model : add EXAONE 4.0 support (#14630)

This commit is contained in:
lgai-exaone 2025-07-18 17:45:49 +09:00 committed by GitHub
parent f9a31eea06
commit e0cb5c5cb8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 333 additions and 0 deletions

View File

@ -843,6 +843,9 @@ class TextModel(ModelBase):
if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51": if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
# ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
res = "lfm2" res = "lfm2"
if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
res = "exaone4"
if res is None: if res is None:
logger.warning("\n") logger.warning("\n")
@ -6780,6 +6783,75 @@ class ExaoneModel(TextModel):
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
@ModelBase.register("Exaone4ForCausalLM")
class Exaone4Model(TextModel):
model_arch = gguf.MODEL_ARCH.EXAONE4
def set_vocab(self):
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if hparams.get("sliding_window") is not None:
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
if "layer_types" in hparams:
self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
elif "sliding_window_pattern" in hparams:
sliding_window_pattern = []
if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
for i in range(hparams["num_hidden_layers"]):
sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
for i in range(hparams["num_hidden_layers"]):
sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10_000.0)
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 16.0)
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
rope_factors = []
for freq in freqs:
wavelen = 2 * math.pi / freq
if wavelen < high_freq_wavelen:
rope_factors.append(1)
elif wavelen > low_freq_wavelen:
rope_factors.append(factor)
else:
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
@ModelBase.register("GraniteForCausalLM") @ModelBase.register("GraniteForCausalLM")
class GraniteModel(LlamaModel): class GraniteModel(LlamaModel):
"""Conversion for IBM's GraniteForCausalLM""" """Conversion for IBM's GraniteForCausalLM"""

View File

@ -129,6 +129,7 @@ models = [
{"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", }, {"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", },
{"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", }, {"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", },
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"}, {"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
] ]
# some models are known to be broken upstream, so we will skip them as exceptions # some models are known to be broken upstream, so we will skip them as exceptions

View File

@ -354,6 +354,7 @@ class MODEL_ARCH(IntEnum):
JAIS = auto() JAIS = auto()
NEMOTRON = auto() NEMOTRON = auto()
EXAONE = auto() EXAONE = auto()
EXAONE4 = auto()
GRANITE = auto() GRANITE = auto()
GRANITE_MOE = auto() GRANITE_MOE = auto()
GRANITE_HYBRID = auto() GRANITE_HYBRID = auto()
@ -671,6 +672,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.JAIS: "jais", MODEL_ARCH.JAIS: "jais",
MODEL_ARCH.NEMOTRON: "nemotron", MODEL_ARCH.NEMOTRON: "nemotron",
MODEL_ARCH.EXAONE: "exaone", MODEL_ARCH.EXAONE: "exaone",
MODEL_ARCH.EXAONE4: "exaone4",
MODEL_ARCH.GRANITE: "granite", MODEL_ARCH.GRANITE: "granite",
MODEL_ARCH.GRANITE_MOE: "granitemoe", MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.GRANITE_HYBRID: "granitehybrid", MODEL_ARCH.GRANITE_HYBRID: "granitehybrid",
@ -2197,6 +2199,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.EXAONE4: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.GRANITE: [ MODEL_ARCH.GRANITE: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,

View File

@ -68,6 +68,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_JAIS, "jais" },
{ LLM_ARCH_NEMOTRON, "nemotron" }, { LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_EXAONE4, "exaone4" },
{ LLM_ARCH_RWKV6, "rwkv6" }, { LLM_ARCH_RWKV6, "rwkv6" },
{ LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" }, { LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" },
{ LLM_ARCH_RWKV7, "rwkv7" }, { LLM_ARCH_RWKV7, "rwkv7" },
@ -1510,6 +1511,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
}, },
}, },
{
LLM_ARCH_EXAONE4,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
}
},
{ {
LLM_ARCH_RWKV6, LLM_ARCH_RWKV6,
{ {

View File

@ -72,6 +72,7 @@ enum llm_arch {
LLM_ARCH_JAIS, LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON, LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE, LLM_ARCH_EXAONE,
LLM_ARCH_EXAONE4,
LLM_ARCH_RWKV6, LLM_ARCH_RWKV6,
LLM_ARCH_RWKV6QWEN2, LLM_ARCH_RWKV6QWEN2,
LLM_ARCH_RWKV7, LLM_ARCH_RWKV7,

View File

@ -56,6 +56,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE }, { "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM }, { "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 }, { "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "exaone4", LLM_CHAT_TEMPLATE_EXAONE_4 },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD }, { "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE }, { "granite", LLM_CHAT_TEMPLATE_GRANITE },
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT }, { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
@ -168,6 +169,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
} else if (tmpl_contains(LU8("<Assistant>")) && tmpl_contains(LU8("<User>")) && tmpl_contains(LU8("<end▁of▁sentence>"))) { } else if (tmpl_contains(LU8("<Assistant>")) && tmpl_contains(LU8("<User>")) && tmpl_contains(LU8("<end▁of▁sentence>"))) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_3; return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) { } else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
if (tmpl_contains("[|tool|]")) {
return LLM_CHAT_TEMPLATE_EXAONE_4;
}
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb // ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct // EXAONE-3.0-7.8B-Instruct
return LLM_CHAT_TEMPLATE_EXAONE_3; return LLM_CHAT_TEMPLATE_EXAONE_3;
@ -532,6 +536,22 @@ int32_t llm_chat_apply_template(
if (add_ass) { if (add_ass) {
ss << "[|assistant|]"; ss << "[|assistant|]";
} }
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_4) {
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
} else if (role == "user") {
ss << "[|user|]" << trim(message->content) << "\n";
} else if (role == "assistant") {
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
} else if (role == "tool") {
ss << "[|tool|]" << trim(message->content) << "[|endofturn|]\n";
}
}
if (add_ass) {
ss << "[|assistant|]";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) { } else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
// this template requires the model to have "\n\n" as EOT token // this template requires the model to have "\n\n" as EOT token
for (size_t i = 0; i < chat.size(); i++) { for (size_t i = 0; i < chat.size(); i++) {

View File

@ -35,6 +35,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_GLMEDGE, LLM_CHAT_TEMPLATE_GLMEDGE,
LLM_CHAT_TEMPLATE_MINICPM, LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3, LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_EXAONE_4,
LLM_CHAT_TEMPLATE_RWKV_WORLD, LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE, LLM_CHAT_TEMPLATE_GRANITE,
LLM_CHAT_TEMPLATE_GIGACHAT, LLM_CHAT_TEMPLATE_GIGACHAT,

View File

@ -1490,6 +1490,23 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN; default: type = LLM_TYPE_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_EXAONE4:
{
if (hparams.n_layer == 64) { // 32B
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.n_swa = 4096;
hparams.set_swa_pattern(4);
}
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 30: type = LLM_TYPE_1_2B; break;
case 64: type = LLM_TYPE_32B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6:
case LLM_ARCH_RWKV6QWEN2: case LLM_ARCH_RWKV6QWEN2:
{ {
@ -4355,6 +4372,39 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
} }
} break; } break;
case LLM_ARCH_EXAONE4:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6:
{ {
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -13478,6 +13528,142 @@ struct llm_build_exaone : public llm_graph_context {
} }
}; };
template <bool iswa>
struct llm_build_exaone4 : public llm_graph_context {
llm_build_exaone4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_unified_iswa, llm_graph_input_attn_kv_unified>;
inp_attn_type * inp_attn = nullptr;
if constexpr (iswa) {
inp_attn = build_attn_inp_kv_unified_iswa();
} else {
inp_attn = build_attn_inp_kv_unified();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// use RoPE for SWA layers or non-SWA models
const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE;
cur = inpL;
// self-attention
{
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
cur = build_norm(cur,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_ffn(ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_rwkv6_base : public llm_graph_context { struct llm_build_rwkv6_base : public llm_graph_context {
const llama_model & model; const llama_model & model;
@ -17163,6 +17349,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{ {
llm = std::make_unique<llm_build_exaone>(*this, params); llm = std::make_unique<llm_build_exaone>(*this, params);
} break; } break;
case LLM_ARCH_EXAONE4:
{
if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
llm = std::make_unique<llm_build_exaone4<true>>(*this, params, gf);
} else {
llm = std::make_unique<llm_build_exaone4<false>>(*this, params, gf);
}
} break;
case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6:
{ {
llm = std::make_unique<llm_build_rwkv6>(*this, params); llm = std::make_unique<llm_build_rwkv6>(*this, params);
@ -17430,6 +17624,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_ORION: case LLM_ARCH_ORION:
case LLM_ARCH_NEMOTRON: case LLM_ARCH_NEMOTRON:
case LLM_ARCH_EXAONE: case LLM_ARCH_EXAONE:
case LLM_ARCH_EXAONE4:
case LLM_ARCH_MINICPM3: case LLM_ARCH_MINICPM3:
case LLM_ARCH_DOTS1: case LLM_ARCH_DOTS1:
case LLM_ARCH_HUNYUAN_MOE: case LLM_ARCH_HUNYUAN_MOE:

View File

@ -1925,6 +1925,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
} else if ( } else if (
tokenizer_pre == "exaone") { tokenizer_pre == "exaone") {
pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE; pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE;
} else if (
tokenizer_pre == "exaone4") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
} else if ( } else if (
tokenizer_pre == "chameleon") { tokenizer_pre == "chameleon") {
pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON; pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;