1121 lines
46 KiB
C++
1121 lines
46 KiB
C++
#include "common.hpp"
|
|
#include "ggml-sycl/presets.hpp"
|
|
#include "ggml.h"
|
|
#include "element_wise.hpp"
|
|
|
|
#define SYCL_GLOBAL_ID_LOOP(K, ITEM) \
|
|
for (auto i = ITEM.get_global_id(0); i < (size_t)K; i += ITEM.get_global_range(0))
|
|
|
|
#define SYCL_LOCAL_ID_CALC(ITEM, IDX) \
|
|
(ITEM.get_local_range(IDX) * ITEM.get_group(IDX) + ITEM.get_local_id(IDX))
|
|
|
|
|
|
static void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
|
const int ne10, const int ne11, const int ne12,
|
|
const int nb1, const int nb2, int offset, const sycl::nd_item<1> &item_ct1) {
|
|
const int i = SYCL_LOCAL_ID_CALC(item_ct1, 0);
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
int src1_idx = i - offset;
|
|
int oz = src1_idx / nb2;
|
|
int oy = (src1_idx - (oz * nb2)) / nb1;
|
|
int ox = src1_idx % nb1;
|
|
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
|
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
|
} else {
|
|
dst[i] = x[i];
|
|
}
|
|
}
|
|
|
|
/* Unary OP funcs */
|
|
template<typename T>
|
|
static __dpct_inline__ T op_sgn(T x) {
|
|
return x > static_cast<T>(0.f) ? static_cast<T>(1.f) : ((x < static_cast<T>(0.f) ? static_cast<T>(-1.f) : static_cast<T>(0.f)));
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_abs(T x) {
|
|
return sycl::fabs(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_elu(T x) {
|
|
return (x > static_cast<T>(0.f)) ? x : sycl::expm1(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_gelu(T x) {
|
|
const T GELU_COEF_A = static_cast<T>(0.044715f);
|
|
const T SQRT_2_OVER_PI = static_cast<T>(0.79788456080286535587989211986876f);
|
|
return static_cast<T>(0.5f) * x *
|
|
(static_cast<T>(1.0f) +
|
|
sycl::tanh(SQRT_2_OVER_PI * x * (static_cast<T>(1.0f) + GELU_COEF_A * x * x)));
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_silu(T x) {
|
|
return x / (static_cast<T>(1.0f) + sycl::native::exp(-x));
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_gelu_quick(T x) {
|
|
const T GELU_QUICK_COEF_LOCAL = static_cast<T>(-1.702f);
|
|
return x * (static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(GELU_QUICK_COEF_LOCAL * x)));
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_gelu_erf(T x) {
|
|
const T SQRT_2_INV = static_cast<T>(0.70710678118654752440084436210484f);
|
|
return static_cast<T>(0.5f) * x * (static_cast<T>(1.0f) + sycl::erf(x * SQRT_2_INV));
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_tanh(T x) {
|
|
return sycl::tanh(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_relu(T x) {
|
|
return sycl::fmax(x, static_cast<T>(0));
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_sigmoid(T x) {
|
|
return static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(-x));
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_sqrt(T x) {
|
|
return sycl::sqrt(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_sin(T x) {
|
|
return sycl::sin(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_cos(T x) {
|
|
return sycl::cos(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_hardsigmoid(T x) {
|
|
return sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_hardswish(T x) {
|
|
return x * sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_exp(T x) {
|
|
return sycl::exp(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_log(T x) {
|
|
if (x <= static_cast<T>(0)) {
|
|
return neg_infinity<T>();
|
|
}
|
|
return sycl::log(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_neg(T x) {
|
|
return -x;
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_step(T x) {
|
|
return (x > static_cast<T>(0.0f)) ? static_cast<T>(1.0f) : static_cast<T>(0.0f);
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_leaky_relu(T x, float negative_slope) {
|
|
T neg_slope_T = static_cast<T>(negative_slope);
|
|
return sycl::fmax(x, static_cast<T>(0)) +
|
|
sycl::fmin(x, static_cast<T>(0.0f)) * neg_slope_T;
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_sqr(T x) {
|
|
return x * x;
|
|
}
|
|
|
|
template<typename T>
|
|
static __dpct_inline__ T op_clamp(T x, float min_val, float max_val) {
|
|
return x < static_cast<T>(min_val) ? static_cast<T>(min_val) : (x > static_cast<T>(max_val) ? static_cast<T>(max_val) : x);
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_sgn(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_abs_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_abs(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_elu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_elu(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_gelu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_gelu(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_silu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_silu(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_gelu_quick_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_gelu_quick(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_gelu_erf_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_gelu_erf(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_tanh_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_tanh(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_relu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_relu(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_sigmoid_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_sigmoid(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_sqrt_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_sqrt(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_sin_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_sin(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_cos_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_cos(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_hardsigmoid_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_hardsigmoid(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_hardswish_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_hardswish(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_exp_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_exp(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_log_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_log(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_neg_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_neg(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_step_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_step(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_leaky_relu_kernel(const T * x, T * dst, const int k, float negative_slope, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_leaky_relu(x[i], negative_slope);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_sqr_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_sqr(x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void unary_op_clamp_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1, float min_val, float max_val) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = op_clamp(x[i], min_val, max_val);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void upscale(const T *x, T *dst, const int nb00, const int nb01,
|
|
const int nb02, const int nb03, const int ne10, const int ne11,
|
|
const int ne12, const int ne13, const float sf0, const float sf1,
|
|
const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
|
|
int index = item_ct1.get_local_id(0) +
|
|
item_ct1.get_group(0) * item_ct1.get_local_range(0);
|
|
if (index >= ne10 * ne11 * ne12 * ne13) {
|
|
return;
|
|
}
|
|
// operation
|
|
int i10 = index % ne10;
|
|
int i11 = (index / ne10) % ne11;
|
|
int i12 = (index / (ne10 * ne11)) % ne12;
|
|
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
|
|
|
|
int i00 = static_cast<int>(i10 / sf0);
|
|
int i01 = static_cast<int>(i11 / sf1);
|
|
int i02 = static_cast<int>(i12 / sf2);
|
|
int i03 = static_cast<int>(i13 / sf3);
|
|
|
|
dst[index] = *(const T *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
|
}
|
|
|
|
template <typename T>
|
|
static void pad(const T *x, T *dst, const int ne0, const int ne00, const int ne01, const int ne02,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
int nidx = SYCL_LOCAL_ID_CALC(item_ct1, 2);
|
|
if (nidx >= ne0) {
|
|
return;
|
|
}
|
|
|
|
// operation
|
|
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
|
|
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
|
if (nidx < ne00 && item_ct1.get_group(1) < (size_t) ne01 && item_ct1.get_group(0) < (size_t) ne02) {
|
|
int offset_src = nidx + item_ct1.get_group(1) * ne00 +
|
|
item_ct1.get_group(0) * ne00 * ne01;
|
|
dst[offset_dst] = x[offset_src];
|
|
} else {
|
|
dst[offset_dst] = static_cast<T>(0.0f);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void clamp(const T * x, T * dst, const float min, const float max, const int k,
|
|
const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
dst[i] = x[i] < static_cast<T>(min) ? static_cast<T>(min) : (x[i] > static_cast<T>(max) ? static_cast<T>(max) : x[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void gated_op_fused_geglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
const int64_t j0 = (i / n) * o0 + (i % n);
|
|
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
|
|
dst[i] = op_gelu(x[j0]) * g[j1];
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void gated_op_fused_reglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
const int64_t j0 = (i / n) * o0 + (i % n);
|
|
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
|
|
dst[i] = op_relu(x[j0]) * g[j1];
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void gated_op_fused_swiglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
|
|
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
|
|
const int64_t j0 = (i / n) * o0 + (i % n);
|
|
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
|
|
dst[i] = op_silu(x[j0]) * g[j1];
|
|
}
|
|
}
|
|
|
|
namespace ggml_sycl_detail {
|
|
static void acc_f32_sycl(const float *x, const float *y, float *dst,
|
|
const int n_elements, const int ne10, const int ne11,
|
|
const int ne12, const int nb1, const int nb2,
|
|
const int offset, queue_ptr stream) {
|
|
int num_blocks = ceil_div(n_elements, SYCL_ACC_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) *
|
|
sycl::range<1>(SYCL_ACC_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_ACC_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
|
|
item_ct1);
|
|
});
|
|
}
|
|
|
|
template<typename T>
|
|
static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01,
|
|
const int nb02, const int nb03, const int ne10, const int ne11,
|
|
const int ne12, const int ne13, const float sf0, const float sf1,
|
|
const float sf2, const float sf3, queue_ptr stream) {
|
|
int dst_size = ne10 * ne11 * ne12 * ne13;
|
|
int num_blocks = ceil_div(dst_size, SYCL_UPSCALE_BLOCK_SIZE);
|
|
sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
|
|
sycl_parallel_for<1>(
|
|
stream, sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
|
|
upscale(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
|
|
});
|
|
}
|
|
|
|
template<typename T>
|
|
static void pad_sycl(const T *x, T *dst, const int ne00,
|
|
const int ne01, const int ne02, const int ne0,
|
|
const int ne1, const int ne2, queue_ptr stream) {
|
|
int num_blocks = ceil_div(ne0, SYCL_PAD_BLOCK_SIZE);
|
|
sycl::range<3> gridDim(ne2, ne1, num_blocks);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) { pad(x, dst, ne0, ne00, ne01, ne02, item_ct1); });
|
|
}
|
|
|
|
template<typename KernelInvoker, typename... Args>
|
|
static inline void dispatch_ggml_sycl_op_unary(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
|
|
#if defined (GGML_SYCL_F16)
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
|
#else
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
#endif
|
|
GGML_ASSERT(dst->src[0]->type == dst->type);
|
|
dpct::queue_ptr main_stream = ctx.stream();
|
|
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
|
switch (dst->type) {
|
|
#if defined (GGML_SYCL_F16)
|
|
case GGML_TYPE_F16:
|
|
{
|
|
auto data_pts = cast_data<sycl::half>(dst);
|
|
kernel_invoker(data_pts.src, data_pts.dst, (int)ggml_nelements(dst->src[0]), main_stream, std::forward<Args>(args)...);
|
|
break;
|
|
}
|
|
#endif
|
|
case GGML_TYPE_F32:
|
|
{
|
|
auto data_pts = cast_data<float>(dst);
|
|
kernel_invoker(data_pts.src, data_pts.dst, (int)ggml_nelements(dst->src[0]), main_stream, std::forward<Args>(args)...);
|
|
break;
|
|
}
|
|
default:
|
|
GGML_ABORT("GGML tensor type not supported!\n");
|
|
}
|
|
}
|
|
|
|
template<typename KernelInvoker, typename... Args>
|
|
static inline void dispatch_ggml_sycl_op_fused_glu(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
|
|
#if defined (GGML_SYCL_F16)
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
|
#else
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
#endif
|
|
GGML_ASSERT(dst->src[0]->type == dst->type);
|
|
dpct::queue_ptr main_stream = ctx.stream();
|
|
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
const int64_t nc = src1 ? src0->ne[0] : src0->ne[0] / 2;;
|
|
GGML_ASSERT(dst->ne[0] == nc);
|
|
GGML_ASSERT(ggml_is_contiguous_1(dst->src[0]));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
const int32_t swapped = ((const int32_t *) dst->op_params)[1];
|
|
void * src0_d = src0->data;
|
|
void * src1_d = src1 ? src1->data : src0->data;
|
|
const int64_t src0_o = src0->nb[1];
|
|
const int64_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
|
|
void * dst_d = dst->data;
|
|
if (src1) {
|
|
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
|
GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
|
|
GGML_ASSERT(src1->ne[0] == nc);
|
|
GGML_ASSERT(src0->type == src1->type);
|
|
}
|
|
switch (dst->type) {
|
|
#if defined (GGML_SYCL_F16)
|
|
case GGML_TYPE_F16:
|
|
{
|
|
sycl::half * src0_p = (sycl::half *) src0_d;
|
|
sycl::half * src1_p = (sycl::half *) src1_d;
|
|
|
|
if (!src1) {
|
|
src0_p += swapped ? nc : 0;
|
|
src1_p += swapped ? 0 : nc;
|
|
}
|
|
kernel_invoker(src0_p,
|
|
src1_p,
|
|
(sycl::half *) dst_d,
|
|
ggml_nelements(dst),
|
|
nc,
|
|
src0_o / sizeof(sycl::half),
|
|
src1_o / sizeof(sycl::half),
|
|
main_stream,
|
|
std::forward<Args>(args)...);
|
|
break;
|
|
}
|
|
#endif
|
|
case GGML_TYPE_F32:
|
|
{
|
|
float * src0_p = (float *) src0_d;
|
|
float * src1_p = (float *) src1_d;
|
|
|
|
if (!src1) {
|
|
src0_p += swapped ? nc : 0;
|
|
src1_p += swapped ? 0 : nc;
|
|
}
|
|
|
|
kernel_invoker(src0_p,
|
|
src1_p,
|
|
(float *) dst_d,
|
|
ggml_nelements(dst),
|
|
nc,
|
|
src0_o / sizeof(float),
|
|
src1_o / sizeof(float),
|
|
main_stream,
|
|
std::forward<Args>(args)...);
|
|
break;
|
|
}
|
|
default:
|
|
GGML_ABORT("GGML tensor type not supported!\n");
|
|
}
|
|
}
|
|
|
|
template<typename KernelInvoker, typename... Args>
|
|
static inline void dispatch_ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
|
|
#if defined (GGML_SYCL_F16)
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
|
#else
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
#endif
|
|
GGML_ASSERT(dst->src[0]->type == dst->type);
|
|
|
|
dpct::queue_ptr main_stream = ctx.stream();
|
|
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
|
|
|
const float sf0 = (float) dst->ne[0] / dst->src[0]->ne[0];
|
|
const float sf1 = (float) dst->ne[1] / dst->src[0]->ne[1];
|
|
const float sf2 = (float) dst->ne[2] / dst->src[0]->ne[2];
|
|
const float sf3 = (float) dst->ne[3] / dst->src[0]->ne[3];
|
|
switch (dst->type) {
|
|
#if defined (GGML_SYCL_F16)
|
|
case GGML_TYPE_F16:
|
|
{
|
|
auto data_pts = cast_data<sycl::half>(dst);
|
|
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->nb[0], (int)dst->src[0]->nb[1], (int)dst->src[0]->nb[2],
|
|
(int)dst->src[0]->nb[3], (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], sf0, sf1, sf2, sf3,
|
|
main_stream, std::forward<Args>(args)...);
|
|
break;
|
|
}
|
|
#endif
|
|
case GGML_TYPE_F32:
|
|
{
|
|
auto data_pts = cast_data<float>(dst);
|
|
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->nb[0], (int)dst->src[0]->nb[1], (int)dst->src[0]->nb[2],
|
|
(int)dst->src[0]->nb[3], (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], sf0, sf1, sf2, sf3,
|
|
main_stream, std::forward<Args>(args)...);
|
|
break;
|
|
}
|
|
default:
|
|
GGML_ABORT("GGML tensor type not supported!\n");
|
|
}
|
|
}
|
|
|
|
template<typename KernelInvoker, typename... Args>
|
|
static inline void dispatch_ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
|
|
#if defined (GGML_SYCL_F16)
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
|
#else
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
#endif
|
|
GGML_ASSERT(dst->src[0]->type == dst->type);
|
|
GGML_ASSERT(dst->src[0]->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
|
dpct::queue_ptr main_stream = ctx.stream();
|
|
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
|
switch (dst->type) {
|
|
#if defined (GGML_SYCL_F16)
|
|
case GGML_TYPE_F16:
|
|
{
|
|
auto data_pts = cast_data<sycl::half>(dst);
|
|
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
|
|
(int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
|
|
break;
|
|
}
|
|
#endif
|
|
case GGML_TYPE_F32:
|
|
{
|
|
auto data_pts = cast_data<float>(dst);
|
|
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
|
|
(int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
|
|
break;
|
|
}
|
|
default:
|
|
GGML_ABORT("GGML tensor type not supported!\n");
|
|
}
|
|
}
|
|
|
|
} // namespace ggml_sycl_detail
|
|
|
|
|
|
|
|
static inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, 256);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
|
|
sycl::range<1>(256)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_sgn_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, 256);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
|
|
sycl::range<1>(256)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_abs_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, 256);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
|
|
sycl::range<1>(256)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_elu_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_SILU_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SILU_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_SILU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_silu_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_gelu_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_gelu_quick_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_gelu_erf_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_TANH_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_TANH_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_TANH_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_tanh_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_RELU_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_RELU_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_RELU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_relu_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_HARDSIGMOID_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_HARDSIGMOID_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_HARDSIGMOID_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_hardsigmoid_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_HARDSWISH_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_HARDSWISH_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_HARDSWISH_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_hardswish_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_EXP_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_EXP_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_EXP_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_exp_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_EXP_BLOCK_SIZE); // Using EXP block size
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_EXP_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_EXP_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_log_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_NEG_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_NEG_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_NEG_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_neg_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_NEG_BLOCK_SIZE); // Using NEG block size
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_NEG_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_NEG_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_step_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_SIGMOID_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIGMOID_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_SIGMOID_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_sigmoid_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_SQRT_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SQRT_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_SQRT_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_sqrt_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_SIN_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIN_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_SIN_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_sin_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_SIN_BLOCK_SIZE); // Using SIN block size
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIN_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_SIN_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_cos_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
float negative_slope;
|
|
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream, float slope) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_RELU_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_RELU_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_RELU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_leaky_relu_kernel(src, dst_ptr, k_elements, slope, item_ct1);
|
|
});
|
|
}, negative_slope);
|
|
}
|
|
|
|
static inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_SQR_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SQR_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_SQR_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
unary_op_sqr_kernel(src, dst_ptr, k_elements, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_upscale(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int nb00, int nb01, int nb02, int nb03,
|
|
int ne10, int ne11, int ne12, int ne13, float sf0, float sf1, float sf2, float sf3,
|
|
queue_ptr stream) {
|
|
ggml_sycl_detail::upscale_sycl(src, dst_ptr, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, stream);
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_pad(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2,
|
|
queue_ptr stream) {
|
|
ggml_sycl_detail::pad_sycl(src, dst_ptr, ne00, ne01, ne02, ne0, ne1, ne2, stream);
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
float min_val;
|
|
float max_val;
|
|
memcpy(&min_val, dst->op_params, sizeof(float));
|
|
memcpy(&max_val, (float *) dst->op_params + 1, sizeof(float));
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
|
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream, float min_arg, float max_arg) {
|
|
const int num_blocks = ceil_div(k_elements, SYCL_CLAMP_BLOCK_SIZE);
|
|
sycl_parallel_for(stream,
|
|
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_CLAMP_BLOCK_SIZE),
|
|
sycl::range<1>(SYCL_CLAMP_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<1> item_ct1) {
|
|
clamp(src, dst_ptr, min_arg, max_arg, k_elements, item_ct1);
|
|
});
|
|
}, min_val, max_val);
|
|
}
|
|
|
|
static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
|
dpct::queue_ptr main_stream = ctx.stream();
|
|
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
|
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
|
|
const float * src1_dd = static_cast<const float*>(dst->src[1]->data);
|
|
float * dst_dd = static_cast<float *>(dst->data);
|
|
|
|
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
|
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
|
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
|
int offset = dst->op_params[3] / 4; // offset in bytes
|
|
|
|
ggml_sycl_detail::acc_f32_sycl(src0_dd, src1_dd, dst_dd, (int)ggml_nelements(dst), (int)dst->src[1]->ne[0], (int)dst->src[1]->ne[1], (int)dst->src[1]->ne[2], nb1, nb2, offset, main_stream);
|
|
}
|
|
|
|
static inline void ggml_sycl_op_geglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
|
|
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
|
|
const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
|
|
sycl_parallel_for(main_stream,
|
|
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
|
|
gated_op_fused_geglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
|
|
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
|
|
const uint32_t num_blocks = ceil_div((uint32_t)k, SYCL_RELU_BLOCK_SIZE); // Using RELU block size for reglu
|
|
sycl_parallel_for(main_stream,
|
|
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_RELU_BLOCK_SIZE)), sycl::range<1>(SYCL_RELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
|
|
gated_op_fused_reglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
static inline void ggml_sycl_op_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
|
|
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
|
|
const uint32_t num_blocks = ceil_div((uint32_t)k, SYCL_SILU_BLOCK_SIZE); // Using SILU block size for swiglu
|
|
sycl_parallel_for(main_stream,
|
|
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_SILU_BLOCK_SIZE)), sycl::range<1>(SYCL_SILU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
|
|
gated_op_fused_swiglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
|
|
|
|
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_sqrt(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_sin(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_cos(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_acc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
|
|
ggml_sycl_op_acc(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_gelu(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_silu(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_gelu_quick(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_gelu_erf(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_tanh(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_relu(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_sigmoid(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_hardsigmoid(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_hardswish(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_exp(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_log(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_neg(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_step(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_leaky_relu(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_sqr(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_upscale(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_pad(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_clamp(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_sgn(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_abs(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_elu(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_geglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_geglu(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_reglu(ctx, dst);
|
|
}
|
|
|
|
void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
|
ggml_sycl_op_swiglu(ctx, dst);
|
|
}
|