metal : fuse add, mul + add tests (#14596)

ggml-ci
This commit is contained in:
Georgi Gerganov 2025-07-18 20:37:26 +03:00 committed by GitHub
parent 9fb1042ce6
commit bf9087f59a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 578 additions and 172 deletions

View File

@ -22,21 +22,6 @@ static bool ggml_is_view(const struct ggml_tensor * t) {
return t->view_src != NULL;
}
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
// ops that return true for this function must not use restrict pointers for their backend implementations
static bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {

View File

@ -352,21 +352,6 @@ ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
// backend copy
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");

View File

@ -73,6 +73,22 @@ static inline int ggml_up(int n, int m) {
return (n + m - 1) & ~(m - 1);
}
// TODO: move to ggml.h?
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
//
// logging
//

View File

@ -126,6 +126,7 @@ typedef struct {
uint64_t nb2;
uint64_t nb3;
uint64_t offs;
uint64_t o1[8];
} ggml_metal_kargs_bin;
typedef struct {
@ -240,7 +241,7 @@ typedef struct {
float max_bias;
float m0;
float m1;
uint16_t n_head_log2;
int32_t n_head_log2;
float logit_softcap;
} ggml_metal_kargs_flash_attn_ext;
@ -377,8 +378,16 @@ typedef struct {
typedef struct {
int32_t ne00;
int32_t ne00_4;
uint64_t nb01;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
float eps;
int32_t nef1[3];
int32_t nef2[3];
int32_t nef3[3];
uint64_t nbf1[3];
uint64_t nbf2[3];
uint64_t nbf3[3];
} ggml_metal_kargs_rms_norm;
typedef struct {
@ -484,7 +493,7 @@ typedef struct {
float max_bias;
float m0;
float m1;
uint32_t n_head_log2;
int32_t n_head_log2;
} ggml_metal_kargs_soft_max;
typedef struct {

View File

@ -55,6 +55,12 @@ static struct ggml_backend_metal_device_context {
bool has_residency_sets;
bool has_bfloat;
bool use_bfloat;
bool use_fusion;
int debug_fusion;
// how many times a given op was fused
uint64_t fuse_cnt[GGML_OP_COUNT];
size_t max_size;
@ -69,6 +75,9 @@ static struct ggml_backend_metal_device_context {
/*.has_residency_sets =*/ false,
/*.has_bfloat =*/ false,
/*.use_bfloat =*/ false,
/*.use_fusion =*/ true,
/*.debug_fusion =*/ 0,
/*.fuse_cnt =*/ { 0 },
/*.max_size =*/ 0,
/*.name =*/ "",
};
@ -83,16 +92,14 @@ static id<MTLDevice> ggml_backend_metal_device_acq(struct ggml_backend_metal_dev
if (ctx->mtl_device == nil) {
ctx->mtl_device = MTLCreateSystemDefaultDevice();
}
if (ctx->mtl_device) {
ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == NULL;
ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == nil;
#endif
ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
@ -103,6 +110,14 @@ static id<MTLDevice> ggml_backend_metal_device_acq(struct ggml_backend_metal_dev
#else
ctx->use_bfloat = false;
#endif
ctx->use_fusion = getenv("GGML_METAL_FUSION_DISABLE") == nil;
{
const char * val = getenv("GGML_METAL_FUSION_DEBUG");
ctx->debug_fusion = val ? atoi(val) : 0;
}
memset(ctx->fuse_cnt, 0, sizeof(ctx->fuse_cnt));
ctx->max_size = ctx->mtl_device.maxBufferLength;
@ -122,6 +137,18 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
ctx->mtl_device_ref_count--;
if (ctx->mtl_device_ref_count == 0) {
if (ctx->debug_fusion > 0) {
fprintf(stderr, "%s: fusion stats:\n", __func__);
for (int i = 0; i < GGML_OP_COUNT; i++) {
if (ctx->fuse_cnt[i] == 0) {
continue;
}
// note: cannot use ggml_log here
fprintf(stderr, "%s: - %s: %" PRIu64 "\n", __func__, ggml_op_name((enum ggml_op) i), ctx->fuse_cnt[i]);
}
}
if (ctx->mtl_lock) {
[ctx->mtl_lock release];
ctx->mtl_lock = nil;
@ -147,13 +174,27 @@ struct ggml_metal_kernel {
enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_ADD,
GGML_METAL_KERNEL_TYPE_ADD_ROW,
GGML_METAL_KERNEL_TYPE_ADD_FUSE_2,
GGML_METAL_KERNEL_TYPE_ADD_FUSE_3,
GGML_METAL_KERNEL_TYPE_ADD_FUSE_4,
GGML_METAL_KERNEL_TYPE_ADD_FUSE_5,
GGML_METAL_KERNEL_TYPE_ADD_FUSE_6,
GGML_METAL_KERNEL_TYPE_ADD_FUSE_7,
GGML_METAL_KERNEL_TYPE_ADD_FUSE_8,
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4,
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_2,
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_3,
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_4,
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_5,
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_6,
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_7,
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_8,
GGML_METAL_KERNEL_TYPE_SUB,
GGML_METAL_KERNEL_TYPE_SUB_ROW,
GGML_METAL_KERNEL_TYPE_SUB_ROW_C4,
GGML_METAL_KERNEL_TYPE_MUL,
GGML_METAL_KERNEL_TYPE_MUL_ROW,
GGML_METAL_KERNEL_TYPE_MUL_ROW_C4,
GGML_METAL_KERNEL_TYPE_DIV,
GGML_METAL_KERNEL_TYPE_DIV_ROW,
GGML_METAL_KERNEL_TYPE_DIV_ROW_C4,
GGML_METAL_KERNEL_TYPE_REPEAT_F32,
GGML_METAL_KERNEL_TYPE_REPEAT_F16,
GGML_METAL_KERNEL_TYPE_REPEAT_I32,
@ -218,6 +259,8 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1,
GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL,
GGML_METAL_KERNEL_TYPE_RMS_NORM,
GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL,
GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL_ADD,
GGML_METAL_KERNEL_TYPE_L2_NORM,
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
GGML_METAL_KERNEL_TYPE_NORM,
@ -1135,13 +1178,27 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
// simd_sum and simd_max requires MTLGPUFamilyApple7
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_2, add_fuse_2, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_3, add_fuse_3, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_4, add_fuse_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_5, add_fuse_5, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_6, add_fuse_6, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_7, add_fuse_7, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_8, add_fuse_8, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4, add_row_c4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_2, add_row_c4_fuse_2, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_3, add_row_c4_fuse_3, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_4, add_row_c4_fuse_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_5, add_row_c4_fuse_5, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_6, add_row_c4_fuse_6, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_7, add_row_c4_fuse_7, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_8, add_row_c4_fuse_8, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB, sub, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB_ROW, sub_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB_ROW_C4, sub_row_c4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW_C4, mul_row_c4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW_C4, div_row_c4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true);
@ -1206,6 +1263,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1, set_rows_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL, set_rows_iq4_nl, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL, rms_norm_mul, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL_ADD, rms_norm_mul_add, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_L2_NORM, l2_norm, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
@ -1893,7 +1952,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
}
}
static bool ggml_metal_encode_node(
static int ggml_metal_encode_node(
ggml_backend_t backend,
int idx,
id<MTLComputeCommandEncoder> encoder,
@ -1903,7 +1962,10 @@ static bool ggml_metal_encode_node(
struct ggml_cgraph * gf = ctx->gf;
struct ggml_tensor * node = ggml_graph_node(gf, idx);
enum ggml_op ops[8];
struct ggml_tensor ** nodes = ggml_graph_nodes(gf) + idx;
struct ggml_tensor * node = nodes[0];
//GGML_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, idx, ggml_op_name(node->op));
@ -1913,7 +1975,7 @@ static bool ggml_metal_encode_node(
struct ggml_tensor * dst = node;
if (ggml_is_empty(dst)) {
return true;
return 1;
}
switch (dst->op) {
@ -1924,7 +1986,7 @@ static bool ggml_metal_encode_node(
case GGML_OP_PERMUTE:
{
// noop -> next node
} return true;
} return 1;
default:
{
} break;
@ -1991,6 +2053,8 @@ static bool ggml_metal_encode_node(
id<MTLBuffer> id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil;
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil;
int n_fuse = 1;
#if 0
GGML_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
if (src0) {
@ -2062,37 +2126,15 @@ static bool ggml_metal_encode_node(
GGML_ASSERT(src0t == GGML_TYPE_F32);
GGML_ASSERT(src1t == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous_rows(src0));
GGML_ASSERT(ggml_is_contiguous_rows(src1));
const size_t offs = 0;
bool bcast_row = false;
id<MTLComputePipelineState> pipeline = nil;
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
GGML_ASSERT(ggml_is_contiguous(src0));
// src1 is a row
GGML_ASSERT(ne11 == 1);
switch (dst->op) {
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break;
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB_ROW].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break;
default: GGML_ABORT("fatal error");
}
bcast_row = true;
} else {
switch (dst->op) {
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break;
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
default: GGML_ABORT("fatal error");
}
}
ggml_metal_kargs_bin args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
@ -2119,12 +2161,117 @@ static bool ggml_metal_encode_node(
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
/*.offs =*/ offs,
/*.o1 =*/ { offs_src1 },
};
// c[0] = add(a, b[0])
// c[1] = add(c[0], b[1])
// c[2] = add(c[1], b[2])
// ...
if (ctx_dev->use_fusion) {
ops[0] = GGML_OP_ADD;
ops[1] = GGML_OP_ADD;
ops[2] = GGML_OP_ADD;
ops[3] = GGML_OP_ADD;
ops[4] = GGML_OP_ADD;
ops[5] = GGML_OP_ADD;
ops[6] = GGML_OP_ADD;
ops[7] = GGML_OP_ADD;
size_t offs_fuse;
id<MTLBuffer> id_fuse;
for (n_fuse = 0; n_fuse <= 6; ++n_fuse) {
if (!ggml_can_fuse(gf, idx + n_fuse, ops + n_fuse, 2)) {
break;
}
if (nodes[n_fuse] != nodes[n_fuse + 1]->src[0]) {
break;
}
// b[0] === b[1] === ...
if (!ggml_are_same_layout(nodes[n_fuse]->src[1], nodes[n_fuse + 1]->src[1])) {
break;
}
// only fuse nodes if src1 is in the same Metal buffer
id_fuse = ggml_metal_get_buffer(nodes[n_fuse + 1]->src[1], &offs_fuse);
if (id_fuse != id_src1) {
break;
}
ctx_dev->fuse_cnt[nodes[n_fuse + 1]->op]++;
args.o1[n_fuse + 1] = offs_fuse;
}
++n_fuse;
if (ctx_dev->debug_fusion > 1 && n_fuse > 1) {
GGML_LOG_DEBUG("%s: fuse: ADD x %d\n", __func__, n_fuse);
}
}
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
GGML_ASSERT(ggml_is_contiguous(src0));
// src1 is a row
GGML_ASSERT(ne11 == 1);
switch (dst->op) {
case GGML_OP_ADD:
{
switch (n_fuse) {
case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4 ].pipeline; break;
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_2].pipeline; break;
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_3].pipeline; break;
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_4].pipeline; break;
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_5].pipeline; break;
case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_6].pipeline; break;
case 7: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_7].pipeline; break;
case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_8].pipeline; break;
default: GGML_ABORT("fatal error");
}
} break;
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB_ROW_C4].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW_C4].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW_C4].pipeline; break;
default: GGML_ABORT("fatal error");
}
bcast_row = true;
} else {
switch (dst->op) {
case GGML_OP_ADD:
{
switch (n_fuse) {
case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD ].pipeline; break;
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_2].pipeline; break;
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_3].pipeline; break;
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_4].pipeline; break;
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_5].pipeline; break;
case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_6].pipeline; break;
case 7: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_7].pipeline; break;
case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_8].pipeline; break;
default: GGML_ABORT("fatal error");
}
} break;
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
default: GGML_ABORT("fatal error");
}
}
if (n_fuse > 1) {
id_dst = ggml_metal_get_buffer(nodes[n_fuse - 1], &offs_dst);
}
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
[encoder setBuffer:id_src1 offset:0 atIndex:2];
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
if (bcast_row) {
@ -2132,7 +2279,11 @@ static bool ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} else {
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
int nth = 32;
while (16*nth < ne0 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
nth *= 2;
}
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
@ -2257,12 +2408,13 @@ static bool ggml_metal_encode_node(
/*.nb2 =*/ pnb2,
/*.nb3 =*/ pnb3,
/*.offs =*/ offs,
/*.o1 =*/ { offs_src1},
};
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
[encoder setBuffer:id_src1 offset:0 atIndex:2];
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
@ -2764,7 +2916,7 @@ static bool ggml_metal_encode_node(
id<MTLBuffer> h_src0 = h_src0 = ggml_metal_mem_pool_alloc(mem_pool, ggml_nbytes(src0));
if (!h_src0) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, ggml_nbytes(src0));
return false;
return 0;
}
offs_src0 = 0;
@ -3640,7 +3792,7 @@ static bool ggml_metal_encode_node(
id<MTLBuffer> h_src1 = ggml_metal_mem_pool_alloc(mem_pool, s_src1);
if (!h_src1) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_src1);
return false;
return 0;
}
const int64_t neh0 = ne0;
@ -3656,7 +3808,7 @@ static bool ggml_metal_encode_node(
id<MTLBuffer> h_dst = ggml_metal_mem_pool_alloc(mem_pool, s_dst);
if (!h_dst) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_dst);
return false;
return 0;
}
// tokens per expert
@ -3664,7 +3816,7 @@ static bool ggml_metal_encode_node(
id<MTLBuffer> h_tpe = ggml_metal_mem_pool_alloc(mem_pool, s_tpe);
if (!h_tpe) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_tpe);
return false;
return 0;
}
// id map
@ -3673,7 +3825,7 @@ static bool ggml_metal_encode_node(
id<MTLBuffer> h_ids = ggml_metal_mem_pool_alloc(mem_pool, s_ids);
if (!h_ids) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_ids);
return false;
return 0;
}
{
@ -4105,12 +4257,95 @@ static bool ggml_metal_encode_node(
case GGML_OP_RMS_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_rows(src0));
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline;
ggml_metal_kargs_rms_norm args = {
/*.ne00 =*/ ne00,
/*.ne00_4 =*/ ne00/4,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
/*.eps =*/ eps,
/*.nef1 =*/ { ne01 },
/*.nef2 =*/ { ne02 },
/*.nef3 =*/ { ne03 },
/*.nbf1 =*/ { nb01 },
/*.nbf2 =*/ { nb02 },
/*.nbf3 =*/ { nb03 },
};
size_t offs_fuse[2] = { 0, 0 };
id<MTLBuffer> id_fuse[2] = { id_src0, id_src0 };
// d[0] = rms_norm(a)
// d[1] = mul(d[0], b)
// d[2] = add(d[1], c)
if (ctx_dev->use_fusion) {
ops[0] = GGML_OP_RMS_NORM;
ops[1] = GGML_OP_MUL;
ops[2] = GGML_OP_ADD;
for (n_fuse = 0; n_fuse <= 1; ++n_fuse) {
if (!ggml_can_fuse(gf, idx + n_fuse, ops + n_fuse, 2)) {
break;
}
if (nodes[n_fuse] != nodes[n_fuse + 1]->src[0]) {
break;
}
if (nodes[n_fuse + 1]->src[1]->ne[0] != node->ne[0]) {
break;
}
if (!ggml_is_contiguous_rows(nodes[n_fuse + 1]->src[1])) {
break;
}
if (nodes[n_fuse + 1]->type != GGML_TYPE_F32) {
break;
}
ctx_dev->fuse_cnt[nodes[n_fuse + 1]->op]++;
id_fuse[n_fuse] = ggml_metal_get_buffer(nodes[n_fuse + 1]->src[1], &offs_fuse[n_fuse]);
args.nef1[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[1];
args.nef2[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[2];
args.nef3[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[3];
args.nbf1[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[1];
args.nbf2[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[2];
args.nbf3[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[3];
}
++n_fuse;
if (ctx_dev->debug_fusion > 1 && n_fuse > 1) {
if (n_fuse == 2) {
GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL\n", __func__);
}
if (n_fuse == 3) {
GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL + ADD\n", __func__);
}
}
}
if (n_fuse > 1) {
id_dst = ggml_metal_get_buffer(nodes[n_fuse - 1], &offs_dst);
}
id<MTLComputePipelineState> pipeline;
switch (n_fuse) {
case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM ].pipeline; break;
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL ].pipeline; break;
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL_ADD].pipeline; break;
default: GGML_ABORT("unsupported n_fuse = %d\n", n_fuse);
}
int nth = 32; // SIMD width
@ -4121,23 +4356,16 @@ static bool ggml_metal_encode_node(
nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
nth = MIN(nth, ne00/4);
ggml_metal_kargs_rms_norm args = {
/*.ne00 =*/ ne00,
/*.ne00_4 =*/ ne00/4,
/*.nb01 =*/ nb01,
/*.eps =*/ eps,
};
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_fuse[0] offset:offs_fuse[0] atIndex:2];
[encoder setBuffer:id_fuse[1] offset:offs_fuse[1] atIndex:3];
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_L2_NORM:
{
@ -5532,7 +5760,7 @@ static bool ggml_metal_encode_node(
}
}
return true;
return n_fuse;
}
static enum ggml_status ggml_metal_graph_compute(
@ -6038,20 +6266,22 @@ static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
struct ggml_metal_mem_pool * mem_pool = ctx->cmd_bufs[cb_idx].mem_pool;
ggml_metal_mem_pool_reset(mem_pool);
for (int idx = node_start; idx < node_end; ++idx) {
for (int idx = node_start; idx < node_end;) {
if (should_capture) {
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(ggml_graph_node(ctx->gf, idx)) encoding:NSUTF8StringEncoding]];
}
const bool res = ggml_metal_encode_node(backend, idx, encoder, mem_pool);
const int res = ggml_metal_encode_node(backend, idx, encoder, mem_pool);
if (should_capture) {
[encoder popDebugGroup];
}
if (!res) {
if (res == 0) {
break;
}
idx += res;
}
[encoder endEncoding];

View File

@ -832,7 +832,8 @@ enum ggml_sort_order {
// general-purpose kernel for addition, subtraction, multiplication and division of two tensors
// pros: works for non-contiguous tensors, supports broadcast across all dims
// cons: not very efficient
kernel void kernel_add(
template <int F>
kernel void kernel_add_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
@ -848,16 +849,39 @@ kernel void kernel_add(
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11;
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
device const float * src0_ptr = (device const float *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs);
device float * dst_ptr = (device float *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs);
device const float * src1_ptr[F];
for (short j = 0; j < F; ++j) {
src1_ptr[j] = (device const float *) (src1 + args.o1[j] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
}
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) + *((device float *)(src1_ptr + i10*args.nb10));
float res = src0_ptr[i0];
#pragma unroll
for (short j = 0; j < F; ++j) {
res += src1_ptr[j][i10];
}
dst_ptr[i0] = res;
}
}
typedef decltype(kernel_add_fuse_impl<2>) kernel_add_fuse_t;
template [[host_name("kernel_add")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<1>;
template [[host_name("kernel_add_fuse_2")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<2>;
template [[host_name("kernel_add_fuse_3")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<3>;
template [[host_name("kernel_add_fuse_4")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<4>;
template [[host_name("kernel_add_fuse_5")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<5>;
template [[host_name("kernel_add_fuse_6")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<6>;
template [[host_name("kernel_add_fuse_7")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<7>;
template [[host_name("kernel_add_fuse_8")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<8>;
kernel void kernel_sub(
constant ggml_metal_kargs_bin & args,
device const char * src0,
@ -875,7 +899,7 @@ kernel void kernel_sub(
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
@ -900,9 +924,9 @@ kernel void kernel_mul(
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11;
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
@ -926,9 +950,9 @@ kernel void kernel_div(
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11;
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
@ -970,46 +994,145 @@ template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_add_row(
template <short F>
kernel void kernel_add_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
dst[tpig] = src0[tpig] + src1[tpig % nb];
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res += src1_row[j][i];
}
dst_row[tpig] = res;
}
kernel void kernel_sub_row(
typedef decltype(kernel_add_row_c4_fuse_impl<1>) kernel_add_row_c4_fuse_t;
template [[host_name("kernel_add_row_c4")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<1>;
template [[host_name("kernel_add_row_c4_fuse_2")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<2>;
template [[host_name("kernel_add_row_c4_fuse_3")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<3>;
template [[host_name("kernel_add_row_c4_fuse_4")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<4>;
template [[host_name("kernel_add_row_c4_fuse_5")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<5>;
template [[host_name("kernel_add_row_c4_fuse_6")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<6>;
template [[host_name("kernel_add_row_c4_fuse_7")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<7>;
template [[host_name("kernel_add_row_c4_fuse_8")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<8>;
template <short F>
kernel void kernel_sub_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
dst[tpig] = src0[tpig] - src1[tpig % nb];
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res -= src1_row[j][i];
}
dst_row[tpig] = res;
}
kernel void kernel_mul_row(
typedef decltype(kernel_sub_row_c4_fuse_impl<1>) kernel_sub_row_c4_fuse_t;
template [[host_name("kernel_sub_row_c4")]] kernel kernel_sub_row_c4_fuse_t kernel_sub_row_c4_fuse_impl<1>;
template <short F>
kernel void kernel_mul_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
dst[tpig] = src0[tpig] * src1[tpig % nb];
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res *= src1_row[j][i];
}
dst_row[tpig] = res;
}
kernel void kernel_div_row(
typedef decltype(kernel_mul_row_c4_fuse_impl<1>) kernel_mul_row_c4_fuse_t;
template [[host_name("kernel_mul_row_c4")]] kernel kernel_mul_row_c4_fuse_t kernel_mul_row_c4_fuse_impl<1>;
template <short F>
kernel void kernel_div_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
dst[tpig] = src0[tpig] / src1[tpig % nb];
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res /= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_div_row_c4_fuse_impl<1>) kernel_div_row_c4_fuse_t;
template [[host_name("kernel_div_row_c4")]] kernel kernel_div_row_c4_fuse_t kernel_div_row_c4_fuse_impl<1>;
kernel void kernel_scale(
device const float * src0,
device float * dst,
@ -2116,26 +2239,39 @@ kernel void kernel_norm(
}
}
kernel void kernel_rms_norm(
// F == 1 : rms_norm (no fuse)
// F == 2 : rms_norm + mul
// F == 3 : rms_norm + mul + add
template <short F>
kernel void kernel_rms_norm_fuse_impl(
constant ggml_metal_kargs_rms_norm & args,
device const char * src0,
device const char * src1_0,
device const char * src1_1,
device char * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
ushort tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort ntg[[threads_per_threadgroup]]) {
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}
device const float4 * x = (device const float4 *) (src0 + tgpig*args.nb01);
const int i01 = tgpig.x;
const int i02 = tgpig.y;
const int i03 = tgpig.z;
device const float4 * x = (device const float4 *) (src0 + i03*args.nbf3[0] + i02*args.nbf2[0] + i01*args.nbf1[0]);
device const float4 * f0 = (device const float4 *) (src1_0 + (i03%args.nef3[1])*args.nbf3[1] + (i02%args.nef2[1])*args.nbf2[1] + (i01%args.nef1[1])*args.nbf1[1]);
device const float4 * f1 = (device const float4 *) (src1_1 + (i03%args.nef3[2])*args.nbf3[2] + (i02%args.nef2[2])*args.nbf2[2] + (i01%args.nef1[2])*args.nbf1[2]);
float sumf = 0.0f;
// parallel sum
for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) {
for (int i00 = tpitg.x; i00 < args.ne00_4; i00 += ntg.x) {
sumf += dot(x[i00], x[i00]);
}
sumf = simd_sum(sumf);
@ -2154,12 +2290,26 @@ kernel void kernel_rms_norm(
const float mean = sumf/args.ne00;
const float scale = 1.0f/sqrt(mean + args.eps);
device float4 * y = (device float4 *) dst + tgpig*args.ne00_4;
for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) {
y[i00] = x[i00] * scale;
device float4 * y = (device float4 *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1);
for (int i00 = tpitg.x; i00 < args.ne00_4; i00 += ntg.x) {
if (F == 1) {
y[i00] = (x[i00]*scale);
}
if (F == 2) {
y[i00] = (x[i00]*scale)*f0[i00];
}
if (F == 3) {
y[i00] = (x[i00]*scale)*f0[i00] + f1[i00];
}
}
}
typedef decltype(kernel_rms_norm_fuse_impl<1>) kernel_rms_norm_fuse_t;
template [[host_name("kernel_rms_norm")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<1>;
template [[host_name("kernel_rms_norm_mul")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<2>;
template [[host_name("kernel_rms_norm_mul_add")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<3>;
kernel void kernel_l2_norm(
constant ggml_metal_kargs_l2_norm & args,
device const char * src0,

View File

@ -907,20 +907,25 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cb(cur, "ffn_moe_weighted", il);
}
ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
assert(n_expert_used > 0);
// order the views before the adds
for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);
ggml_build_forward_expand(gf, cur_experts[i]);
}
// aggregate experts
// note: here we explicitly use hparams.n_expert_used instead of n_expert_used
// to avoid potentially a large number of add nodes during warmup
// ref: https://github.com/ggml-org/llama.cpp/pull/14753
ggml_tensor * moe_out = nullptr;
for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens,
experts->nb[2], i*experts->nb[1]);
ggml_tensor * moe_out = cur_experts[0];
if (i == 0) {
moe_out = cur_expert;
} else {
moe_out = ggml_add(ctx0, moe_out, cur_expert);
}
for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
}
if (hparams.n_expert_used == 1) {

View File

@ -2353,9 +2353,12 @@ struct test_bin_bcast : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const std::array<int, 4> nr;
int nf; // number of fused ops, nf == 1 -> single op (no fusion)
bool run_whole_graph() override { return true; }
std::string vars() override {
return VARS_TO_STR3(type, ne, nr);
return VARS_TO_STR4(type, ne, nr, nf);
}
size_t op_size(ggml_tensor * t) override {
@ -2364,24 +2367,35 @@ struct test_bin_bcast : public test_case {
test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 1, 1},
std::array<int, 4> nr = {1, 2, 1, 1})
: op(op), type(type), ne(ne), nr(nr) {}
std::array<int, 4> nr = {1, 2, 1, 1},
int nf = 1)
: op(op), type(type), ne(ne), nr(nr), nf(nf) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
GGML_ASSERT(nf <= 8);
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
ggml_set_name(a, "a");
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(b, "b");
// The backward pass supports broadcasting only for GGML_ADD:
const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
if (grad_supported) {
ggml_set_param(a);
ggml_set_param(b);
ggml_tensor * b[8];
for (int i = 0; i < nf; ++i) {
b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
}
// The backward pass supports broadcasting only for GGML_ADD:
const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
if (grad_supported) {
ggml_set_param(a);
ggml_set_param(b[0]);
}
ggml_tensor * out = a;
for (int i = 0; i < nf; ++i) {
out = op(ctx, out, b[i]);
}
ggml_tensor * out = op(ctx, a, b);
ggml_set_name(out, "out");
return out;
@ -2622,15 +2636,15 @@ struct test_rms_norm_back : public test_case {
}
};
// GGML_OP_RMS_NORM + GGML_OP_MUL
struct test_rms_norm_mul : public test_case {
// GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
struct test_rms_norm_mul_add : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const float eps;
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
return "RMS_NORM_MUL";
return "RMS_NORM_MUL_ADD";
}
bool run_whole_graph() override { return true; }
@ -2639,7 +2653,7 @@ struct test_rms_norm_mul : public test_case {
return VARS_TO_STR3(type, ne, eps);
}
test_rms_norm_mul(ggml_type type = GGML_TYPE_F32,
test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 5, 4, 3},
float eps = 1e-6f)
: type(type), ne(ne), eps(eps) {}
@ -2647,14 +2661,17 @@ struct test_rms_norm_mul : public test_case {
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_set_param(b);
ggml_set_name(b, "b");
ggml_set_param(c);
ggml_set_name(c, "c");
// Use a and b early, so we don't end up with an OP_NONE between rms_norm and mul
a = ggml_add(ctx, a, b);
ggml_tensor * out = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
// Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
a = ggml_add(ctx, ggml_add(ctx, a, b), c);
ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
ggml_set_name(out, "out");
return out;
@ -5151,6 +5168,15 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
//add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
}
// fusion
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
test_cases.emplace_back(new test_add1());
test_cases.emplace_back(new test_scale());
test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
@ -5165,7 +5191,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
}
for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
test_cases.emplace_back(new test_rms_norm_mul(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
}
test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));