model : add hunyuan moe (#14425)
* model : add hunyuan moe * tokenizer ok * fix tensor name * cgraph init * chat template * wip * almost working * skip embed, fix bos * cleanup * yarn scaling * cleanup * correct rope type * failed token fix * ntk alpha freq_base * tokenization working * cleanup and pr changes * vocab_size sanity check * ntk alpha generic * Update convert_hf_to_gguf.py * Apply suggestions from code review * fix regression * fix style --------- Co-authored-by: kooshi <1934337+kooshi@users.noreply.github.com>
This commit is contained in:
parent
53903ae6fa
commit
8f22dc0a53
|
@ -815,6 +815,9 @@ class TextModel(ModelBase):
|
|||
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
|
||||
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
|
||||
res = "minerva-7b"
|
||||
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
|
||||
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
|
||||
res = "hunyuan"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
|
@ -6535,6 +6538,155 @@ class UltravoxWhisperEncoderModel(WhisperEncoderModel):
|
|||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
|
||||
|
||||
|
||||
@ModelBase.register("HunYuanMoEV1ForCausalLM")
|
||||
class HunYuanMoEModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# For handling tied embeddings
|
||||
self._tok_embd = None
|
||||
|
||||
def set_vocab(self):
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
|
||||
# 1. Get the pre-tokenizer identifier hash
|
||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||
|
||||
# 2. Reverse-engineer the merges list from mergeable_ranks
|
||||
merges = []
|
||||
vocab = {}
|
||||
mergeable_ranks = tokenizer.mergeable_ranks
|
||||
for token, rank in mergeable_ranks.items():
|
||||
vocab[QwenModel.token_bytes_to_string(token)] = rank
|
||||
if len(token) == 1:
|
||||
continue
|
||||
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||||
if len(merged) == 2: # todo this is an assert in Qwen, why?
|
||||
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
|
||||
|
||||
# 3. Generate the tokens and toktypes lists
|
||||
vocab_size = self.hparams["vocab_size"]
|
||||
assert tokenizer.vocab_size == vocab_size
|
||||
special_tokens = tokenizer.special_tokens
|
||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
else:
|
||||
token = reverse_vocab[i]
|
||||
tokens.append(token)
|
||||
if i in special_tokens.values():
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
# 4. Write all vocab-related fields to the GGUF writer
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_token_merges(merges)
|
||||
|
||||
# 5. Add special tokens and chat templates
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
# FIX for BOS token: Overwrite incorrect id read from config.json
|
||||
self.gguf_writer.add_bos_token_id(127959) # <|bos|>
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
|
||||
self.gguf_writer.add_expert_count(hparams["num_experts"])
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
|
||||
|
||||
moe_intermediate_size = hparams["moe_intermediate_size"]
|
||||
assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
|
||||
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
|
||||
|
||||
moe_topk = hparams["moe_topk"]
|
||||
assert all(topk == moe_topk[0] for topk in moe_topk)
|
||||
self.gguf_writer.add_expert_used_count(moe_topk[0])
|
||||
|
||||
moe_shared_expert = hparams["num_shared_expert"]
|
||||
assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
|
||||
self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
|
||||
|
||||
# Rope
|
||||
rope_scaling = hparams.get("rope_scaling", {})
|
||||
if rope_scaling.get("type") == "dynamic":
|
||||
# HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
# 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
|
||||
alpha = rope_scaling.get("alpha", 1000)
|
||||
base = hparams.get("rope_theta", 10000.0)
|
||||
dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
|
||||
scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
|
||||
self.gguf_writer.add_rope_freq_base(scaled_base)
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
self.gguf_writer.add_rope_scaling_factor(1)
|
||||
# There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
|
||||
self.gguf_writer.add_context_length(256 * 1024) # 256k context length
|
||||
|
||||
# if any of our assumptions about the values are wrong, something has changed and this may need to be updated
|
||||
assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
|
||||
"HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name == "model.embed_tokens.weight":
|
||||
self._tok_embd = data_torch.clone()
|
||||
|
||||
if name == "lm_head.weight":
|
||||
if self.hparams.get("tie_word_embeddings", False):
|
||||
logger.info("Skipping tied output layer 'lm_head.weight'")
|
||||
return []
|
||||
|
||||
if name.find("mlp.experts") != -1:
|
||||
n_experts = self.hparams["num_experts"]
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
# merge the experts into a single 3d tensor
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
tensors.append((new_name, data_torch))
|
||||
|
||||
return tensors
|
||||
else:
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
if self._experts is not None:
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
|
|
@ -137,6 +137,7 @@ pre_computed_hashes = [
|
|||
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
|
||||
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -357,6 +357,7 @@ class MODEL_ARCH(IntEnum):
|
|||
DOTS1 = auto()
|
||||
ARCEE = auto()
|
||||
ERNIE4_5 = auto()
|
||||
HUNYUAN_MOE = auto()
|
||||
|
||||
|
||||
class VISION_PROJECTOR_TYPE(IntEnum):
|
||||
|
@ -660,6 +661,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.DOTS1: "dots1",
|
||||
MODEL_ARCH.ARCEE: "arcee",
|
||||
MODEL_ARCH.ERNIE4_5: "ernie4_5",
|
||||
MODEL_ARCH.HUNYUAN_MOE: "hunyuan-moe",
|
||||
}
|
||||
|
||||
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
|
||||
|
@ -2211,6 +2213,27 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.HUNYUAN_MOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
|
|
@ -303,6 +303,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
|
||||
"model.layers.{bid}.feed_forward.router", # llama4
|
||||
"encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
|
||||
"model.layers.{bid}.mlp.gate.wg", # hunyuan
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
||||
|
@ -362,6 +363,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
|
||||
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
|
||||
"model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
|
||||
"model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
|
||||
),
|
||||
|
||||
# AWQ-activation gate
|
||||
|
@ -398,6 +400,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
|
||||
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
|
||||
"model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
|
||||
"model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
|
@ -447,11 +450,13 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
|
||||
"model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
|
||||
"model.layers.{bid}.shared_mlp.output_linear", # granitemoe
|
||||
"model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
||||
"model.layers.{bid}.self_attn.query_layernorm", # hunyuan
|
||||
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
|
||||
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
||||
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
|
||||
|
@ -461,6 +466,7 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.ATTN_K_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
||||
"model.layers.{bid}.self_attn.key_layernorm", # hunyuan
|
||||
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
|
||||
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
||||
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
|
||||
|
|
|
@ -117,6 +117,7 @@ extern "C" {
|
|||
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
|
||||
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
|
||||
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
|
||||
LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 36,
|
||||
};
|
||||
|
||||
enum llama_rope_type {
|
||||
|
|
|
@ -78,6 +78,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_DOTS1, "dots1" },
|
||||
{ LLM_ARCH_ARCEE, "arcee" },
|
||||
{ LLM_ARCH_ERNIE4_5, "ernie4_5" },
|
||||
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
|
@ -1694,6 +1695,29 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_HUNYUAN_MOE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
|
||||
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
|
|
|
@ -82,6 +82,7 @@ enum llm_arch {
|
|||
LLM_ARCH_DOTS1,
|
||||
LLM_ARCH_ARCEE,
|
||||
LLM_ARCH_ERNIE4_5,
|
||||
LLM_ARCH_HUNYUAN_MOE,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
|
@ -64,6 +64,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
|||
{ "bailing", LLM_CHAT_TEMPLATE_BAILING },
|
||||
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
|
||||
{ "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM },
|
||||
{ "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE },
|
||||
};
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name) {
|
||||
|
@ -185,6 +186,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
|||
return LLM_CHAT_TEMPLATE_LLAMA4;
|
||||
} else if (tmpl_contains("<|endofuserprompt|>")) {
|
||||
return LLM_CHAT_TEMPLATE_DOTS1;
|
||||
} else if (tmpl_contains("<|startoftext|>") && tmpl_contains("<|extra_4|>")) {
|
||||
return LLM_CHAT_TEMPLATE_HUNYUAN_MOE;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
|
@ -665,6 +668,21 @@ int32_t llm_chat_apply_template(
|
|||
if (add_ass) {
|
||||
ss << "<|response|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_HUNYUAN_MOE) {
|
||||
// tencent/Hunyuan-A13B-Instruct
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << "<|startoftext|>" << message->content << "<|extra_4|>";
|
||||
} else if (role == "assistant") {
|
||||
ss << "<|startoftext|>" << message->content << "<|eos|>";
|
||||
} else {
|
||||
ss << "<|startoftext|>" << message->content << "<|extra_0|>";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|startoftext|>";
|
||||
}
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
|
|
|
@ -44,6 +44,7 @@ enum llm_chat_template {
|
|||
LLM_CHAT_TEMPLATE_LLAMA4,
|
||||
LLM_CHAT_TEMPLATE_SMOLVLM,
|
||||
LLM_CHAT_TEMPLATE_DOTS1,
|
||||
LLM_CHAT_TEMPLATE_HUNYUAN_MOE,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
|
@ -102,6 +102,7 @@ const char * llm_type_name(llm_type type) {
|
|||
case LLM_TYPE_57B_A14B: return "57B.A14B";
|
||||
case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
|
||||
case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
|
||||
case LLM_TYPE_A13B: return "A13B";
|
||||
case LLM_TYPE_30B_A3B: return "30B.A3B";
|
||||
case LLM_TYPE_235B_A22B: return "235B.A22B";
|
||||
case LLM_TYPE_E2B: return "E2B";
|
||||
|
@ -1549,6 +1550,17 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_HUNYUAN_MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 32: type = LLM_TYPE_A13B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
default: throw std::runtime_error("unsupported model architecture");
|
||||
}
|
||||
|
||||
|
@ -4475,6 +4487,43 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_HUNYUAN_MOE:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
||||
|
||||
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
|
||||
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
|
||||
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
|
||||
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
|
||||
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
|
||||
|
||||
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
|
||||
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
|
||||
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
|
@ -14645,6 +14694,168 @@ struct llm_build_arcee : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_hunyuan_moe : public llm_graph_context {
|
||||
llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified();
|
||||
|
||||
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = build_norm(Kcur,
|
||||
model.layers[il].attn_k_norm, nullptr,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(Kcur, "Kcur_norm", il);
|
||||
|
||||
Qcur = build_norm(Qcur,
|
||||
model.layers[il].attn_q_norm, nullptr,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(Qcur, "Qcur_norm", il);
|
||||
|
||||
cur = build_attn(inp_attn, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_out", il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
// feed-forward network (non-MoE)
|
||||
ggml_tensor * cur_mlp = build_ffn(cur,
|
||||
model.layers[il].ffn_up_shexp, NULL, NULL,
|
||||
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
||||
model.layers[il].ffn_down_shexp, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur_mlp, "ffn_mlp", il);
|
||||
|
||||
// MoE branch
|
||||
ggml_tensor * cur_moe = build_moe_ffn(cur,
|
||||
model.layers[il].ffn_gate_inp,
|
||||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU,
|
||||
true, // norm_topk_prob
|
||||
false,
|
||||
0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
il);
|
||||
cb(cur_moe, "ffn_moe_out", il);
|
||||
|
||||
ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
|
||||
cb(ffn_out, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, ffn_out, ffn_inp);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
|
||||
llama_memory_i * res;
|
||||
|
||||
|
@ -15025,6 +15236,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
|||
{
|
||||
llm = std::make_unique<llm_build_ernie4_5>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_HUNYUAN_MOE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_hunyuan_moe>(*this, params, gf);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
@ -15213,6 +15428,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
case LLM_ARCH_EXAONE:
|
||||
case LLM_ARCH_MINICPM3:
|
||||
case LLM_ARCH_DOTS1:
|
||||
case LLM_ARCH_HUNYUAN_MOE:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
|
|
|
@ -94,6 +94,7 @@ enum llm_type {
|
|||
LLM_TYPE_57B_A14B,
|
||||
LLM_TYPE_17B_16E, // llama4 Scout
|
||||
LLM_TYPE_17B_128E, // llama4 Maverick
|
||||
LLM_TYPE_A13B,
|
||||
LLM_TYPE_30B_A3B,
|
||||
LLM_TYPE_235B_A22B,
|
||||
LLM_TYPE_E2B,
|
||||
|
|
|
@ -351,6 +351,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_HUNYUAN:
|
||||
regex_exprs = {
|
||||
// original regex from tokenizer.json
|
||||
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
|
@ -1656,6 +1657,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
tokenizer_pre == "seed-coder") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "hunyuan") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_HUNYUAN;
|
||||
clean_spaces = false;
|
||||
} else {
|
||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue