model : add EXAONE 4.0 support (#14630)
This commit is contained in:
parent
f9a31eea06
commit
e0cb5c5cb8
|
@ -843,6 +843,9 @@ class TextModel(ModelBase):
|
||||||
if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
|
if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
|
||||||
# ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
|
# ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
|
||||||
res = "lfm2"
|
res = "lfm2"
|
||||||
|
if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
|
||||||
|
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
|
||||||
|
res = "exaone4"
|
||||||
|
|
||||||
if res is None:
|
if res is None:
|
||||||
logger.warning("\n")
|
logger.warning("\n")
|
||||||
|
@ -6780,6 +6783,75 @@ class ExaoneModel(TextModel):
|
||||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
|
||||||
|
|
||||||
|
|
||||||
|
@ModelBase.register("Exaone4ForCausalLM")
|
||||||
|
class Exaone4Model(TextModel):
|
||||||
|
model_arch = gguf.MODEL_ARCH.EXAONE4
|
||||||
|
|
||||||
|
def set_vocab(self):
|
||||||
|
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||||
|
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||||
|
self.gguf_writer.add_token_list(tokens)
|
||||||
|
self.gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||||
|
special_vocab.add_to_gguf(self.gguf_writer)
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
super().set_gguf_parameters()
|
||||||
|
hparams = self.hparams
|
||||||
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||||
|
|
||||||
|
if hparams.get("sliding_window") is not None:
|
||||||
|
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
|
||||||
|
if "layer_types" in hparams:
|
||||||
|
self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
|
||||||
|
elif "sliding_window_pattern" in hparams:
|
||||||
|
sliding_window_pattern = []
|
||||||
|
if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
|
||||||
|
for i in range(hparams["num_hidden_layers"]):
|
||||||
|
sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
|
||||||
|
if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
|
||||||
|
for i in range(hparams["num_hidden_layers"]):
|
||||||
|
sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
|
||||||
|
if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
|
||||||
|
self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
|
||||||
|
|
||||||
|
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||||
|
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
|
||||||
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||||
|
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||||
|
|
||||||
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||||
|
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||||
|
base = self.hparams.get("rope_theta", 10_000.0)
|
||||||
|
if (dim := self.hparams.get("head_dim")) is None:
|
||||||
|
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||||
|
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||||
|
|
||||||
|
factor = rope_scaling.get("factor", 16.0)
|
||||||
|
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
|
||||||
|
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
|
||||||
|
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
|
||||||
|
|
||||||
|
low_freq_wavelen = old_context_len / low_freq_factor
|
||||||
|
high_freq_wavelen = old_context_len / high_freq_factor
|
||||||
|
|
||||||
|
rope_factors = []
|
||||||
|
for freq in freqs:
|
||||||
|
wavelen = 2 * math.pi / freq
|
||||||
|
if wavelen < high_freq_wavelen:
|
||||||
|
rope_factors.append(1)
|
||||||
|
elif wavelen > low_freq_wavelen:
|
||||||
|
rope_factors.append(factor)
|
||||||
|
else:
|
||||||
|
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||||
|
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||||
|
|
||||||
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
|
||||||
|
|
||||||
|
|
||||||
@ModelBase.register("GraniteForCausalLM")
|
@ModelBase.register("GraniteForCausalLM")
|
||||||
class GraniteModel(LlamaModel):
|
class GraniteModel(LlamaModel):
|
||||||
"""Conversion for IBM's GraniteForCausalLM"""
|
"""Conversion for IBM's GraniteForCausalLM"""
|
||||||
|
|
|
@ -129,6 +129,7 @@ models = [
|
||||||
{"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", },
|
{"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", },
|
||||||
{"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", },
|
{"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", },
|
||||||
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
|
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
|
||||||
|
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
|
||||||
]
|
]
|
||||||
|
|
||||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||||
|
|
|
@ -354,6 +354,7 @@ class MODEL_ARCH(IntEnum):
|
||||||
JAIS = auto()
|
JAIS = auto()
|
||||||
NEMOTRON = auto()
|
NEMOTRON = auto()
|
||||||
EXAONE = auto()
|
EXAONE = auto()
|
||||||
|
EXAONE4 = auto()
|
||||||
GRANITE = auto()
|
GRANITE = auto()
|
||||||
GRANITE_MOE = auto()
|
GRANITE_MOE = auto()
|
||||||
GRANITE_HYBRID = auto()
|
GRANITE_HYBRID = auto()
|
||||||
|
@ -671,6 +672,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
MODEL_ARCH.JAIS: "jais",
|
MODEL_ARCH.JAIS: "jais",
|
||||||
MODEL_ARCH.NEMOTRON: "nemotron",
|
MODEL_ARCH.NEMOTRON: "nemotron",
|
||||||
MODEL_ARCH.EXAONE: "exaone",
|
MODEL_ARCH.EXAONE: "exaone",
|
||||||
|
MODEL_ARCH.EXAONE4: "exaone4",
|
||||||
MODEL_ARCH.GRANITE: "granite",
|
MODEL_ARCH.GRANITE: "granite",
|
||||||
MODEL_ARCH.GRANITE_MOE: "granitemoe",
|
MODEL_ARCH.GRANITE_MOE: "granitemoe",
|
||||||
MODEL_ARCH.GRANITE_HYBRID: "granitehybrid",
|
MODEL_ARCH.GRANITE_HYBRID: "granitehybrid",
|
||||||
|
@ -2197,6 +2199,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.EXAONE4: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_POST_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
MODEL_TENSOR.FFN_POST_NORM,
|
||||||
|
],
|
||||||
MODEL_ARCH.GRANITE: [
|
MODEL_ARCH.GRANITE: [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.OUTPUT_NORM,
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
|
|
@ -68,6 +68,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||||
{ LLM_ARCH_JAIS, "jais" },
|
{ LLM_ARCH_JAIS, "jais" },
|
||||||
{ LLM_ARCH_NEMOTRON, "nemotron" },
|
{ LLM_ARCH_NEMOTRON, "nemotron" },
|
||||||
{ LLM_ARCH_EXAONE, "exaone" },
|
{ LLM_ARCH_EXAONE, "exaone" },
|
||||||
|
{ LLM_ARCH_EXAONE4, "exaone4" },
|
||||||
{ LLM_ARCH_RWKV6, "rwkv6" },
|
{ LLM_ARCH_RWKV6, "rwkv6" },
|
||||||
{ LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" },
|
{ LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" },
|
||||||
{ LLM_ARCH_RWKV7, "rwkv7" },
|
{ LLM_ARCH_RWKV7, "rwkv7" },
|
||||||
|
@ -1510,6 +1511,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_EXAONE4,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||||
|
}
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_RWKV6,
|
LLM_ARCH_RWKV6,
|
||||||
{
|
{
|
||||||
|
|
|
@ -72,6 +72,7 @@ enum llm_arch {
|
||||||
LLM_ARCH_JAIS,
|
LLM_ARCH_JAIS,
|
||||||
LLM_ARCH_NEMOTRON,
|
LLM_ARCH_NEMOTRON,
|
||||||
LLM_ARCH_EXAONE,
|
LLM_ARCH_EXAONE,
|
||||||
|
LLM_ARCH_EXAONE4,
|
||||||
LLM_ARCH_RWKV6,
|
LLM_ARCH_RWKV6,
|
||||||
LLM_ARCH_RWKV6QWEN2,
|
LLM_ARCH_RWKV6QWEN2,
|
||||||
LLM_ARCH_RWKV7,
|
LLM_ARCH_RWKV7,
|
||||||
|
|
|
@ -56,6 +56,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||||
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
|
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
|
||||||
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
|
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
|
||||||
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
|
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
|
||||||
|
{ "exaone4", LLM_CHAT_TEMPLATE_EXAONE_4 },
|
||||||
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
||||||
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
|
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
|
||||||
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
|
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
|
||||||
|
@ -168,6 +169,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||||
} else if (tmpl_contains(LU8("<|Assistant|>")) && tmpl_contains(LU8("<|User|>")) && tmpl_contains(LU8("<|end▁of▁sentence|>"))) {
|
} else if (tmpl_contains(LU8("<|Assistant|>")) && tmpl_contains(LU8("<|User|>")) && tmpl_contains(LU8("<|end▁of▁sentence|>"))) {
|
||||||
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
|
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
|
||||||
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
|
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
|
||||||
|
if (tmpl_contains("[|tool|]")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_EXAONE_4;
|
||||||
|
}
|
||||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||||
// EXAONE-3.0-7.8B-Instruct
|
// EXAONE-3.0-7.8B-Instruct
|
||||||
return LLM_CHAT_TEMPLATE_EXAONE_3;
|
return LLM_CHAT_TEMPLATE_EXAONE_3;
|
||||||
|
@ -532,6 +536,22 @@ int32_t llm_chat_apply_template(
|
||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "[|assistant|]";
|
ss << "[|assistant|]";
|
||||||
}
|
}
|
||||||
|
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_4) {
|
||||||
|
for (auto message : chat) {
|
||||||
|
std::string role(message->role);
|
||||||
|
if (role == "system") {
|
||||||
|
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
|
||||||
|
} else if (role == "user") {
|
||||||
|
ss << "[|user|]" << trim(message->content) << "\n";
|
||||||
|
} else if (role == "assistant") {
|
||||||
|
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
|
||||||
|
} else if (role == "tool") {
|
||||||
|
ss << "[|tool|]" << trim(message->content) << "[|endofturn|]\n";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (add_ass) {
|
||||||
|
ss << "[|assistant|]";
|
||||||
|
}
|
||||||
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
|
||||||
// this template requires the model to have "\n\n" as EOT token
|
// this template requires the model to have "\n\n" as EOT token
|
||||||
for (size_t i = 0; i < chat.size(); i++) {
|
for (size_t i = 0; i < chat.size(); i++) {
|
||||||
|
|
|
@ -35,6 +35,7 @@ enum llm_chat_template {
|
||||||
LLM_CHAT_TEMPLATE_GLMEDGE,
|
LLM_CHAT_TEMPLATE_GLMEDGE,
|
||||||
LLM_CHAT_TEMPLATE_MINICPM,
|
LLM_CHAT_TEMPLATE_MINICPM,
|
||||||
LLM_CHAT_TEMPLATE_EXAONE_3,
|
LLM_CHAT_TEMPLATE_EXAONE_3,
|
||||||
|
LLM_CHAT_TEMPLATE_EXAONE_4,
|
||||||
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
||||||
LLM_CHAT_TEMPLATE_GRANITE,
|
LLM_CHAT_TEMPLATE_GRANITE,
|
||||||
LLM_CHAT_TEMPLATE_GIGACHAT,
|
LLM_CHAT_TEMPLATE_GIGACHAT,
|
||||||
|
|
|
@ -1490,6 +1490,23 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||||
default: type = LLM_TYPE_UNKNOWN;
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_EXAONE4:
|
||||||
|
{
|
||||||
|
if (hparams.n_layer == 64) { // 32B
|
||||||
|
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||||
|
hparams.n_swa = 4096;
|
||||||
|
hparams.set_swa_pattern(4);
|
||||||
|
}
|
||||||
|
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 30: type = LLM_TYPE_1_2B; break;
|
||||||
|
case 64: type = LLM_TYPE_32B; break;
|
||||||
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_RWKV6:
|
case LLM_ARCH_RWKV6:
|
||||||
case LLM_ARCH_RWKV6QWEN2:
|
case LLM_ARCH_RWKV6QWEN2:
|
||||||
{
|
{
|
||||||
|
@ -4355,6 +4372,39 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_EXAONE4:
|
||||||
|
{
|
||||||
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||||
|
|
||||||
|
// output
|
||||||
|
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||||
|
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||||
|
|
||||||
|
// if output is NULL, init from the input tok embed
|
||||||
|
if (output == NULL) {
|
||||||
|
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
auto & layer = layers[i];
|
||||||
|
|
||||||
|
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
||||||
|
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
||||||
|
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
||||||
|
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
||||||
|
|
||||||
|
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||||
|
|
||||||
|
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
|
||||||
|
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
|
||||||
|
|
||||||
|
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||||
|
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||||
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||||
|
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_RWKV6:
|
case LLM_ARCH_RWKV6:
|
||||||
{
|
{
|
||||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||||
|
@ -13478,6 +13528,142 @@ struct llm_build_exaone : public llm_graph_context {
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template <bool iswa>
|
||||||
|
struct llm_build_exaone4 : public llm_graph_context {
|
||||||
|
llm_build_exaone4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_k;
|
||||||
|
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
|
ggml_tensor * cur;
|
||||||
|
ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = build_inp_embd(model.tok_embd);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_unified_iswa, llm_graph_input_attn_kv_unified>;
|
||||||
|
inp_attn_type * inp_attn = nullptr;
|
||||||
|
|
||||||
|
if constexpr (iswa) {
|
||||||
|
inp_attn = build_attn_inp_kv_unified_iswa();
|
||||||
|
} else {
|
||||||
|
inp_attn = build_attn_inp_kv_unified();
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
// use RoPE for SWA layers or non-SWA models
|
||||||
|
const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE;
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
{
|
||||||
|
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||||
|
|
||||||
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||||
|
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
|
||||||
|
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
||||||
|
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
||||||
|
cb(Qcur, "Qcur_normed", il);
|
||||||
|
cb(Kcur, "Kcur_normed", il);
|
||||||
|
|
||||||
|
if (use_rope) {
|
||||||
|
Qcur = ggml_rope_ext(
|
||||||
|
ctx0, Qcur, inp_pos, rope_factors,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_ext(
|
||||||
|
ctx0, Kcur, inp_pos, rope_factors,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
cur = build_attn(inp_attn, gf,
|
||||||
|
model.layers[il].wo, NULL,
|
||||||
|
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
||||||
|
cb(cur, "attn_out", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (il == n_layer - 1 && inp_out_ids) {
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = build_norm(cur,
|
||||||
|
model.layers[il].attn_post_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
cb(cur, "attn_post_norm", il);
|
||||||
|
|
||||||
|
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
cur = build_ffn(ffn_inp,
|
||||||
|
model.layers[il].ffn_up, NULL, NULL,
|
||||||
|
model.layers[il].ffn_gate, NULL, NULL,
|
||||||
|
model.layers[il].ffn_down, NULL, NULL,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
cur = build_norm(cur,
|
||||||
|
model.layers[il].ffn_post_norm, NULL,
|
||||||
|
LLM_NORM_RMS, -1);
|
||||||
|
cb(cur, "ffn_post_norm", -1);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
|
||||||
|
cur = build_cvec(cur, il);
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = build_norm(cur,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM_RMS, -1);
|
||||||
|
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
res->t_embd = cur;
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = build_lora_mm(model.output, cur);
|
||||||
|
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
res->t_logits = cur;
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
struct llm_build_rwkv6_base : public llm_graph_context {
|
struct llm_build_rwkv6_base : public llm_graph_context {
|
||||||
const llama_model & model;
|
const llama_model & model;
|
||||||
|
|
||||||
|
@ -17163,6 +17349,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||||
{
|
{
|
||||||
llm = std::make_unique<llm_build_exaone>(*this, params);
|
llm = std::make_unique<llm_build_exaone>(*this, params);
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_EXAONE4:
|
||||||
|
{
|
||||||
|
if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
|
||||||
|
llm = std::make_unique<llm_build_exaone4<true>>(*this, params, gf);
|
||||||
|
} else {
|
||||||
|
llm = std::make_unique<llm_build_exaone4<false>>(*this, params, gf);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_RWKV6:
|
case LLM_ARCH_RWKV6:
|
||||||
{
|
{
|
||||||
llm = std::make_unique<llm_build_rwkv6>(*this, params);
|
llm = std::make_unique<llm_build_rwkv6>(*this, params);
|
||||||
|
@ -17430,6 +17624,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||||
case LLM_ARCH_ORION:
|
case LLM_ARCH_ORION:
|
||||||
case LLM_ARCH_NEMOTRON:
|
case LLM_ARCH_NEMOTRON:
|
||||||
case LLM_ARCH_EXAONE:
|
case LLM_ARCH_EXAONE:
|
||||||
|
case LLM_ARCH_EXAONE4:
|
||||||
case LLM_ARCH_MINICPM3:
|
case LLM_ARCH_MINICPM3:
|
||||||
case LLM_ARCH_DOTS1:
|
case LLM_ARCH_DOTS1:
|
||||||
case LLM_ARCH_HUNYUAN_MOE:
|
case LLM_ARCH_HUNYUAN_MOE:
|
||||||
|
|
|
@ -1925,6 +1925,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||||
} else if (
|
} else if (
|
||||||
tokenizer_pre == "exaone") {
|
tokenizer_pre == "exaone") {
|
||||||
pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE;
|
pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE;
|
||||||
|
} else if (
|
||||||
|
tokenizer_pre == "exaone4") {
|
||||||
|
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
|
||||||
} else if (
|
} else if (
|
||||||
tokenizer_pre == "chameleon") {
|
tokenizer_pre == "chameleon") {
|
||||||
pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
|
pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
|
||||||
|
|
Loading…
Reference in New Issue