* vulkan: Add bfloat16 support
This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16.
The extension is required for coopmat multiply support, but matrix-vector
multiply trivially promotes bf16 to fp32 and doesn't require the extension.
The copy/get_rows shaders also don't require the extension.
It's probably possible to fall back to non-coopmat and promote to fp32 when
the extension isn't supported, but this change doesn't do that.
The coopmat support also requires a glslc that supports the extension, which
currently requires a custom build.
* vulkan: Support bf16 tensors without the bf16 extension or coopmat support
Compile a variant of the scalar mul_mm shader that will promote the bf16
values to float, and use that when either the bf16 extension or the coopmat
extensions aren't available.
* vulkan: bfloat16 fixes (really works without bfloat16 support now)
* vulkan: fix spirv-val failure and reenable -O
* tune matmul for gcn
* this one is more power efficient
* Update ggml/src/ggml-vulkan/ggml-vulkan.cpp
Co-authored-by: 0cc4m <picard12@live.de>
* disable this tune for the proprietary driver
---------
Co-authored-by: 0cc4m <picard12@live.de>
* graph : make mla compatible with FA
* metal : add exp FA kernels for DeepSeek models
ggml-ci
* llama : minor naming updates
ggml-ci
* ggml : disable FA for DS head sizes
* tests : add FA tests for MLA shapes
ggml-ci
The grouped query attention optmization doesn't require a power of two ratio,
the only thing relying on it was the modulo operation written as bitwise &.
split_k need not depend on gqa_ratio - enable it any time there's only one
workgroup in the X dimension. The shader gets the split index from the x coord,
and multiple workgroups in the X dimension (pre-split) indicates a larger
FA operation that wouldn't need splitting.
q4_k and q5_k had a lot of redundant global loads where the same 16B of
scale information is repeatedly loaded and decoded during each loop iteration.
This change restructures the loops to more explicitly iterate over whole
blocks in the outer loop (with unrolled inner loop) and to copy/decode the
scale data into shared memory once at the start of each outer loop. The copy
is pipelined so the scale load from global memory is relatively cheap.
This improves q4_k/q5_k model prompt processing performance by around 5-7%.
I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k
and hurt for q4_0.
The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped
variants isn't used as often as it originally was (e.g. due to the padded_N
change), so I trimmed it down to offset some of the new complexity of the
semi-manual loop unrolling.
nem1 must be a multiple of GGML_KQ_MASK_PAD, and GGML_KQ_MASK_PAD is a multiple
of the number of rows in the matrix. The KV dim is a multiple of the number of
columns for the aligned shader.
There seems to be a bubble waking up from waitForFences, which costs a few
percent performance and also increased variance in performance. This change
inserts an "almost_ready" fence when the graph is about 80% complete and we
waitForFences for the almost_ready fence and then spin (with _mm_pauses) waiting
for the final fence to be signaled.
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
When adjacent batches of Q share the same batches of K/V, batch them into
the same workgroup. For example, when:
dst(128,32,1,1) = FA(q(128,1,32,1), k(128,16640,8,1), v(128,16640,8,1))
previously we would run 32 workgroups computing 1 result each, now we will
run 8 workgroups computing 4 results each.
This doesn't directly translate to better performance (at least when you have
>=32 SMs), but in a subsequent change I'll enable split_k which will scale much
better with 4x fewer workgroups.
* ggml : FA with different K, V head sizes (CPU)
ggml-ci
* metal : add FA with HS=192
* metal : extend FA to support different K and V head sizes
ggml-ci
* metal : add FA vector kernels for heads K 192 and V 128
ggml-ci
* ggml : restrict op on other backends to equal head sizes
ggml-ci
* metal : optimize FA-vec kernel
ggml-ci
* metal : FA remove mq registers
* metal : improve MoE mul_mat_id condition
ggml-ci
* metal : fix comments + remove unnecessary addition
ggml-ci
* metal : avoid too much shared memory usage with mul_mat_id
ggml-ci
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders
* vulkan: Optimize mul_mat_vec p021 and nc shaders.
These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).
Using subgroupAdd in the p021 shader also helps, use that conditionally.
I've been seeing significantly worse performance for tg with flash attention
enabled vs disabled, and it seems to be related to the submit heuristic.
Change the heuristic to check how many bytes worth of weight matrix are
used and flush every 100MB, and ramp up after the first few submits.
This seems to resolve the issue, and also increases perf for non-FA a bit.
* Upgrade init_tensor API to return a ggml_status
To prepare for an 'abort-free' ggml
(ggml not to abort on OOMs but return a OOM status),
as agreeed with Diego in the ggml repo,
upgrade the init_tensor() and view_init() APIs
to return a ggml_status.
* misc fixes
---------
Co-authored-by: slaren <slarengh@gmail.com>
* vulkan: implement specialized MMV kernels for IQ2 quantizations
* vulkan: add MMV kernels for IQ3 quants
* vulkan: Increase MMV batch size and unroll IQ LUT setup
* vulkan: fix init_iq_shmem for WG sizes larger than tables
* vulkan: common batch size for all I-quants
* vulkan: initial support for IQ1_S and IQ1_M quantizations
* vulkan: define MMV kernels for IQ1 quantizations
* devops: increase timeout of Vulkan tests again
* vulkan: simplify ifdef for init_iq_shmem
* vulkan: initial support for IQ3_S
* vulkan: initial support for IQ3_XXS
* vulkan: initial support for IQ2_XXS
* vulkan: initial support for IQ2_XS
* vulkan: optimize Q3_K by removing branches
* vulkan: implement dequantize variants for coopmat2
* vulkan: initial support for IQ2_S
* vulkan: vertically realign code
* port failing dequant callbacks from mul_mm
* Fix array length mismatches
* vulkan: avoid using workgroup size before it is referenced
* tests: increase timeout for Vulkan llvmpipe backend
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
With robustbufferaccess disabled, this shader was showing OOB stores. There
is a bounds check in the code, but the workgrouop dimensions were reversed vs
CUDA and it was running the wrong number of threads. So fix the workgroup
dimensions and disable robustness for this pipeline.
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.
coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.
Add code similar to mul_mm_cm2 to force alignment of strides, to avoid
a performance regression.
Add noncontiguous FA tests in test-backend-ops.
Fixes#11268.
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl
Shaders are based on cpy.cu.
* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32
* ggml: copy q->f32 assumes some contiguity in the destination
* Disable GL_KHR_cooperative_matrix Vulkan extension if not available.
* Perform Vulkan extensions checks in a more sensible order
* Remove unnecessary #ifdef directive
Make the mul_mat_vec shaders support N>1 (as a spec constant, NUM_COLS) where
the batch_strides are overloaded to hold the row strides. Put the loads from the
B matrix in the innermost loop because it should cache better.
Share some code for reducing the result values to memory in mul_mat_vec_base.
* tests: Add im2col perf tests
* vulkan: optimize im2col, more elements per thread
* vulkan: increase small tile size for NV_coopmat2
* vulkan: change im2col to 512 elements per workgroup
* ensure mul mat shaders work on systems with subgroup size less than 32
more fixes
add test
* only s_warptile_mmq needs to be run with 32 threads or more
* double the number of rows per workgroup
* Update ggml-vulkan.cpp
* Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats
* only increase the number of rows for amd and subgroup size 64
* fix missing NUM_ROWS for mul_mat_vec_iq4_nl_f16_f32, untested
* use subgroup min and max to check for gcn (requires https://github.com/ggerganov/llama.cpp/pull/10721)
* manual merge ggml-vulkan.cpp
* set min and max subgroup size in any case
* Also double the number of rows for Intel GPUs
* Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats
* Fix subgroup size control extension support check
Add accf32 and accf16 checks for coopmats
* Also disable coopmats on amdvlk
Vulkan doesn't mandate a specific rounding mode, but the shader_float_controls
feature allows rounding mode to be requested if the implementation supports it.
There are some bugs in the 1.3.296 SDK, so disable this. It isn't strictly
necessary anyway.
Add missing dependency on vulkan-shaders-gen, so shaders get recompiled when it
changes.
Fix coopmat support reporting when glslc doesn't support NV_coopmat2.
* Vulkan: Implement VK_KHR_cooperative_matrix support in the matrix matrix multiplication shader
* Improve performance with better q4_k and q5_k dequant and store unrolling
* Add Vulkan MUL_MAT and MUL_MAT_ID accumulator precision selection
* Rework mulmat shader selection and compilation logic, avoid compiling shaders that won't get used by device
* Vulkan: Implement accumulator switch for specific mul mat mat shaders
* Vulkan: Unroll more loops for more mul mat mat performance
* Vulkan: Add VK_AMD_shader_core_properties2 support to read Compute Unit count for split_k logic
* Disable coopmat support on AMD proprietary driver
* Remove redundant checks
* Add environment variable GGML_VK_DISABLE_COOPMAT to disable VK_KHR_cooperative_matrix support
* Fix rebase typo
* Fix coopmat2 MUL_MAT_ID pipeline selection
* subgroup 64 version with subgroup add. 15% faster
scalable version
tested for subgroup sizes 16-128
* check for subgroup multiple of 16 and greater than 16
* subgroup sizes are always a power of 2 (https://github.com/KhronosGroup/GLSL/issues/45)
* force 16 sequential threads per block
* make 16 subgroup size a constant
This is an incremental improvement over #9118 to get work to the GPU a bit
sooner. The first part is to start with a smaller number of nodes before
the first submit, and ramp it up to the current 100 nodes/submit. The
second part is to reduce the dryrun overhead for all the nodes that just
need to request descriptor space.
With these changes I get around 1-2% speedup on RTX 4070 combined with my
old Haswell-era CPU.
There have been reports of failure to compile on systems with <= 32KB
of shared memory (e.g. #10037). This change makes the large tile size
fall back to a smaller size if necessary, and makes mul_mat_id fall
back to CPU if there's only 16KB of shared memory.
* vulkan: Use pipeline_robustness to disable robustness in mul_mat_vec.
Add some early returns for nonexistent rows in mul_mat_vec shaders. These
can only be hit when dispatching a 2D grid of workgroups. Fix the logic
for the 2D grid of workgroups to round up.
Enable the pipeline robustness extension if it's available, and use it to
disable robustness for these pipelines. The instructions to do the bounds
checking contend for the same ALU resources as the bit twiddling dequant
instructions.
* vulkan: Add GLSL structure aliases for quant types to allow larger loads
In Vulkan it's not possible to cast pointer types, so instead you have to
declare an aliased binding for the memory with a different type. This
commit adds aliases for the quant formats using 16b ints, and in a few
places where the struct size is a multiple of 4 also using 32b ints.
Currently only q4_k's aliases are used, but others will be used in
subsequent commits.
* vulkan: use larger loads in q5_k and q6_k shaders.
Similar to the optimization I did in q4_k recently, this vectorizes some loads
and reduces the number of bit twiddling instructions.
* vulkan: use larger K step per iteration in mul_mat_vec.
Add vec4 dequantization functions, and use them to do K=8 per iteration in
mul_mat_vec. This uses 16b loads for the quant values and 128b loads for B
which helps reduce the load on the memory system.
The K_PER_ITER==2 logic is still there, just for F16/F32, and really only
because they support unaligned sizes.
Tweak the num_iters/unrolling logic to be simpler and catch a couple missed
unrolling opportunities.
* vulkan: Optimize soft_max
Large soft_max could already saturate memory, but small/medium sizes were
pretty slow. The bulk of the gains for them comes from using a smaller
workgroup size, and making the workgroup size match the subgroup size also
makes the barriers much cheaper.
Cache some values in locals to avoid refetching/recomputing. And stamp
out a few "template instantiations" so smaller cases will fully unroll.
Add a missing early return for OOB rows. This happens when there are more
than 512 rows and the dispatch is 512 x H.
* vulkan: Further soft_max optimizations
Restore the workgroup size of 512 case, use it for >1024.
Use unrollable loops for more iteration counts.
Compute two result elements per workgroup (for Q{4,5}_{0,1}). This reuses
the B loads across the rows and also reuses some addressing calculations.
This required manually partially unrolling the loop, since the compiler
is less willing to unroll outer loops.
Add bounds-checking on the last iteration of the loop. I think this was at
least partly broken before.
Optimize the Q4_K shader to vectorize most loads and reduce the number of
bit twiddling instructions.