llama.cpp/src/llama-kv-cache-unified.cpp

2387 lines
76 KiB
C++

#include "llama-kv-cache-unified.h"
#include "llama-impl.h"
#include "llama-io.h"
#include "llama-model.h"
#include "llama-context.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <limits>
#include <map>
#include <stdexcept>
//
// llama_kv_cache_unified
//
llama_kv_cache_unified::llama_kv_cache_unified(
const llama_model & model,
layer_filter_cb && filter,
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool offload,
bool unified,
uint32_t kv_size,
uint32_t n_seq_max,
uint32_t n_pad,
uint32_t n_swa,
llama_swa_type swa_type) :
model(model), hparams(model.hparams), v_trans(v_trans),
n_seq_max(n_seq_max), n_stream(unified ? 1 : n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {
GGML_ASSERT(kv_size % n_pad == 0);
// TODO: this is temporary until we support passing reuse layer filters [KV_REUSE]
auto n_layer_cache = hparams.n_layer;
if (model.arch == LLM_ARCH_GEMMA3N) {
n_layer_cache = 20;
}
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
ggml_init_params params = {
/*.mem_size =*/ size_t(2u*(1 + n_stream)*n_layer_cache*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max);
v_heads.resize(n_stream);
for (uint32_t s = 0; s < n_stream; ++s) {
v_heads[s] = 0;
}
v_cells.resize(n_stream);
for (uint32_t s = 0; s < n_stream; ++s) {
v_cells[s].resize(kv_size);
}
// by default, all sequence ids are mapped to the 0th stream
seq_to_stream.resize(LLAMA_MAX_SEQ, 0);
if (n_stream > 1) {
seq_to_stream.resize(n_stream, 0);
for (uint32_t s = 0; s < n_stream; ++s) {
seq_to_stream[s] = s;
}
}
// [TAG_V_CACHE_VARIABLE]
if (v_trans && hparams.is_n_embd_v_gqa_variable()) {
LLAMA_LOG_WARN("%s: the V embeddings have different sizes across layers and FA is not enabled - padding V cache to %d\n",
__func__, hparams.n_embd_v_gqa_max());
}
for (uint32_t il = 0; il < n_layer_cache; il++) {
if (filter && !filter(il)) {
LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
continue;
}
// [TAG_V_CACHE_VARIABLE]
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const uint32_t n_embd_v_gqa = !v_trans ? hparams.n_embd_v_gqa(il) : hparams.n_embd_v_gqa_max();
const char * dev_name = "CPU";
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
if (offload) {
auto * dev = model.dev_layer(il);
buft = ggml_backend_dev_buffer_type(dev);
dev_name = ggml_backend_dev_name(dev);
}
LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
throw std::runtime_error("failed to create ggml context for kv cache");
}
ggml_tensor * k;
ggml_tensor * v;
k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, n_stream);
v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, n_stream);
ggml_format_name(k, "cache_k_l%d", il);
ggml_format_name(v, "cache_v_l%d", il);
std::vector<ggml_tensor *> k_stream;
std::vector<ggml_tensor *> v_stream;
for (uint32_t s = 0; s < n_stream; ++s) {
k_stream.push_back(ggml_view_2d(ctx, k, n_embd_k_gqa, kv_size, k->nb[1], s*k->nb[2]));
v_stream.push_back(ggml_view_2d(ctx, v, n_embd_v_gqa, kv_size, v->nb[1], s*v->nb[2]));
}
map_layer_ids[il] = layers.size();
layers.push_back({ il, k, v, k_stream, v_stream, });
}
// TODO: this is temporary until we support passing reuse layer filters [KV_REUSE]
if (model.arch == LLM_ARCH_GEMMA3N) {
LLAMA_LOG_DEBUG("%s: GEMMA3N: reuse layers [%d, %d]\n", __func__, n_layer_cache, hparams.n_layer - 1);
for (uint32_t il = n_layer_cache; il < hparams.n_layer; il++) {
if (filter && !filter(il)) {
LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
continue;
}
const bool is_swa = hparams.is_swa(il);
const uint32_t il_reuse = n_layer_cache - (is_swa ? 2 : 1);
GGML_ASSERT(map_layer_ids.find(il_reuse) != map_layer_ids.end());
map_layer_ids[il] = map_layer_ids[il_reuse];
LLAMA_LOG_DEBUG("%s: layer %3d: reuse layer %d, isw = %d\n", __func__, il, il_reuse, is_swa);
}
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");
}
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
ggml_backend_buffer_clear(buf, 0);
bufs.emplace_back(buf);
}
{
const size_t memory_size_k = size_k_bytes();
const size_t memory_size_v = size_v_bytes();
LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u/%2u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, n_stream,
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG");
debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0;
const char * LLAMA_SET_ROWS = getenv("LLAMA_SET_ROWS");
supports_set_rows = LLAMA_SET_ROWS ? atoi(LLAMA_SET_ROWS) != 0 : 0;
if (!supports_set_rows) {
// ref: https://github.com/ggml-org/llama.cpp/pull/14363
GGML_ASSERT(unified && "cannot use non-unified KV cache without ggml_set_rows() support");
}
if (!supports_set_rows) {
LLAMA_LOG_WARN("%s: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility\n", __func__);
}
}
void llama_kv_cache_unified::clear(bool data) {
for (uint32_t s = 0; s < n_stream; ++s) {
v_cells[s].reset();
v_heads[s] = 0;
}
if (data) {
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
}
bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
uint32_t new_head = cells.size();
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
if (seq_id >= 0) {
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
} else {
// match any sequence
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
cells.rm(i);
if (new_head == cells.size()) {
new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cells.size() && new_head < head) {
head = new_head;
}
return true;
}
void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
GGML_ASSERT(seq_id_src >= 0 && (size_t) seq_id_src < seq_to_stream.size());
GGML_ASSERT(seq_id_dst >= 0 && (size_t) seq_id_dst < seq_to_stream.size());
const auto s0 = seq_to_stream[seq_id_src];
const auto s1 = seq_to_stream[seq_id_dst];
if (s0 == s1) {
// since both sequences are in the same stream, no data copy is necessary
// we just have to update the cells meta data
auto & cells = v_cells[s0];
if (seq_id_src == seq_id_dst) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id_src)) {
cells.seq_add(i, seq_id_dst);
}
}
return;
}
// cross-stream sequence copies require to copy the actual buffer data
bool is_full = true;
if (p0 > 0 && p0 + 1 < (int) get_size()) {
is_full = false;
}
if (p1 > 0 && p1 + 1 < (int) get_size()) {
is_full = false;
}
GGML_ASSERT(is_full && "seq_cp() is only supported for full KV buffers");
// enqueue the copy operation - the buffer copy will be performed during the next update
sc_info.ssrc.push_back(s0);
sc_info.sdst.push_back(s1);
v_cells[s1].reset();
for (uint32_t i = 0; i < v_cells[s0].size(); ++i) {
if (v_cells[s0].seq_has(i, seq_id_src)) {
llama_pos pos = v_cells[s0].pos_get(i);
llama_pos shift = v_cells[s0].get_shift(i);
if (shift != 0) {
pos -= shift;
assert(pos >= 0);
}
v_cells[s1].pos_set(i, pos);
v_cells[s1].seq_add(i, seq_id_dst);
if (shift != 0) {
v_cells[s1].pos_add(i, shift);
}
}
}
v_heads[s1] = v_heads[s0];
//for (uint32_t s = 0; s < n_stream; ++s) {
// LLAMA_LOG_WARN("%s: seq %d: min = %d, max = %d\n", __func__, s, v_cells[s].seq_pos_min(s), v_cells[s].seq_pos_max(s));
//}
}
void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
uint32_t new_head = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (cells.seq_keep(i, seq_id)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cells.size() && new_head < head) {
head = new_head;
}
}
void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
if (shift == 0) {
return;
}
uint32_t new_head = cells.size();
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over all cells.
if (p0 == p1) {
return;
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id)) {
if (cells.pos_add(i, shift)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
// Otherwise we just start the next search from the beginning.
head = new_head != cells.size() ? new_head : 0;
}
void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
if (d == 1) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) {
return;
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id)) {
cells.pos_div(i, d);
}
}
}
llama_pos llama_kv_cache_unified::seq_pos_min(llama_seq_id seq_id) const {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
const auto & cells = v_cells[seq_to_stream[seq_id]];
return cells.seq_pos_min(seq_id);
}
llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
const auto & cells = v_cells[seq_to_stream[seq_id]];
return cells.seq_pos_max(seq_id);
}
llama_memory_context_ptr llama_kv_cache_unified::init_batch(
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_all) {
GGML_UNUSED(embd_all);
do {
balloc.split_reset();
std::vector<llama_ubatch> ubatches;
while (true) {
auto ubatch = n_stream == 1 ? balloc.split_simple(n_ubatch) : balloc.split_equal(n_ubatch, true);
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch)); // NOLINT
}
if (balloc.get_n_used() < balloc.get_n_tokens()) {
// failed to find a suitable split
break;
}
auto sinfos = prepare(ubatches);
if (sinfos.empty()) {
break;
}
return std::make_unique<llama_kv_cache_unified_context>(
this, std::move(sinfos), std::move(ubatches));
} while (false);
return std::make_unique<llama_kv_cache_unified_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
llama_memory_context_ptr llama_kv_cache_unified::init_full() {
return std::make_unique<llama_kv_cache_unified_context>(this);
}
llama_memory_context_ptr llama_kv_cache_unified::init_update(llama_context * lctx, bool optimize) {
bool do_shift = get_has_shift();
defrag_info dinfo;
// see if we need to defrag
if (n_stream == 1) {
// note : for now do not consider defrag for n_stream > 1
const auto & cells = v_cells[seq_to_stream[0]];
bool do_defrag = optimize;
const auto thold = lctx->get_cparams().defrag_thold;
if (!do_defrag && thold > 0.0f) {
const auto n_kv = cells.used_max_p1();
// - do not defrag small contexts (i.e. < 2048 tokens)
// - count the padding towards the number of used tokens
const float fragmentation = n_kv >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n_kv)) : 0.0f;
if (fragmentation > thold) {
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
do_defrag = true;
}
}
if (do_defrag) {
dinfo = defrag_prepare(lctx->graph_max_nodes());
}
}
return std::make_unique<llama_kv_cache_unified_context>(this, lctx, do_shift, std::move(dinfo), std::move(sc_info));
}
llama_kv_cache_unified::slot_info_vec_t llama_kv_cache_unified::prepare(const std::vector<llama_ubatch> & ubatches) {
llama_kv_cache_unified::slot_info_vec_t res;
struct state_t {
slot_info sinfo; // slot info for the ubatch
std::vector<uint32_t> v_heads_old; // old positions of the heads, before placing the ubatch
std::vector<llama_kv_cells_unified> v_cells; // copy of the old cells, before placing the ubatch
};
// remember the old state of the cells so we can restore it in the end
std::vector<state_t> states;
bool success = true;
for (const auto & ubatch : ubatches) {
// non-continuous slots require support for ggml_set_rows()
const bool cont = supports_set_rows ? false : true;
// only find a suitable slot for the ubatch. don't modify the cells yet
const auto sinfo_new = find_slot(ubatch, cont);
if (sinfo_new.empty()) {
success = false;
break;
}
// remeber the position that we found
res.push_back(sinfo_new);
// store the old state of the cells in the recovery stack
{
state_t state = { sinfo_new, v_heads, {} };
for (uint32_t s = 0; s < sinfo_new.n_stream(); ++s) {
auto & cells = v_cells[sinfo_new.strm[s]];
state.v_cells.push_back(cells.cp(sinfo_new.idxs[s]));
}
states.push_back(std::move(state));
}
// now emplace the ubatch
apply_ubatch(sinfo_new, ubatch);
}
GGML_ASSERT(!states.empty() || !success);
// iterate backwards and restore the cells to their original state
for (auto it = states.rbegin(); it != states.rend(); ++it) {
const auto & sinfo = it->sinfo;
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
auto & cells = v_cells[sinfo.strm[s]];
auto & head = v_heads[sinfo.strm[s]];
cells.set(sinfo.idxs[s], it->v_cells[s]);
head = it->v_heads_old[s];
}
}
if (!success) {
return {};
}
return res;
}
bool llama_kv_cache_unified::update(llama_context * lctx, bool do_shift, const defrag_info & dinfo, const stream_copy_info & sc_info) {
bool updated = false;
auto * sched = lctx->get_sched();
if (!sc_info.empty()) {
assert(n_stream > 1 && "stream copy should never happen with a single stream");
llama_synchronize(lctx);
const size_t n_copy = sc_info.ssrc.size();
for (size_t i = 0; i < n_copy; ++i) {
const auto ssrc = sc_info.ssrc[i];
const auto sdst = sc_info.sdst[i];
assert(ssrc < n_stream);
assert(sdst < n_stream);
LLAMA_LOG_DEBUG("%s: copying KV buffer: stream %d to stream %d\n", __func__, ssrc, sdst);
assert(ssrc != sdst);
for (uint32_t il = 0; il < layers.size(); ++il) {
const auto & layer = layers[il];
ggml_backend_tensor_copy(layer.k_stream[ssrc], layer.k_stream[sdst]);
ggml_backend_tensor_copy(layer.v_stream[ssrc], layer.v_stream[sdst]);
}
}
}
if (do_shift) {
if (!get_can_shift()) {
GGML_ABORT("The current KV cache / model configuration does not support K-shift");
}
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
// apply K-shift if needed
if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
ggml_backend_sched_reset(sched);
auto * res = lctx->get_gf_res_reserve();
res->reset();
auto * gf = build_graph_shift(res, lctx);
if (!ggml_backend_sched_alloc_graph(sched, gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__);
return updated;
}
res->set_inputs(nullptr);
if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__);
return updated;
}
updated = true;
}
for (uint32_t s = 0; s < n_stream; ++s) {
auto & cells = v_cells[s];
cells.reset_shift();
}
}
if (!dinfo.empty()) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
// note: for now do not consider defrag for n_stream > 1
auto & cells = v_cells[seq_to_stream[0]];
auto & head = v_heads[seq_to_stream[0]];
// apply moves:
{
const auto n_kv = dinfo.ids.size();
for (uint32_t i = 0; i < n_kv; ++i) {
assert(dinfo.ids[i] <= n_kv);
if (dinfo.ids[i] == n_kv || dinfo.ids[i] == i) {
continue;
}
cells.mv(i, dinfo.ids[i]);
}
// reset the head so we can find the first free slot during the next ubatch
head = 0;
}
ggml_backend_sched_reset(sched);
auto * res = lctx->get_gf_res_reserve();
res->reset();
auto * gf = build_graph_defrag(res, lctx, dinfo);
if (!ggml_backend_sched_alloc_graph(sched, gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__);
return updated;
}
res->set_inputs(nullptr);
if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
LLAMA_LOG_ERROR("%s: failed to compute defrag\n", __func__);
return updated;
}
updated = true;
}
return updated;
}
llama_kv_cache_unified::slot_info llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch, bool cont) const {
if (debug > 0) {
const auto & cells = v_cells[seq_to_stream[1]];
const uint32_t head_cur = v_heads[1];
LLAMA_LOG_DEBUG("%s: n = %5d, used = %5d, head = %5d, size = %5d, n_swa = %5d\n",
__func__, cells.used_max_p1(), cells.get_used(), head_cur, get_size(), n_swa);
if ((debug == 2 && n_swa > 0) || debug > 2) {
std::string ss;
for (uint32_t i = 0; i < cells.size(); ++i) {
if (cells.is_empty(i)) {
ss += '.';
} else {
assert(cells.seq_count(i) >= 1);
if (cells.seq_count(i) == 1) {
ss += std::to_string(cells.seq_get(i));
} else {
ss += 'M';
}
}
if (i%256 == 255) {
ss += " *";
ss += '\n';
}
}
LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
}
if ((debug == 2 && n_swa > 0) || debug > 2) {
std::string ss;
for (uint32_t i = 0; i < cells.size(); ++i) {
std::string cur;
if (cells.is_empty(i)) {
cur = '.';
} else {
cur = std::to_string(cells.pos_get(i));
}
const int n = cur.size();
for (int j = 0; j < 5 - n; ++j) {
cur += ' ';
}
ss += cur;
if (i%256 == 255) {
ss += " *";
}
if (i%64 == 63) {
ss += '\n';
}
}
LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
}
for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
if (cells.seq_pos_min(s) < 0) {
continue;
}
LLAMA_LOG_DEBUG("%s: min[%d] = %5d, max[%d] = %5d\n", __func__, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s));
}
}
uint32_t n_tokens = ubatch.n_tokens;
uint32_t n_seqs = 1;
if (n_stream > 1) {
GGML_ASSERT(n_tokens % ubatch.n_seqs_unq == 0);
n_seqs = ubatch.n_seqs_unq;
n_tokens = n_tokens / n_seqs;
}
slot_info res = {
/*.s0 =*/ LLAMA_MAX_SEQ,
/*.s1 =*/ 0,
/*.strm =*/ { },
/*.idxs =*/ { },
};
res.resize(n_seqs);
for (uint32_t s = 0; s < n_seqs; ++s) {
const auto seq_id = ubatch.seq_id_unq[s];
if (n_stream > 1) {
GGML_ASSERT(ubatch.n_seq_id[s*n_tokens] == 1);
GGML_ASSERT(ubatch.seq_id [s*n_tokens][0] == seq_id);
}
res.s0 = std::min<llama_seq_id>(res.s0, seq_to_stream[seq_id]);
res.s1 = std::max<llama_seq_id>(res.s1, seq_to_stream[seq_id]);
res.strm[s] = seq_to_stream[seq_id];
res.idxs[s].reserve(n_tokens);
const auto & cells = v_cells[seq_to_stream[seq_id]];
uint32_t head_cur = v_heads[seq_to_stream[seq_id]];
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head_cur > cells.get_used() + 2*n_tokens) {
head_cur = 0;
}
if (n_tokens > cells.size()) {
LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
return { };
}
uint32_t n_tested = 0;
// for continuous slots, we test that all tokens in the ubatch fit, starting from the current head
// for non-continuous slots, we test the tokens one by one
const uint32_t n_test = cont ? n_tokens : 1;
while (true) {
if (head_cur + n_test > cells.size()) {
n_tested += cells.size() - head_cur;
head_cur = 0;
continue;
}
for (uint32_t i = 0; i < n_test; i++) {
const auto idx = head_cur;
head_cur++;
n_tested++;
//const llama_pos pos = ubatch.pos[i];
//const llama_seq_id seq_id = ubatch.seq_id[i][0];
// can we use this cell? either:
// - the cell is empty
// - the cell is occupied only by one sequence:
// - (disabled) mask causally, if the sequence is the same as the one we are inserting
// - mask SWA, using current max pos for that sequence in the cache
// always insert in the cell with minimum pos
bool can_use = cells.is_empty(idx);
if (!can_use && cells.seq_count(idx) == 1) {
const llama_pos pos_cell = cells.pos_get(idx);
// (disabled) causal mask
// note: it's better to purge any "future" tokens beforehand
//if (cells.seq_has(idx, seq_id)) {
// can_use = pos_cell >= pos;
//}
if (!can_use) {
const llama_seq_id seq_id_cell = cells.seq_get(idx);
// SWA mask
if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
can_use = true;
}
}
}
if (can_use) {
res.idxs[s].push_back(idx);
} else {
if (cont) {
break;
}
}
}
if (res.idxs[s].size() == n_tokens) {
break;
}
if (cont) {
res.idxs[s].clear();
}
if (n_tested >= cells.size()) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return { };
}
}
// we didn't find a suitable slot - return empty result
if (res.idxs[s].size() < n_tokens) {
return { };
}
}
assert(res.s1 >= res.s0);
return res;
}
void llama_kv_cache_unified::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) {
// keep track of the max sequence position that we would overwrite with this ubatch
// for non-SWA cache, this would be always empty
llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
seq_pos_max_rm[s] = -1;
}
assert(ubatch.n_tokens == sinfo.n_stream()*sinfo.size());
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
for (uint32_t ii = 0; ii < sinfo.size(); ++ii) {
const uint32_t i = s*sinfo.size() + ii;
auto & cells = v_cells[sinfo.strm[s]];
const auto idx = sinfo.idxs[s][ii];
if (!cells.is_empty(idx)) {
assert(cells.seq_count(idx) == 1);
const llama_seq_id seq_id = cells.seq_get(idx);
const llama_pos pos = cells.pos_get(idx);
seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);
cells.rm(idx);
}
cells.pos_set(idx, ubatch.pos[i]);
for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
cells.seq_add(idx, ubatch.seq_id[i][s]);
}
}
}
// note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence
// will be present in the cache. so we have to purge any position which is less than those we would overwrite
// ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092
for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
if (seq_pos_max_rm[s] == -1) {
continue;
}
GGML_ASSERT(s < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[s]];
if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) {
LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n",
__func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s);
seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1);
}
}
// move the head at the end of the slot
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
auto & head = v_heads[sinfo.strm[s]];
head = sinfo.idxs[s].back() + 1;
}
}
bool llama_kv_cache_unified::get_can_shift() const {
return true;
}
uint32_t llama_kv_cache_unified::get_size() const {
const auto & cells = v_cells[seq_to_stream[0]];
return cells.size();
}
uint32_t llama_kv_cache_unified::get_n_stream() const {
return n_stream;
}
bool llama_kv_cache_unified::get_has_shift() const {
bool result = false;
for (uint32_t s = 0; s < n_stream; ++s) {
result |= v_cells[s].get_has_shift();
}
return result;
}
uint32_t llama_kv_cache_unified::get_n_kv() const {
uint32_t result = 0;
for (uint32_t s = 0; s < n_stream; ++s) {
const auto & cells = v_cells[s];
result = std::max(std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))), result);
}
return result;
}
bool llama_kv_cache_unified::get_supports_set_rows() const {
return supports_set_rows;
}
ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k;
const uint64_t kv_size = get_size();
const uint64_t n_embd_k_gqa = k->ne[0];
assert(n_embd_k_gqa == hparams.n_embd_k_gqa(il));
const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;
return ggml_view_4d(ctx, k,
hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, ns,
ggml_row_size(k->type, hparams.n_embd_head_k),
ggml_row_size(k->type, n_embd_k_gqa),
ggml_row_size(k->type, n_embd_k_gqa*kv_size),
ggml_row_size(k->type, n_embd_k_gqa*kv_size)*sinfo.s0);
}
ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
const uint64_t kv_size = get_size();
const uint64_t n_embd_v_gqa = v->ne[0];
// [TAG_V_CACHE_VARIABLE]
assert(n_embd_v_gqa >= hparams.n_embd_v_gqa(il));
const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;
if (!v_trans) {
// note: v->nb[1] <= v->nb[2]
return ggml_view_4d(ctx, v,
hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns,
ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, n_embd_v_gqa), // v->nb[2]
ggml_row_size(v->type, n_embd_v_gqa*kv_size), // v->nb[3]
ggml_row_size(v->type, n_embd_v_gqa*kv_size)*sinfo.s0);
}
// note: v->nb[1] > v->nb[2]
return ggml_view_4d(ctx, v,
n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns,
ggml_row_size(v->type, kv_size*hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, kv_size), // v->nb[2]
ggml_row_size(v->type, kv_size*n_embd_v_gqa), // v->nb[3]
ggml_row_size(v->type, kv_size*n_embd_v_gqa)*sinfo.s0);
}
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k;
const int64_t n_embd_k_gqa = k->ne[0];
const int64_t n_tokens = k_cur->ne[2];
k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens);
if (k_idxs && supports_set_rows) {
if (k->ne[2] > 1) {
k = ggml_reshape_2d(ctx, k, k->ne[0], k->ne[1]*k->ne[2]);
}
return ggml_set_rows(ctx, k, k_cur, k_idxs);
}
// TODO: fallback to old ggml_cpy() method for backwards compatibility
// will be removed when ggml_set_rows() is adopted by all backends
GGML_ASSERT(n_stream == 1 && "n_stream > 1 not supported without LLAMA_SET_ROWS");
ggml_tensor * k_view = ggml_view_1d(ctx, k,
n_tokens*n_embd_k_gqa,
ggml_row_size(k->type, n_embd_k_gqa)*sinfo.head());
return ggml_cpy(ctx, k_cur, k_view);
}
ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
const int64_t n_embd_v_gqa = v_cur->ne[0]*v_cur->ne[1];
const int64_t n_tokens = v_cur->ne[2];
v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens);
if (v_idxs && supports_set_rows) {
if (!v_trans) {
if (v->ne[2] > 1) {
v = ggml_reshape_2d(ctx, v, v->ne[0], v->ne[1]*v->ne[2]);
}
return ggml_set_rows(ctx, v, v_cur, v_idxs);
}
// [TAG_V_CACHE_VARIABLE]
if (n_embd_v_gqa < v->ne[0]) {
v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_v_gqa, 0, 0, 0);
}
// the row becomes a single element
ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, v->ne[0]*v->ne[1]*v->ne[2]);
v_cur = ggml_reshape_2d(ctx, v_cur, 1, v_cur->ne[0]*v_cur->ne[1]);
return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
}
// TODO: fallback to old ggml_cpy() method for backwards compatibility
// will be removed when ggml_set_rows() is adopted by all backends
GGML_ASSERT(n_stream == 1 && "n_stream > 1 not supported without LLAMA_SET_ROWS");
ggml_tensor * v_view = nullptr;
if (!v_trans) {
v_view = ggml_view_1d(ctx, v,
n_tokens*n_embd_v_gqa,
ggml_row_size(v->type, n_embd_v_gqa)*sinfo.head());
} else {
v_cur = ggml_transpose(ctx, v_cur);
v_view = ggml_view_2d(ctx, v, n_tokens, n_embd_v_gqa,
(v->ne[1] )*ggml_element_size(v),
(sinfo.head())*ggml_element_size(v));
}
return ggml_cpy(ctx, v_cur, v_view);
}
ggml_tensor * llama_kv_cache_unified::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
const uint32_t n_tokens = ubatch.n_tokens;
ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
ggml_set_input(k_idxs);
return k_idxs;
}
ggml_tensor * llama_kv_cache_unified::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
const uint32_t n_tokens = ubatch.n_tokens;
ggml_tensor * v_idxs;
if (!v_trans) {
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
} else {
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa_max());
}
ggml_set_input(v_idxs);
return v_idxs;
}
void llama_kv_cache_unified::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
if (!supports_set_rows) {
return;
}
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const int64_t offs = sinfo.strm[s]*get_size();
for (uint32_t i = 0; i < sinfo.size(); ++i) {
data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
}
}
}
void llama_kv_cache_unified::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
if (!supports_set_rows) {
return;
}
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
if (!v_trans) {
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const int64_t offs = sinfo.strm[s]*get_size();
for (uint32_t i = 0; i < sinfo.size(); ++i) {
data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
}
}
} else {
// note: the V cache is transposed when not using flash attention
const int64_t kv_size = get_size();
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa_max();
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const int64_t offs = sinfo.strm[s]*kv_size*n_embd_v_gqa;
for (uint32_t i = 0; i < sinfo.size(); ++i) {
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
data[s*sinfo.size()*n_embd_v_gqa + i*n_embd_v_gqa + j] = offs + j*kv_size + sinfo.idxs[s][i];
}
}
}
}
}
void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const {
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int32_t * data = (int32_t *) dst->data;
for (uint32_t s = 0; s < n_stream; ++s) {
const auto & cells = v_cells[s];
for (uint32_t i = 0; i < cells.size(); ++i) {
data[s*cells.size() + i] = cells.is_empty(i) ? 0 : cells.get_shift(i);
}
}
}
void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
float * data = (float *) dst->data;
const int64_t n_kv = dst->ne[0];
const int64_t n_stream = dst->ne[3]; // num streams in the current ubatch
GGML_ASSERT(n_tokens%n_stream == 0);
// n_tps == n_tokens_per_stream
const int64_t n_tps = n_tokens/n_stream;
const int64_t n_tps_pad = GGML_PAD(n_tps, GGML_KQ_MASK_PAD);
std::fill(data, data + ggml_nelements(dst), -INFINITY);
// Use only the previous KV cells of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
// Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
// Causal mask:
// xxx-------
// xxxx------
// xxxxx-----
// Non-causal mask:
// xxxxx-----
// xxxxx-----
// xxxxx-----
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
// TODO: optimize this section
for (uint32_t h = 0; h < 1; ++h) {
for (uint32_t s = 0; s < n_stream; ++s) {
for (uint32_t ii = 0; ii < n_tps; ++ii) {
const uint32_t i = s*n_tps + ii;
const llama_seq_id seq_id = ubatch->seq_id[i][0];
const auto & cells = v_cells[seq_to_stream[seq_id]];
const llama_pos p1 = ubatch->pos[i];
const uint64_t idst = n_kv*(h*n_stream*n_tps_pad + s*n_tps_pad + ii);
for (uint32_t j = 0; j < n_kv; ++j) {
if (cells.is_empty(j)) {
continue;
}
// mask the token if not the same sequence
if (!cells.seq_has(j, seq_id)) {
continue;
}
const llama_pos p0 = cells.pos_get(j);
// mask future tokens
if (causal_attn && p0 > p1) {
continue;
}
// apply SWA if any
if (is_masked_swa(p0, p1)) {
continue;
}
data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
}
}
}
}
}
void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(n_stream == 1 && "TODO: support multiple streams");
const auto & cells = v_cells[0];
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
int32_t * data = (int32_t *) dst->data;
const int32_t n_kv = dst->ne[0];
for (int h = 0; h < 1; ++h) {
for (int i = 0; i < n_tokens; ++i) {
for (int j = 0; j < n_kv; ++j) {
// the position when the cells is empty is irrelevant - it will be masked out later in the attention
const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j);
data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false);
}
}
}
}
size_t llama_kv_cache_unified::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
size_t llama_kv_cache_unified::size_k_bytes() const {
size_t size_k_bytes = 0;
for (const auto & layer : layers) {
size_k_bytes += ggml_nbytes(layer.k);
}
return size_k_bytes;
}
size_t llama_kv_cache_unified::size_v_bytes() const {
size_t size_v_bytes = 0;
for (const auto & layer : layers) {
size_v_bytes += ggml_nbytes(layer.v);
}
return size_v_bytes;
}
ggml_tensor * llama_kv_cache_unified::build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const {
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE
// @ngxson : this is a workaround
// for M-RoPE, we want to rotate the whole vector when doing KV shift
// a normal RoPE should work, we just need to use the correct ordering
// ref: https://github.com/ggml-org/llama.cpp/pull/13870
? LLAMA_ROPE_TYPE_NEOX
: hparams.rope_type;
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2
? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale))
: cparams.yarn_attn_factor;
ggml_tensor * tmp;
if (ggml_is_quantized(cur->type)) {
// dequantize to f32 -> RoPE -> quantize back
tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);
tmp = ggml_rope_ext(ctx, tmp,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
tmp = ggml_cpy(ctx, tmp, cur);
} else {
// we rotate only the first n_rot dimensions
tmp = ggml_rope_ext_inplace(ctx, cur,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
}
return tmp;
}
class llm_graph_input_k_shift : public llm_graph_input_i {
public:
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_k_shift() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * k_shift; // I32 [kv_size*n_stream]
const llama_kv_cache_unified * kv_self;
};
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
if (k_shift) {
kv_self->set_input_k_shift(k_shift);
}
}
ggml_cgraph * llama_kv_cache_unified::build_graph_shift(llm_graph_result * res, llama_context * lctx) const {
auto * ctx = res->get_ctx();
auto * gf = res->get_gf();
const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
auto inp = std::make_unique<llm_graph_input_k_shift>(this);
inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, (int64_t) get_size()*n_stream);
ggml_set_input(inp->k_shift);
const auto & cparams = lctx->get_cparams();
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
ggml_tensor * k =
ggml_view_3d(ctx, layer.k,
n_embd_head_k, n_head_kv, get_size()*n_stream,
ggml_row_size(layer.k->type, n_embd_head_k),
ggml_row_size(layer.k->type, n_embd_k_gqa),
0);
ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
ggml_build_forward_expand(gf, cur);
}
res->add_input(std::move(inp));
return gf;
}
ggml_cgraph * llama_kv_cache_unified::build_graph_defrag(
llm_graph_result * res,
llama_context * lctx,
const defrag_info & dinfo) const {
auto * ctx = res->get_ctx();
auto * gf = res->get_gf();
GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
const auto & cells = v_cells[0];
const auto & ids = dinfo.ids;
const auto & cparams = lctx->get_cparams();
#if 0
// CPU defrag
//
// TODO: optimizations are possible:
// - multiple threads
// - avoid copying to the host memory when already there
//
// likely not worth the effort, as we have ggml_graph based defrag
//
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const uint32_t kv_size = size;
std::vector<uint8_t> buf_k;
std::vector<uint8_t> buf_v;
for (uint32_t il = 0; il < n_layer; ++il) {
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
const size_t v_size_el = ggml_type_size(v_l[il]->type);
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
buf_k.resize(k_size);
buf_v.resize(v_size);
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
// batch move [i, i+nm) to [id, id+nm)
// note: cells can move only to a lower index
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t id = ids[i];
if (i == id || id == n_kv) {
continue;
}
uint32_t nm = 1;
while (i + nm < n_kv && ids[i + nm] == id + nm) {
nm++;
}
// move keys
{
const int64_t os = i*k_size_row;
const int64_t od = id*k_size_row;
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
}
// move values (note: they are transposed)
{
const int64_t os = i;
const int64_t od = id;
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
}
}
i += nm - 1;
}
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
for (uint32_t i = 0; i < ids.size(); ++i) {
const uint32_t id = ids[i];
if (i == id || id == ids.size()) {
continue;
}
uint32_t nm = 1;
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
nm++;
}
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k,
n_embd_k_gqa, nm,
ggml_row_size(layer.k->type, n_embd_k_gqa),
ggml_row_size(layer.k->type, n_embd_k_gqa*i));
ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k,
n_embd_k_gqa, nm,
ggml_row_size(layer.k->type, n_embd_k_gqa),
ggml_row_size(layer.k->type, n_embd_k_gqa*id));
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx, layer.v,
n_embd_v_gqa, nm,
ggml_row_size(layer.v->type, n_embd_v_gqa),
ggml_row_size(layer.v->type, n_embd_v_gqa*i));
view_v_dst = ggml_view_2d(ctx, layer.v,
n_embd_v_gqa, nm,
ggml_row_size(layer.v->type, n_embd_v_gqa),
ggml_row_size(layer.v->type, n_embd_v_gqa*id));
} else {
view_v_src = ggml_view_2d(ctx, layer.v,
nm, n_embd_v_gqa,
ggml_row_size(layer.v->type, cells.size()),
ggml_row_size(layer.v->type, i));
view_v_dst = ggml_view_2d(ctx, layer.v,
nm, n_embd_v_gqa,
ggml_row_size(layer.v->type, cells.size()),
ggml_row_size(layer.v->type, id));
}
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
}
i += nm - 1;
}
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
#endif
return gf;
}
llama_kv_cache_unified::defrag_info llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) const {
GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
const auto & cells = v_cells[0];
const uint32_t n_layer = layers.size();
const uint32_t n_kv = cells.used_max_p1();
const uint32_t n_used = cells.get_used();
assert(n_used <= n_kv);
//const int64_t t_start = ggml_time_us();
// number of cells moved
uint32_t n_moves = 0;
// each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
// - source view, destination view, copy operation
// - x2 for keys and values
//const uint32_t max_moves = max_nodes()/(6*n_layer);
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
// determine which KV cells to move where
defrag_info res;
auto & ids = res.ids;
ids.resize(n_kv, n_kv);
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
if (!cells.is_empty(i0)) {
ids[i0] = i0;
continue;
}
// found a hole - fill it with data from the end of the cache
uint32_t nh = 1;
// determine the size of the hole
while (i0 + nh < n_used && cells.is_empty(i0 + nh)) {
nh++;
}
uint32_t nf = 0;
uint32_t is = n_kv - 1;
// starting from the end, find nh non-empty cells
for (; is > i0; --is) {
if (cells.is_empty(is) || ids[is] != n_kv) {
continue;
}
// non-empty cell which is not yet moved
nf++;
if (nf == nh) {
break;
}
}
// this can only happen if `n_used` is not accurate, which would be a bug
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
nf = 0;
uint32_t i1 = is;
// are we moving a continuous block of memory?
bool cont = false;
// should we stop searching for the next move?
bool stop = false;
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
if (cells.is_empty(i1) || ids[i1] != n_kv) {
if (n_moves == max_moves) {
stop = true;
break;
}
cont = false;
continue;
}
// this cell goes to (i0 + nf)
ids[i1] = i0 + nf;
if (!cont) {
n_moves++;
cont = true;
}
nf++;
if (nf == nh) {
break;
}
}
if (stop || n_moves == max_moves) {
break;
}
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
i0 += nh - 1;
}
if (n_moves == 0) {
return {};
}
LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
return res;
}
bool llama_kv_cache_unified::is_masked_swa(llama_pos p0, llama_pos p1) const {
assert(p0 >= 0 && p1 >= 0);
switch (swa_type) {
case LLAMA_SWA_TYPE_NONE:
{
} break;
case LLAMA_SWA_TYPE_STANDARD:
{
if (p1 - p0 >= (int32_t) n_swa) {
return true;
}
} break;
case LLAMA_SWA_TYPE_CHUNKED:
{
const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
if (p0 < pos_chunk_start) {
return true;
}
} break;
}
return false;
}
void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
io.write(&n_stream, sizeof(n_stream));
for (uint32_t s = 0; s < n_stream; ++s) {
cell_ranges_t cr { s, {} };
uint32_t cell_count = 0;
const auto & cells = v_cells[s];
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) {
++cell_count;
if (cell_range_begin == cells.size()) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != cells.size()) {
cr.data.emplace_back(cell_range_begin, i);
cell_range_begin = cells.size();
}
}
}
if (cell_range_begin != cells.size()) {
cr.data.emplace_back(cell_range_begin, cells.size());
}
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cr.data) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
io.write(&cell_count, sizeof(cell_count));
// skip empty streams
if (cell_count == 0) {
continue;
}
state_write_meta(io, cr, seq_id);
state_write_data(io, cr);
}
}
void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));
uint32_t n_stream_cur;
io.read_to(&n_stream_cur, sizeof(n_stream_cur));
if (n_stream_cur != n_stream) {
throw std::runtime_error("n_stream mismatch");
}
for (uint32_t s = 0; s < n_stream; ++s) {
uint32_t cell_count;
io.read_to(&cell_count, sizeof(cell_count));
if (cell_count == 0) {
continue;
}
const uint32_t strm = seq_id == -1 ? s : seq_to_stream[seq_id];
bool res = true;
res = res && state_read_meta(io, strm, cell_count, seq_id);
res = res && state_read_data(io, strm, cell_count);
if (!res) {
if (seq_id == -1) {
clear(true);
} else {
seq_rm(seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
}
void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id) const {
const auto & cells = v_cells[cr.strm];
for (const auto & range : cr.data) {
for (uint32_t i = range.first; i < range.second; ++i) {
std::vector<llama_seq_id> seq_ids;
for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) {
if (cur == seq_id || seq_id == -1) {
if (cells.seq_has(i, cur)) {
seq_ids.push_back(cur);
}
}
}
const llama_pos pos = cells.pos_get(i);
const uint32_t n_seq_id = seq_ids.size();
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
for (const auto & seq_id : seq_ids) {
io.write(&seq_id, sizeof(seq_id));
}
}
}
}
void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const {
const auto & cells = v_cells[cr.strm];
const uint32_t v_trans = this->v_trans ? 1 : 0;
const uint32_t n_layer = layers.size();
io.write(&v_trans, sizeof(v_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
auto * k = layer.k_stream[cr.strm];
// Write key type
const int32_t k_type_i = (int32_t) k->type;
io.write(&k_type_i, sizeof(k_type_i));
// Write row size of key
const uint64_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
io.write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
io.write_tensor(k, range.first * k_size_row, buf_size);
}
}
if (!v_trans) {
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[cr.strm];
// Write value type
const int32_t v_type_i = (int32_t) v->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write row size of value
const uint64_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
io.write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
io.write_tensor(v, range.first * v_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = cells.size();
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[cr.strm];
// Write value type
const int32_t v_type_i = (int32_t) v->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write element size
const uint32_t v_size_el = ggml_type_size(v->type);
io.write(&v_size_el, sizeof(v_size_el));
// Write GQA embedding size
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
const size_t buf_size = range_size * v_size_el;
io.write_tensor(v, src_offset, buf_size);
}
}
}
}
}
bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id) {
auto & cells = v_cells[strm];
auto & head = v_heads[strm];
if (dest_seq_id != -1) {
// single sequence
seq_rm(dest_seq_id, -1, -1);
llama_batch_allocr balloc(hparams.n_pos_per_embd());
llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);
ubatch.seq_id_unq[0] = dest_seq_id;
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 1) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
// read the sequence id, but directly discard it - we will use dest_seq_id instead
{
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
}
ubatch.pos[i] = pos;
ubatch.n_seq_id[i] = n_seq_id;
ubatch.seq_id[i] = &dest_seq_id;
}
const auto sinfo = find_slot(ubatch, true);
if (sinfo.empty()) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
apply_ubatch(sinfo, ubatch);
const auto head_cur = sinfo.head();
// keep the head at the old position because we will read the KV data into it in state_read_data()
head = head_cur;
LLAMA_LOG_DEBUG("%s: head_cur = %d, head = %d, cell_count = %d, dest_seq_id = %d\n", __func__, head_cur, head, cell_count, dest_seq_id);
// DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head_cur + cell_count <= cells.size());
GGML_ASSERT(cells.pos_get(head_cur) == ubatch.pos[0]);
GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == ubatch.pos[cell_count - 1]);
GGML_ASSERT(cells.seq_has(head_cur, dest_seq_id));
GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id));
} else {
// whole KV cache restore
if (cell_count > cells.size()) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
clear(true);
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
cells.pos_set(i, pos);
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) {
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max);
return false;
}
cells.seq_add(i, seq_id);
}
}
head = 0;
}
return true;
}
bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count) {
auto & cells = v_cells[strm];
auto & head = v_heads[strm];
uint32_t v_trans;
uint32_t n_layer;
io.read_to(&v_trans, sizeof(v_trans));
io.read_to(&n_layer, sizeof(n_layer));
if (n_layer != layers.size()) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size());
return false;
}
if (cell_count > cells.size()) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size());
return false;
}
if (this->v_trans != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
auto * k = layer.k_stream[strm];
// Read type of key
int32_t k_type_i_ref;
io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
const int32_t k_type_i = (int32_t) k->type;
if (k_type_i != k_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
return false;
}
// Read row size of key
uint64_t k_size_row_ref;
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
const size_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
if (k_size_row != k_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
}
}
if (!this->v_trans) {
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[strm];
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t) v->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read row size of value
uint64_t v_size_row_ref;
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
const size_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
if (v_size_row != v_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[strm];
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t) v->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read element size of value
uint32_t v_size_el_ref;
io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
const size_t v_size_el = ggml_type_size(v->type);
if (v_size_el != v_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
return false;
}
// Read GQA embedding size
uint32_t n_embd_v_gqa_ref;
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
return false;
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (head + j * cells.size()) * v_size_el;
ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
}
}
}
return true;
}
//
// llama_kv_cache_unified_context
//
llama_kv_cache_unified_context::llama_kv_cache_unified_context(llama_memory_status status) : status(status) {}
llama_kv_cache_unified_context::llama_kv_cache_unified_context(
llama_kv_cache_unified * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) {
n_kv = kv->get_size();
const uint32_t n_stream = kv->get_n_stream();
// create a dummy slot info - the actual data is irrelevant. we just need to build the graph
sinfos.resize(1);
sinfos[0].s0 = 0;
sinfos[0].s1 = n_stream - 1;
sinfos[0].idxs.resize(n_stream);
for (uint32_t s = 0; s < n_stream; ++s) {
sinfos[0].strm.push_back(s);
sinfos[0].idxs[s].resize(1, 0);
}
}
llama_kv_cache_unified_context::llama_kv_cache_unified_context(
llama_kv_cache_unified * kv,
llama_context * lctx,
bool do_shift,
defrag_info dinfo,
stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), dinfo(std::move(dinfo)), sc_info(std::move(sc_info)) {
if (!do_shift && this->dinfo.empty() && this->sc_info.empty()) {
status = LLAMA_MEMORY_STATUS_NO_UPDATE;
}
}
llama_kv_cache_unified_context::llama_kv_cache_unified_context(
llama_kv_cache_unified * kv,
llama_kv_cache_unified::slot_info_vec_t sinfos,
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) {
}
llama_kv_cache_unified_context::~llama_kv_cache_unified_context() = default;
bool llama_kv_cache_unified_context::next() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
if (++i_cur >= ubatches.size()) {
return false;
}
return true;
}
bool llama_kv_cache_unified_context::apply() {
assert(!llama_memory_status_is_fail(status));
// no ubatches -> this is a KV cache update
if (ubatches.empty()) {
kv->update(lctx, do_shift, dinfo, sc_info);
return true;
}
kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]);
n_kv = kv->get_n_kv();
return true;
}
llama_memory_status llama_kv_cache_unified_context::get_status() const {
return status;
}
const llama_ubatch & llama_kv_cache_unified_context::get_ubatch() const {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return ubatches[i_cur];
}
uint32_t llama_kv_cache_unified_context::get_n_kv() const {
return n_kv;
}
bool llama_kv_cache_unified_context::get_supports_set_rows() const {
return kv->get_supports_set_rows();
}
ggml_tensor * llama_kv_cache_unified_context::get_k(ggml_context * ctx, int32_t il) const {
return kv->get_k(ctx, il, n_kv, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::get_v(ggml_context * ctx, int32_t il) const {
return kv->get_v(ctx, il, n_kv, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const {
return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const {
return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
return kv->build_input_k_idxs(ctx, ubatch);
}
ggml_tensor * llama_kv_cache_unified_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
return kv->build_input_v_idxs(ctx, ubatch);
}
void llama_kv_cache_unified_context::set_input_k_shift(ggml_tensor * dst) const {
kv->set_input_k_shift(dst);
}
void llama_kv_cache_unified_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]);
}
void llama_kv_cache_unified_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]);
}
void llama_kv_cache_unified_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
kv->set_input_kq_mask(dst, ubatch, causal_attn);
}
void llama_kv_cache_unified_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_pos_bucket(dst, ubatch);
}
uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}