mirror of https://github.com/phonopy/phono3py.git
Update document
This commit is contained in:
parent
ff7be8c68b
commit
1dc69b52d7
|
@ -58,7 +58,7 @@ When using `phono3py-load` (see also {ref}`phono3py_load_command`)
|
|||
This specifies input unit cell filename.
|
||||
|
||||
```bash
|
||||
% phono3py -c POSCAR-unitcell ... (options)
|
||||
% phono3py -c POSCAR-unitcell [OPTIONS]
|
||||
```
|
||||
|
||||
## Calculator interface
|
||||
|
@ -193,7 +193,7 @@ created from `FORCES_FC2` and `phono3py_disp.yaml` instead of `FORCES_FC3` and
|
|||
`phono3py_disp.yaml`.
|
||||
|
||||
```bash
|
||||
% phono3py --cfs --dim-fc2="x x x"
|
||||
% phono3py --cfs --dim-fc2 4 4 4
|
||||
```
|
||||
|
||||
(sp_option)=
|
||||
|
@ -283,7 +283,7 @@ order force constants with larger supercell size. The filename is the same as
|
|||
that created in the usual phono3py run without `--dim-fc2` option.
|
||||
|
||||
```bash
|
||||
% phono3py --dim="2 2 2" --dim_fc2="4 4 4" -c POSCAR-unitcell ... (many options)
|
||||
% phono3py --dim 2 2 2 --dim_fc2 4 4 4 -c POSCAR-unitcell [OPTIONS]
|
||||
```
|
||||
|
||||
(pa_option)=
|
||||
|
|
|
@ -48,10 +48,6 @@ in the distribution from GitHub or PyPI.
|
|||
conda-forge (recommended). Otherwise, pypolymlp can be installed from
|
||||
source-code.
|
||||
|
||||
- [symfc](https://github.com/symfc/symfc)
|
||||
|
||||
Installed via pip, conda-forge, or source code.
|
||||
|
||||
## How to calculate
|
||||
|
||||
### Workflow
|
||||
|
@ -357,14 +353,6 @@ an additional 200 supercells. In total, 400 supercells are created. The forces
|
|||
for these supercells are then evaluated. Finally, the force constants are
|
||||
calculated using symfc.
|
||||
|
||||
## Convergence with respect to dataset size
|
||||
|
||||
In general, increasing the amount of data improves the accuracy of representing
|
||||
force constants. Therefore, it is recommended to check the convergence of the
|
||||
target property with respect to the number of supercells in the training
|
||||
dataset. Lattice thermal conductivity may be a convenient property to monitor
|
||||
when assessing convergence.
|
||||
|
||||
## Parameters for developing MLPs
|
||||
|
||||
A few parameters can be specified using the `--mlp-params` option for the
|
||||
|
@ -401,3 +389,30 @@ For parameter adjustments, it is recommended to consult the
|
|||
This method provides a straightforward dataset split: the first `ntrain`
|
||||
supercells from the list are used for training, while the last `ntest`
|
||||
supercells are reserved for testing.
|
||||
|
||||
## Convergence with respect to dataset size
|
||||
|
||||
In general, increasing the amount of data improves the accuracy of representing
|
||||
force constants. Therefore, it is recommended to check the convergence of the
|
||||
target property with respect to the number of supercells in the training
|
||||
dataset. Lattice thermal conductivity may be a convenient property to monitor
|
||||
when assessing convergence.
|
||||
|
||||
For example, by preparing an initial set with 100 supercell data, calculations
|
||||
can then be performed by varying the size of the training dataset while keeping
|
||||
the test dataset unchanged as follows:
|
||||
|
||||
```bash
|
||||
% phono3py-load --pypolymlp --mlp-params="ntrain=20, ntest=20" --br --mesh 40 phono3py_params.yaml | tee log-20
|
||||
% phono3py-load --pypolymlp --mlp-params="ntrain=40, ntest=20" --br --mesh 40 phono3py_params.yaml | tee log-40
|
||||
% phono3py-load --pypolymlp --mlp-params="ntrain=60, ntest=20" --br --mesh 40 phono3py_params.yaml | tee log-60
|
||||
% phono3py-load --pypolymlp --mlp-params="ntrain=80, ntest=20" --br --mesh 40 phono3py_params.yaml | tee log-80
|
||||
```
|
||||
|
||||
The computed lattice thermal conductivities (LTCs) are plotted against the size
|
||||
of the training dataset to observe LTC convergence. If the LTC has not
|
||||
converged, an additional set of supercell data (e.g., forces and energies in
|
||||
the next 100 supercells) will be computed and included. With this procedure in
|
||||
mind, it may be convenient to generate a sufficiently large number of supercells
|
||||
with random displacements in advance, such as 1000 supercells, before starting
|
||||
the LTC calculation with pypolymlp.
|
||||
|
|
Loading…
Reference in New Issue