmatrix(
tile<16, 8, T> & t, const T * __restrict__ xs0, const int stride) {
#ifdef NEW_MMA_AVAILABLE
#if defined(NEW_MMA_AVAILABLE)
int * xi = (int * ) t.x;
const int * xs = (const int *) xs0 + (threadIdx.x % t.I) * stride + (threadIdx.x / t.I) * (t.J / 2);
asm volatile("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
@ -393,4 +445,60 @@ namespace ggml_cuda_mma {
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<16, 16, int> & D, const tile<16, 8, int> & A, const tile<16, 8, int> & B) {
#if defined(AMD_MFMA_AVAILABLE)
using int32x4_t = __attribute__((__vector_size__(4 * sizeof(int)))) int;
int32x4_t * acc = (int32x4_t *) D.x;
#if defined(CDNA3)
acc[0] = __builtin_amdgcn_mfma_i32_16x16x32_i8(((int64_t *) A.x)[0],
((int64_t *) B.x)[0],
acc[0],
0, 0, 0);
#elif defined(CDNA2) || defined(CDNA)
acc[0] = __builtin_amdgcn_mfma_i32_16x16x16i8(A.x[0],
B.x[0],
acc[0],
0, 0, 0);
acc[0] = __builtin_amdgcn_mfma_i32_16x16x16i8(A.x[1],
B.x[1],
acc[0],
0, 0, 0);
#endif // defined(CDNA3)
#else
GGML_UNUSED(D);
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // AMD_MFMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<32, 32, int> & D, const tile<32, 4, int> & A, const tile<32, 4, int> & B) {
#if defined(AMD_MFMA_AVAILABLE)
using int32x16_t = __attribute__((__vector_size__(16 * sizeof(int)))) int;
int32x16_t * acc = (int32x16_t *) D.x;
#if defined(CDNA3)
acc[0] = __builtin_amdgcn_mfma_i32_32x32x16_i8(((int64_t *) A.x)[0],
((int64_t *) B.x)[0],
acc[0],
0, 0, 0);
#elif defined(CDNA2) || defined(CDNA)
acc[0] = __builtin_amdgcn_mfma_i32_32x32x8i8(A.x[0],
B.x[0],
acc[0],
0, 0, 0);
acc[0] = __builtin_amdgcn_mfma_i32_32x32x8i8(A.x[1],
B.x[1],
acc[0],
0, 0, 0);
#endif // defined(CDNA3)
#else
GGML_UNUSED(D);
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // AMD_MFMA_AVAILABLE
}
}

View File

@ -109,7 +109,8 @@ void ggml_cuda_mul_mat_q(
const int64_t s03 = src0->nb[3] / ts_src0;
const int64_t s3 = dst->nb[3] / ts_dst;
const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA;
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc)));
if (!ids) {
const size_t nbytes_src1_q8_1 = ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1 +
@ -250,8 +251,9 @@ void ggml_cuda_op_mul_mat_q(
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
// Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) &&
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc)))
&& src1_ncols == ne11;
const mmq_args args = {
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst,
@ -304,7 +306,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return false;
}
if (new_mma_available(cc)) {
if (new_mma_available(cc) || amd_mfma_available(cc)) {
return true;
}

File diff suppressed because it is too large Load Diff

View File

@ -160,7 +160,19 @@
#endif
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx942__)
#define CDNA
#define CDNA // For the entire family
#endif
#if defined(__gfx942__)
#define CDNA3
#endif
#if defined(__gfx90a__)
#define CDNA2
#endif
#if defined(__gfx908__)
#define CDNA1
#endif
#if defined(__GFX12__)