model : add support for SmallThinker series (#14898)
* support smallthinker * support 20b softmax, 4b no sliding window * new build_moe_ffn_from_probs, and can run 4b * fix 4b rope bug * fix python type check * remove is_moe judge * remove set_dense_start_swa_pattern function and modify set_swa_pattern function * trim trailing whitespace * remove get_vocab_base of SmallThinkerModel in convert_hf_to_gguf.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * better whitespace Apply suggestions from code review Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * use GGML_ASSERT for expert count validation Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Improve null pointer check for probs Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * use template parameter for SWA attention logic * better whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * move the creation of inp_out_ids before the layer loop * remove redundant judge for probs --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
afc0e89698
commit
6c6e397aff
|
@ -7589,6 +7589,88 @@ class LFM2Model(TextModel):
|
|||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("SmallThinkerForCausalLM")
|
||||
class SmallThinkerModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.SMALLTHINKER
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
|
||||
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
|
||||
self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
|
||||
logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
|
||||
if (self.hparams.get('moe_primary_router_apply_softmax')):
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
|
||||
else:
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
|
||||
# YaRN is not enabled by default
|
||||
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
|
||||
sliding_window_layout = self.hparams.get("sliding_window_layout")
|
||||
if sliding_window_layout:
|
||||
for i in sliding_window_layout:
|
||||
if i != 0:
|
||||
sliding_window = self.hparams.get("sliding_window_size")
|
||||
if sliding_window:
|
||||
self.gguf_writer.add_sliding_window(sliding_window)
|
||||
break
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# process the experts separately
|
||||
if name.find("experts") != -1:
|
||||
n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
# merge the experts into a single 3d tensor
|
||||
for w_name in ["down", "gate", "up"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
tensors.append((new_name, data_torch))
|
||||
return tensors
|
||||
else:
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
|
|
@ -376,6 +376,7 @@ class MODEL_ARCH(IntEnum):
|
|||
SMOLLM3 = auto()
|
||||
LFM2 = auto()
|
||||
DREAM = auto()
|
||||
SMALLTHINKER = auto()
|
||||
|
||||
|
||||
class VISION_PROJECTOR_TYPE(IntEnum):
|
||||
|
@ -695,6 +696,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.SMOLLM3: "smollm3",
|
||||
MODEL_ARCH.LFM2: "lfm2",
|
||||
MODEL_ARCH.DREAM: "dream",
|
||||
MODEL_ARCH.SMALLTHINKER: "smallthinker",
|
||||
}
|
||||
|
||||
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
|
||||
|
@ -2483,6 +2485,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
],
|
||||
MODEL_ARCH.SMALLTHINKER: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
|
|
@ -317,6 +317,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.feed_forward.router", # llama4 jamba
|
||||
"encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
|
||||
"model.layers.{bid}.mlp.gate.wg", # hunyuan
|
||||
"model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
||||
|
@ -362,6 +363,7 @@ class TensorNameMap:
|
|||
"transformer.h.{bid}.mlp.c_fc_1", # exaone
|
||||
"model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
|
||||
"transformer_encoder.{bid}.ffn.w12", # neobert
|
||||
"model.layers.{bid}.block_sparse_moe.up", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
|
@ -372,6 +374,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
|
||||
"model.layers.{bid}.feed_forward.experts.up_proj", # llama4
|
||||
"encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
|
||||
"model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_SHEXP: (
|
||||
|
@ -401,6 +404,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.residual_mlp.w1", # arctic
|
||||
"transformer.h.{bid}.mlp.c_fc_0", # exaone
|
||||
"model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
|
@ -410,6 +414,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
|
||||
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
|
||||
"model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
|
||||
"model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
||||
|
@ -448,6 +453,7 @@ class TensorNameMap:
|
|||
"model.layers.h.{bid}.mlp.c_proj", # exaone
|
||||
"model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
|
||||
"transformer_encoder.{bid}.ffn.w3", # neobert
|
||||
"model.layers.{bid}.block_sparse_moe.down", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
|
@ -459,6 +465,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
|
||||
"model.layers.{bid}.feed_forward.experts.down_proj", # llama4
|
||||
"encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
|
||||
"model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
||||
|
|
|
@ -88,6 +88,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_SMOLLM3, "smollm3" },
|
||||
{ LLM_ARCH_LFM2, "lfm2" },
|
||||
{ LLM_ARCH_DREAM, "dream" },
|
||||
{ LLM_ARCH_SMALLTHINKER, "smallthinker" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
|
@ -1933,6 +1934,27 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||||
}
|
||||
},
|
||||
{
|
||||
LLM_ARCH_SMALLTHINKER,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_DREAM,
|
||||
{
|
||||
|
|
|
@ -92,6 +92,7 @@ enum llm_arch {
|
|||
LLM_ARCH_SMOLLM3,
|
||||
LLM_ARCH_LFM2,
|
||||
LLM_ARCH_DREAM,
|
||||
LLM_ARCH_SMALLTHINKER,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
|
@ -938,6 +938,100 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
|||
return moe_out;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_moe_ffn_from_probs(
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * probs,
|
||||
ggml_tensor * up_exps,
|
||||
ggml_tensor * gate_exps,
|
||||
ggml_tensor * down_exps,
|
||||
ggml_tensor * exp_probs_b,
|
||||
int64_t n_expert,
|
||||
int64_t n_expert_used,
|
||||
llama_expert_gating_func_type gating_op,
|
||||
int il) const {
|
||||
const int64_t n_embd = cur->ne[0];
|
||||
const int64_t n_tokens = cur->ne[1];
|
||||
|
||||
// add experts selection bias - introduced in DeepSeek V3
|
||||
// leave probs unbiased as it's later used to get expert weights
|
||||
ggml_tensor * selection_probs = probs;
|
||||
if (exp_probs_b != nullptr) {
|
||||
selection_probs = ggml_add(ctx0, probs, exp_probs_b);
|
||||
cb(selection_probs, "ffn_moe_probs_biased", il);
|
||||
}
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
cb(selected_experts, "ffn_moe_topk", il);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
|
||||
cb(weights, "ffn_moe_weights", il);
|
||||
|
||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
|
||||
if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX) {
|
||||
weights = ggml_soft_max(ctx0, weights);
|
||||
} else {
|
||||
weights = ggml_sigmoid(ctx0, weights);
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
}
|
||||
|
||||
weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
|
||||
|
||||
cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
|
||||
|
||||
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
||||
cb(up, "ffn_moe_up", il);
|
||||
|
||||
ggml_tensor * experts = nullptr;
|
||||
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
||||
cb(cur, "ffn_moe_gate", il);
|
||||
|
||||
cur = ggml_reglu_split(ctx0, cur, up);
|
||||
cb(cur, "ffn_moe_reglu", il);
|
||||
|
||||
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
|
||||
cb(experts, "ffn_moe_down", il);
|
||||
|
||||
experts = ggml_mul(ctx0, experts, weights);
|
||||
cb(cur, "ffn_moe_weighted", il);
|
||||
|
||||
ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
|
||||
|
||||
assert(n_expert_used > 0);
|
||||
|
||||
// order the views before the adds
|
||||
for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
|
||||
cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);
|
||||
|
||||
ggml_build_forward_expand(gf, cur_experts[i]);
|
||||
}
|
||||
|
||||
// aggregate experts
|
||||
// note: here we explicitly use hparams.n_expert_used instead of n_expert_used
|
||||
// to avoid potentially a large number of add nodes during warmup
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14753
|
||||
ggml_tensor * moe_out = cur_experts[0];
|
||||
|
||||
for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
|
||||
moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
|
||||
}
|
||||
|
||||
if (n_expert_used == 1) {
|
||||
// avoid returning a non-contiguous tensor
|
||||
moe_out = ggml_cont(ctx0, moe_out);
|
||||
}
|
||||
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
||||
return moe_out;
|
||||
}
|
||||
|
||||
// input embeddings with optional lora
|
||||
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
|
|
@ -625,6 +625,18 @@ struct llm_graph_context {
|
|||
llama_expert_gating_func_type gating_op,
|
||||
int il) const;
|
||||
|
||||
ggml_tensor * build_moe_ffn_from_probs(
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * probs,
|
||||
ggml_tensor * up_exps,
|
||||
ggml_tensor * gate_exps,
|
||||
ggml_tensor * down_exps,
|
||||
ggml_tensor * exp_probs_b,
|
||||
int64_t n_expert,
|
||||
int64_t n_expert_used,
|
||||
llama_expert_gating_func_type gating_op,
|
||||
int il) const;
|
||||
|
||||
//
|
||||
// inputs
|
||||
//
|
||||
|
|
|
@ -2,9 +2,15 @@
|
|||
|
||||
#include "ggml.h"
|
||||
|
||||
void llama_hparams::set_swa_pattern(uint32_t n_pattern) {
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
swa_layers[il] = n_pattern == 0 || (il % n_pattern < (n_pattern - 1));
|
||||
void llama_hparams::set_swa_pattern(uint32_t n_pattern, bool dense_first) {
|
||||
if (dense_first) {
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
swa_layers[il] = n_pattern == 0 || (il % n_pattern != 0);
|
||||
}
|
||||
} else {
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
swa_layers[il] = n_pattern == 0 || (il % n_pattern < (n_pattern - 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -140,7 +140,7 @@ struct llama_hparams {
|
|||
// for Classifiers
|
||||
uint32_t n_cls_out = 1;
|
||||
|
||||
// llama4
|
||||
// llama4 smallthinker
|
||||
uint32_t n_moe_layer_step = 0;
|
||||
uint32_t n_no_rope_layer_step = 4;
|
||||
uint32_t n_attn_temp_floor_scale = 8192;
|
||||
|
@ -161,9 +161,10 @@ struct llama_hparams {
|
|||
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
||||
|
||||
// this value n_pattern means that every nth layer is dense (i.e. non-SWA)
|
||||
// dense_first means whether the pattern is start with a dense layer
|
||||
// note that if n_pattern == 0, all layers are SWA
|
||||
// if n_pattern == 1, all layers are dense
|
||||
// example: n_pattern = 3
|
||||
// example 1: n_pattern = 3, dense_first = false
|
||||
// il == 0: swa
|
||||
// il == 1: swa
|
||||
// il == 2: dense
|
||||
|
@ -172,7 +173,13 @@ struct llama_hparams {
|
|||
// il == 5: dense
|
||||
// il == 6: swa
|
||||
// etc ...
|
||||
void set_swa_pattern(uint32_t n_pattern);
|
||||
// example 2: n_pattern = 2, dense_first = true
|
||||
// il == 0: dense
|
||||
// il == 1: swa
|
||||
// il == 2: dense
|
||||
// il == 3: swa
|
||||
// etc ...
|
||||
void set_swa_pattern(uint32_t n_pattern, bool dense_first = false);
|
||||
|
||||
// return true if one of the layers is SWA
|
||||
bool is_swa_any() const;
|
||||
|
|
|
@ -1768,6 +1768,29 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_SMALLTHINKER:
|
||||
{
|
||||
const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||
|
||||
if (found_swa && hparams.n_swa > 0) {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.n_swa = 4096;
|
||||
hparams.set_swa_pattern(4, true);
|
||||
} else {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
hparams.n_no_rope_layer_step = hparams.n_layer;
|
||||
}
|
||||
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 32: type = LLM_TYPE_4B; break;
|
||||
case 52: type = LLM_TYPE_20B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
default: throw std::runtime_error("unsupported model architecture");
|
||||
}
|
||||
|
||||
|
@ -5165,6 +5188,42 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_SMALLTHINKER:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for SMALLTHINKER");
|
||||
GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for SMALLTHINKER");
|
||||
|
||||
// MoE branch
|
||||
const int64_t n_ff_exp = hparams.n_ff_exp;
|
||||
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
|
||||
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
|
||||
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
|
||||
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
|
@ -5490,6 +5549,11 @@ void llama_model::print_info() const {
|
|||
LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
|
||||
}
|
||||
|
||||
if (arch == LLM_ARCH_SMALLTHINKER) {
|
||||
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
||||
LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
|
||||
}
|
||||
|
||||
vocab.print_info();
|
||||
}
|
||||
|
||||
|
@ -17011,6 +17075,119 @@ struct llm_build_lfm2 : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
template <bool iswa>
|
||||
struct llm_build_smallthinker : public llm_graph_context{
|
||||
llm_build_smallthinker(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params){
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_unified_iswa, llm_graph_input_attn_kv_unified>;
|
||||
inp_attn_type * inp_attn = nullptr;
|
||||
|
||||
if constexpr (iswa) {
|
||||
inp_attn = build_attn_inp_kv_unified_iswa();
|
||||
} else {
|
||||
inp_attn = build_attn_inp_kv_unified();
|
||||
}
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
ggml_tensor * probs = nullptr;
|
||||
|
||||
probs = build_lora_mm(model.layers[il].ffn_gate_inp, inpL); // [n_expert, n_tokens]
|
||||
cb(probs, "ffn_moe_logits", il);
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self_attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
if (hparams.n_no_rope_layer_step == n_layer || il % hparams.n_no_rope_layer_step != 0) {
|
||||
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
}
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = build_attn(inp_attn,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
probs = ggml_get_rows(ctx0, probs, inp_out_ids);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// MoE branch
|
||||
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
ggml_tensor * ffn_out = build_moe_ffn_from_probs(cur, probs, model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
|
||||
nullptr, n_expert, n_expert_used,
|
||||
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func), il);
|
||||
|
||||
cb(ffn_out, "ffn_out", il);
|
||||
cur = ffn_out;
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
|
||||
llama_memory_i * res;
|
||||
|
||||
|
@ -17449,6 +17626,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
{
|
||||
llm = std::make_unique<llm_build_lfm2>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_SMALLTHINKER:
|
||||
{
|
||||
if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
|
||||
llm = std::make_unique<llm_build_smallthinker<true>> (*this, params);
|
||||
} else {
|
||||
llm = std::make_unique<llm_build_smallthinker<false>>(*this, params);
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
@ -17647,6 +17832,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
case LLM_ARCH_DOTS1:
|
||||
case LLM_ARCH_HUNYUAN_MOE:
|
||||
case LLM_ARCH_LFM2:
|
||||
case LLM_ARCH_SMALLTHINKER:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
|
|
Loading…
Reference in New Issue