vulkan : implement bilinear interpolation (ggml/1291)

ggml-ci
This commit is contained in:
Acly 2025-07-12 12:37:37 +03:00 committed by Georgi Gerganov
parent 3e303b1107
commit 74bb294591
2 changed files with 96 additions and 15 deletions

View File

@ -425,7 +425,7 @@ struct vk_device_struct {
vk_pipeline pipeline_div_norepeat[2][2][2]; vk_pipeline pipeline_div_norepeat[2][2][2];
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32; vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
vk_pipeline pipeline_upscale_f32; vk_pipeline pipeline_upscale_nearest_f32, pipeline_upscale_bilinear_f32, pipeline_upscale_bilinear_ac_f32;
vk_pipeline pipeline_scale_f32; vk_pipeline pipeline_scale_f32;
vk_pipeline pipeline_sqr_f32; vk_pipeline pipeline_sqr_f32;
vk_pipeline pipeline_sin_f32; vk_pipeline pipeline_sin_f32;
@ -895,6 +895,7 @@ struct vk_op_conv2d_dw_push_constants {
struct vk_op_upscale_push_constants { struct vk_op_upscale_push_constants {
uint32_t ne; uint32_t a_offset; uint32_t d_offset; uint32_t ne; uint32_t a_offset; uint32_t d_offset;
uint32_t ne00; uint32_t ne01;
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
float sf0; float sf1; float sf2; float sf3; float sf0; float sf1; float sf2; float sf3;
@ -2856,7 +2857,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_upscale_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_upscale_nearest_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_NEAREST}, 1);
ggml_vk_create_pipeline(device, device->pipeline_upscale_bilinear_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_BILINEAR}, 1);
ggml_vk_create_pipeline(device, device->pipeline_upscale_bilinear_ac_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS}, 1);
ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
@ -6536,8 +6539,16 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
} }
return nullptr; return nullptr;
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && dst->op_params[0] == GGML_SCALE_MODE_NEAREST) { if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_upscale_f32; int mode = ggml_get_op_params_i32(dst, 0);
switch (mode) {
case GGML_SCALE_MODE_NEAREST:
return ctx->device->pipeline_upscale_nearest_f32;
case GGML_SCALE_MODE_BILINEAR:
return ctx->device->pipeline_upscale_bilinear_f32;
case GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS:
return ctx->device->pipeline_upscale_bilinear_ac_f32;
}
} }
return nullptr; return nullptr;
case GGML_OP_SCALE: case GGML_OP_SCALE:
@ -7586,14 +7597,21 @@ static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, co
static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t mode = (uint32_t)ggml_get_op_params_i32(dst, 0);
const float sf0 = (float)dst->ne[0] / src0->ne[0]; float sf0 = (float)dst->ne[0] / src0->ne[0];
const float sf1 = (float)dst->ne[1] / src0->ne[1]; float sf1 = (float)dst->ne[1] / src0->ne[1];
const float sf2 = (float)dst->ne[2] / src0->ne[2]; float sf2 = (float)dst->ne[2] / src0->ne[2];
const float sf3 = (float)dst->ne[3] / src0->ne[3]; float sf3 = (float)dst->ne[3] / src0->ne[3];
if (mode & GGML_SCALE_FLAG_ALIGN_CORNERS) {
sf0 = (float)(dst->ne[0] - 1) / (src0->ne[0] - 1);
sf1 = (float)(dst->ne[1] - 1) / (src0->ne[1] - 1);
}
ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, { ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
(uint32_t)ggml_nelements(dst), 0, 0, (uint32_t)ggml_nelements(dst), 0, 0,
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1],
(uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3], (uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3],
sf0, sf1, sf2, sf3, sf0, sf1, sf2, sf3,
@ -10578,13 +10596,12 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_CLAMP: case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32; return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:
return op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_ACC: case GGML_OP_ACC:
case GGML_OP_CONCAT: case GGML_OP_CONCAT:
case GGML_OP_SCALE: case GGML_OP_SCALE:
case GGML_OP_PAD: case GGML_OP_PAD:
case GGML_OP_ROLL:
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
return true;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK: case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:

View File

@ -3,6 +3,7 @@
layout (push_constant) uniform parameter layout (push_constant) uniform parameter
{ {
uint ne; uint a_offset; uint d_offset; uint ne; uint a_offset; uint d_offset;
uint ne00; uint ne01;
uint nb00; uint nb01; uint nb02; uint nb03; uint nb00; uint nb01; uint nb02; uint nb03;
uint ne10; uint ne11; uint ne12; uint ne13; uint ne10; uint ne11; uint ne12; uint ne13;
float sf0; float sf1; float sf2; float sf3; float sf0; float sf1; float sf2; float sf3;
@ -15,6 +16,61 @@ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
// from ggml.h: enum ggml_scale_mode, enum ggml_scale_flag
#define NEAREST 0
#define BILINEAR 1
#define ALIGN_CORNERS (1 << 8)
layout (constant_id = 0) const uint scale_mode = 0;
float fetch_nearest(uint i10, uint i11, uint i12, uint i13) {
const uint i00 = uint(i10 / p.sf0);
const uint i01 = uint(i11 / p.sf1);
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
return data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00];
}
float fetch_bilinear(ivec2 c0, ivec2 c1, vec2 d, uint i12, uint i13) {
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
const uint base = p.a_offset + i03 * p.nb03 + i02 * p.nb02;
const float v00 = data_a[base + c0.y * p.nb01 + c0.x * p.nb00];
const float v01 = data_a[base + c0.y * p.nb01 + c1.x * p.nb00];
const float v10 = data_a[base + c1.y * p.nb01 + c0.x * p.nb00];
const float v11 = data_a[base + c1.y * p.nb01 + c1.x * p.nb00];
return
v00 * (1.0-d.x) * (1.0-d.y) +
v01 * d.x * (1.0-d.y) +
v10 * (1.0-d.x) * d.y +
v11 * d.x * d.y;
}
float interpolate_bilinear(uint i10, uint i11, uint i12, uint i13) {
const ivec2 ne0 = ivec2(p.ne00, p.ne01);
const vec2 c = (vec2(i10, i11) + 0.5) / vec2(p.sf0, p.sf1) - 0.5;
const vec2 c0f = floor(c);
const vec2 d = c - c0f;
const ivec2 c0 = max(ivec2(c0f), 0);
const ivec2 c1 = min(ivec2(c0f + 1), ne0 - 1);
return fetch_bilinear(c0, c1, d, i12, i13);
}
float interpolate_bilinear_align_corners(uint i10, uint i11, uint i12, uint i13) {
const vec2 c = vec2(i10, i11) / vec2(p.sf0, p.sf1);
const vec2 c0f = floor(c);
const vec2 d = c - c0f;
const ivec2 c0 = ivec2(c0f);
const ivec2 c1 = c0 + 1;
return fetch_bilinear(c0, c1, d, i12, i13);
}
void main() { void main() {
const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
@ -27,10 +83,18 @@ void main() {
const uint i12 = (idx / (p.ne10 * p.ne11)) % p.ne12; const uint i12 = (idx / (p.ne10 * p.ne11)) % p.ne12;
const uint i13 = (idx / (p.ne10 * p.ne11 * p.ne12)) % p.ne13; const uint i13 = (idx / (p.ne10 * p.ne11 * p.ne12)) % p.ne13;
const uint i00 = uint(i10 / p.sf0); float result;
const uint i01 = uint(i11 / p.sf1); switch (scale_mode) {
const uint i02 = uint(i12 / p.sf2); case NEAREST:
const uint i03 = uint(i13 / p.sf3); result = fetch_nearest(i10, i11, i12, i13);
break;
case BILINEAR:
result = interpolate_bilinear(i10, i11, i12, i13);
break;
case BILINEAR | ALIGN_CORNERS:
result = interpolate_bilinear_align_corners(i10, i11, i12, i13);
break;
}
data_d[p.d_offset + idx] = D_TYPE(data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]); data_d[p.d_offset + idx] = D_TYPE(result);
} }