ggml : support bcast ggml_soft_max_ext, ggml_flash_attn_ext (#14435)

ggml-ci
This commit is contained in:
Georgi Gerganov 2025-06-27 21:50:57 +03:00
parent 307e79d33d
commit ec68e84c32
11 changed files with 250 additions and 156 deletions

View File

@ -1510,8 +1510,14 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// a [ne0, ne01, ne02, ne03]
// mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
//
// broadcast:
// ne02 % ne12 == 0
// ne03 % ne13 == 0
//
// fused soft_max(a*scale + mask*(ALiBi slope))
// mask is optional
// max_bias = 0.0f for no ALiBi
GGML_API struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
@ -1974,11 +1980,16 @@ extern "C" {
#define GGML_KQ_MASK_PAD 64
// q: [n_embd_k, n_batch, n_head, 1]
// k: [n_embd_k, n_kv, n_head_kv, 1]
// v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
// q: [n_embd_k, n_batch, n_head, ne3]
// k: [n_embd_k, n_kv, n_head_kv, ne3]
// v: [n_embd_v, n_kv, n_head_kv, ne3] !! not transposed !!
// mask: [n_kv, n_batch_pad, ne32, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd_v, n_head, n_batch, ne3] !! permuted !!
//
// broadcast:
// n_head % n_head_kv == 0
// ne3 % ne32 == 0
//
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,

View File

@ -2187,7 +2187,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_SQRT:
case GGML_OP_CLAMP:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
@ -2205,6 +2204,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
case GGML_OP_SOFT_MAX:
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
case GGML_OP_FLASH_ATTN_EXT:{
// derived from [ggml-cuda.cu]
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
@ -2227,6 +2230,8 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
// DeepSeek MLA
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
if (op->src[0]->ne[3] != 1) {
return false;
}

View File

@ -5232,14 +5232,17 @@ static void ggml_compute_forward_soft_max_f32(
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
// TODO: handle transposed/permuted matrices
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
//const int64_t ne11 = src1 ? src1->ne[1] : 1;
const int64_t nb11 = src1 ? src1->nb[1] : 1;
const int64_t nb12 = src1 ? src1->nb[2] : 1;
const int64_t nb13 = src1 ? src1->nb[3] : 1;
const int64_t ne12 = src1 ? src1->ne[2] : 1;
const int64_t ne13 = src1 ? src1->ne[3] : 1;
// TODO: is this supposed to be ceil instead of floor?
// https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
@ -5249,68 +5252,66 @@ static void ggml_compute_forward_soft_max_f32(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
float * wp = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
for (int i1 = ir0; i1 < ir1; i1++) {
// ALiBi
const uint32_t h = (i1/ne01)%ne02; // head
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const int64_t i11 = i01;
const int64_t i12 = i02%ne12;
const int64_t i13 = i03%ne13;
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
// ALiBi
const uint32_t h = i02; // head
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
// broadcast the mask across rows
ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
float * sp = (float *)((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
float * dp = (float *)((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
ggml_vec_cpy_f32 (nc, wp, sp);
ggml_vec_scale_f32(nc, wp, scale);
if (mp_f32) {
if (use_f16) {
for (int i = 0; i < nc; ++i) {
wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
// broadcast the mask across rows
ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
float * mp_f32 = src1 ? (float *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
ggml_vec_cpy_f32 (ne00, wp, sp);
ggml_vec_scale_f32(ne00, wp, scale);
if (mp_f32) {
if (use_f16) {
for (int i = 0; i < ne00; ++i) {
wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
}
} else {
for (int i = 0; i < ne00; ++i) {
wp[i] += slope*mp_f32[i];
}
}
}
} else {
for (int i = 0; i < nc; ++i) {
wp[i] += slope*mp_f32[i];
#ifndef NDEBUG
for (int i = 0; i < ne00; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(wp[i]));
}
#endif
float max = -INFINITY;
ggml_vec_max_f32(ne00, &max, wp);
ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(ne00, dp, sum);
#ifndef NDEBUG
for (int i = 0; i < ne00; ++i) {
assert(!isnan(dp[i]));
assert(!isinf(dp[i]));
}
#endif
}
}
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(wp[i]));
}
#endif
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, wp);
ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(nc, dp, sum);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(dp[i]));
assert(!isinf(dp[i]));
}
#endif
}
}
@ -7766,7 +7767,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
@ -7798,7 +7799,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
memset(VKQ32, 0, DV*sizeof(float));
}
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1] + (iq3%mask->ne[2])*mask->nb[2]) : NULL;
// k indices
const int ik3 = iq3 / rk3;

View File

@ -3327,8 +3327,15 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_CONT:
return op->src[0]->type != GGML_TYPE_BF16;
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_SOFT_MAX:
// TODO: support batching
if (op->src[0]->ne[3] != 1) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
case GGML_OP_SOFT_MAX_BACK: {
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
@ -3375,6 +3382,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (op->src[0]->ne[0] == 192) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
if (op->src[0]->ne[3] != 1) {
return false;
}

View File

@ -229,7 +229,9 @@ typedef struct {
uint64_t nb21;
uint64_t nb22;
uint64_t nb23;
int32_t ne32;
uint64_t nb31;
uint64_t nb32;
int32_t ne1;
int32_t ne2;
float scale;
@ -461,9 +463,21 @@ typedef struct {
} ggml_metal_kargs_sum_rows;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int32_t ne00;
int32_t ne01;
int32_t ne02;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne11;
int32_t ne12;
int32_t ne13;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
float scale;
float max_bias;
float m0;

View File

@ -1725,7 +1725,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_MEAN:
case GGML_OP_SOFT_MAX:
case GGML_OP_GROUP_NORM:
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_RMS_NORM:
case GGML_OP_L2_NORM:
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
@ -2644,10 +2644,7 @@ static bool ggml_metal_encode_node(
memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(scale));
memcpy(&max_bias, ((const int32_t *) dst->op_params) + 1, sizeof(max_bias));
const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src0->ne[1];
const uint32_t n_head = nrows_x/nrows_y;
const uint32_t n_head = src0->ne[2];
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
@ -2707,6 +2704,18 @@ static bool ggml_metal_encode_node(
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne11 =*/ ne11,
/*.ne12 =*/ ne12,
/*.ne13 =*/ ne13,
/*.nb11 =*/ nb11,
/*.nb12 =*/ nb12,
/*.nb13 =*/ nb13,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
/*.scale =*/ scale,
/*.max_bias =*/ max_bias,
/*.m0 =*/ m0,
@ -2726,7 +2735,7 @@ static bool ggml_metal_encode_node(
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_DIAG_MASK_INF:
{
@ -4979,7 +4988,9 @@ static bool ggml_metal_encode_node(
/*.nb21 =*/ nb21,
/*.nb22 =*/ nb22,
/*.nb23 =*/ nb23,
/*.ne32 =*/ ne32,
/*.nb31 =*/ nb31,
/*.nb32 =*/ nb32,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.scale =*/ scale,

View File

@ -1320,24 +1320,28 @@ kernel void kernel_soft_max(
device char * dst,
constant ggml_metal_kargs_soft_max & args,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (args.ne02*args.ne01);
const int64_t i02 = (tgpig - i03*args.ne02*args.ne01) / args.ne01;
const int64_t i01 = (tgpig - i03*args.ne02*args.ne01 - i02*args.ne01);
uint3 tptg[[threads_per_threadgroup]]) {
const int32_t i03 = tgpig.z;
const int32_t i02 = tgpig.y;
const int32_t i01 = tgpig.x;
device const float * psrc0 = (device const float *) src0 + (i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00);
device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*args.ne00 : nullptr;
device float * pdst = (device float *) dst + (i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00);
const int32_t i13 = i03%args.ne13;
const int32_t i12 = i02%args.ne12;
const int32_t i11 = i01;
device const float * psrc0 = (device const float *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
device float * pdst = (device float *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
float slope = 1.0f;
// ALiBi
if (args.max_bias > 0.0f) {
const int64_t h = i02;
const int32_t h = i02;
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
const int exp = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
@ -1348,13 +1352,13 @@ kernel void kernel_soft_max(
// parallel max
float lmax = -INFINITY;
for (int i00 = tpitg; i00 < args.ne00; i00 += ntg) {
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
lmax = MAX(lmax, psrc0[i00]*args.scale + (pmask ? slope*pmask[i00] : 0.0f));
}
// find the max value in the block
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (tptg.x > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
@ -1373,7 +1377,7 @@ kernel void kernel_soft_max(
// parallel sum
float lsum = 0.0f;
for (int i00 = tpitg; i00 < args.ne00; i00 += ntg) {
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
const float exp_psrc0 = exp((psrc0[i00]*args.scale + (pmask ? slope*pmask[i00] : 0.0f)) - max_val);
lsum += exp_psrc0;
pdst[i00] = exp_psrc0;
@ -1385,7 +1389,7 @@ kernel void kernel_soft_max(
float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (tptg.x > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
@ -1404,7 +1408,7 @@ kernel void kernel_soft_max(
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg; i00 < args.ne00; i00 += ntg) {
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
pdst[i00] *= inv_sum;
}
}
@ -1416,23 +1420,27 @@ kernel void kernel_soft_max_4(
device char * dst,
constant ggml_metal_kargs_soft_max & args,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (args.ne02*args.ne01);
const int64_t i02 = (tgpig - i03*args.ne02*args.ne01) / args.ne01;
const int64_t i01 = (tgpig - i03*args.ne02*args.ne01 - i02*args.ne01);
uint3 tptg[[threads_per_threadgroup]]) {
const int32_t i03 = tgpig.z;
const int32_t i02 = tgpig.y;
const int32_t i01 = tgpig.x;
device const float4 * psrc4 = (device const float4 *) src0 + (i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00)/4;
device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*args.ne00/4 : nullptr;
device float4 * pdst4 = (device float4 *) dst + (i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00)/4;
const int32_t i13 = i03%args.ne13;
const int32_t i12 = i02%args.ne12;
const int32_t i11 = i01;
device const float4 * psrc4 = (device const float4 *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
device float4 * pdst4 = (device float4 *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
float slope = 1.0f;
if (args.max_bias > 0.0f) {
const int64_t h = i02;
const int32_t h = i02;
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
const int exp = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
@ -1443,14 +1451,14 @@ kernel void kernel_soft_max_4(
// parallel max
float4 lmax4 = -INFINITY;
for (int i00 = tpitg; i00 < args.ne00/4; i00 += ntg) {
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
lmax4 = fmax(lmax4, psrc4[i00]*args.scale + (float4)((pmask ? slope*pmask[i00] : 0.0f)));
}
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (tptg.x > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
@ -1469,7 +1477,7 @@ kernel void kernel_soft_max_4(
// parallel sum
float4 lsum4 = 0.0f;
for (int i00 = tpitg; i00 < args.ne00/4; i00 += ntg) {
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
const float4 exp_psrc4 = exp((psrc4[i00]*args.scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))) - max_val);
lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4;
@ -1483,7 +1491,7 @@ kernel void kernel_soft_max_4(
float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (tptg.x > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
@ -1502,7 +1510,7 @@ kernel void kernel_soft_max_4(
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg; i00 < args.ne00/4; i00 += ntg) {
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
pdst4[i00] *= inv_sum;
}
}
@ -3776,7 +3784,7 @@ kernel void kernel_flash_attn_ext(
// load the mask in shared memory
#pragma unroll(Q)
for (short j = 0; j < Q; ++j) {
device const half * pm = (device const half *) ((device const char *) mask + (iq1 + j)*args.nb31);
device const half * pm = (device const half *) ((device const char *) mask + (iq1 + j)*args.nb31 + (iq3%args.ne32)*args.nb32);
const float m = pm[ic + tiisg];
@ -4262,7 +4270,7 @@ kernel void kernel_flash_attn_ext_vec(
const bool has_mask = mask != q;
// pointer to the mask
device const half * pm = (device const half *) (mask + iq1*args.nb31);
device const half * pm = (device const half *) (mask + iq1*args.nb31 + (iq3%args.ne32)*args.nb32);
float slope = 1.0f;

View File

@ -4395,9 +4395,15 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
return true;
case GGML_OP_CONT:
return op->src[0]->type != GGML_TYPE_BF16;
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
return true;
// TODO: support batching
if (op->src[0]->ne[3] != 1) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_ROPE:
case GGML_OP_IM2COL:
return true;

View File

@ -10248,6 +10248,11 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
if (op->src[3] && op->src[3]->type != GGML_TYPE_F16) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
if (op->src[0]->ne[3] != 1) {
return false;
}
// It's straightforward to support different K/V dequant, but would
// significantly increase the number of pipelines
if (op->src[1]->type != op->src[2]->type) {
@ -10406,7 +10411,15 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_SCALE:
case GGML_OP_PAD:
case GGML_OP_DIAG_MASK_INF:
return true;
case GGML_OP_SOFT_MAX:
// TODO: support batching
if (op->src[0]->ne[3] != 1) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:

View File

@ -3666,9 +3666,11 @@ static struct ggml_tensor * ggml_soft_max_impl(
if (mask) {
GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(ggml_is_matrix(mask));
GGML_ASSERT(ggml_is_3d(mask));
GGML_ASSERT(mask->ne[0] == a->ne[0]);
GGML_ASSERT(mask->ne[1] >= a->ne[1]);
GGML_ASSERT(a->ne[2]%mask->ne[2] == 0);
GGML_ASSERT(a->ne[3]%mask->ne[3] == 0);
}
if (max_bias > 0.0f) {
@ -4689,13 +4691,17 @@ struct ggml_tensor * ggml_flash_attn_ext(
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
GGML_ASSERT(q->ne[3] == k->ne[3]);
GGML_ASSERT(q->ne[3] == v->ne[3]);
if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1);
GGML_ASSERT(mask->ne[3] == 1);
GGML_ASSERT(mask->ne[2] == q->ne[3]);
GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
"the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
//GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
GGML_ASSERT(q->ne[3] % mask->ne[2] == 0);
}
if (max_bias > 0.0f) {

View File

@ -2685,11 +2685,12 @@ struct test_soft_max : public test_case {
const std::array<int64_t, 4> ne;
const bool mask;
const ggml_type m_prec;
const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
const float scale;
const float max_bias;
std::string vars() override {
return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
return VARS_TO_STR7(type, ne, mask, m_prec, nr23, scale, max_bias);
}
// the 1024 test with bias occasionally fails:
@ -2702,18 +2703,19 @@ struct test_soft_max : public test_case {
std::array<int64_t, 4> ne = {10, 5, 4, 3},
bool mask = false,
ggml_type m_prec = GGML_TYPE_F32,
std::array<int64_t, 2> nr23 = {1, 1},
float scale = 1.0f,
float max_bias = 0.0f)
: type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
: type(type), ne(ne), mask(mask), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_tensor * mask = nullptr;
if (this->mask) {
mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
ggml_set_name(mask, "mask");
}
@ -3544,7 +3546,7 @@ struct test_flash_attn_ext : public test_case {
const int64_t hsk; // K head size
const int64_t hsv; // V head size
const int64_t nh; // num heads
const int64_t nr; // repeat in Q, tests for grouped-query attention
const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
const int64_t kv; // kv size
const int64_t nb; // batch size
@ -3558,7 +3560,7 @@ struct test_flash_attn_ext : public test_case {
std::array<int32_t, 4> permute;
std::string vars() override {
return VARS_TO_STR12(hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
return VARS_TO_STR12(hsk, hsv, nh, nr23, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
}
double max_nmse_err() override {
@ -3569,13 +3571,13 @@ struct test_flash_attn_ext : public test_case {
GGML_UNUSED(t);
// Just counting matmul costs:
// Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
return 2 * nh*nr * nb * (hsk + hsv) * kv;
return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
}
test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96, int64_t nb = 8,
test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
: hsk(hsk), hsv(hsv), nh(nh), nr(nr), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
: hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
@ -3594,18 +3596,18 @@ struct test_flash_attn_ext : public test_case {
return t;
};
ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr, 1);
ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1]);
ggml_set_name(q, "q");
ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, 1);
ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1]);
ggml_set_name(k, "k");
ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, 1);
ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1]);
ggml_set_name(v, "v");
ggml_tensor * m = nullptr;
if (mask) {
m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), nr23[1], 1);
ggml_set_name(m, "m");
}
@ -4714,26 +4716,31 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
for (int64_t ne1 : {16, 1024}) {
if (mask) {
for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
if (ne0 <= 32 && ne1 <= 32) {
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, {3, 1}, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {2, 3}, scale, max_bias));
}
}
} else {
/* The precision of mask here doesn't matter as boolean mask is false */
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
}
}
}
}
}
}
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
for (float max_bias : {0.0f, 8.0f}) {
for (float scale : {1.0f, 0.1f}) {
@ -4833,20 +4840,23 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
for (float logit_softcap : {0.0f, 10.0f}) {
if (hsk != 128 && logit_softcap != 0.0f) continue;
for (int nh : { 4, }) {
for (int nr : { 1, 4, 16 }) {
if (nr == 16 && hsk != 128) continue;
for (int kv : { 512, 1024, }) {
if (nr != 1 && kv != 512) continue;
for (int nb : { 1, 3, 32, 35, }) {
for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
test_cases.emplace_back(new test_flash_attn_ext(
hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
// run fewer test cases permuted
if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
for (int nr3 : { 1, 3, }) {
if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
for (int nr2 : { 1, 4, 16 }) {
if (nr2 == 16 && hsk != 128) continue;
for (int kv : { 512, 1024, }) {
if (nr2 != 1 && kv != 512) continue;
for (int nb : { 1, 3, 32, 35, }) {
for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
test_cases.emplace_back(new test_flash_attn_ext(
hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
// run fewer test cases permuted
if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
test_cases.emplace_back(new test_flash_attn_ext(
hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
}
}
}
}
@ -4890,13 +4900,13 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
@ -4928,7 +4938,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
for (int kv : { 4096, 8192, 16384, }) {
for (int hs : { 64, 128, }) {
for (int nr : { 1, 4, }) {
test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, nr, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
}
}
}