circt/lib/Conversion/HWToSystemC/HWToSystemC.cpp

367 lines
14 KiB
C++

//===- HWToSystemC.cpp - HW To SystemC Conversion Pass --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the main HW to SystemC Conversion Pass Implementation.
//
//===----------------------------------------------------------------------===//
#include "circt/Conversion/HWToSystemC.h"
#include "circt/Dialect/Comb/CombDialect.h"
#include "circt/Dialect/HW/HWOps.h"
#include "circt/Dialect/SystemC/SystemCOps.h"
#include "mlir/Dialect/EmitC/IR/EmitC.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/TypeSwitch.h"
namespace circt {
#define GEN_PASS_DEF_CONVERTHWTOSYSTEMC
#include "circt/Conversion/Passes.h.inc"
} // namespace circt
using namespace mlir;
using namespace circt;
using namespace hw;
using namespace systemc;
//===----------------------------------------------------------------------===//
// Operation Conversion Patterns
//===----------------------------------------------------------------------===//
namespace {
/// This works on each HW module, creates corresponding SystemC modules, moves
/// the body of the module into the new SystemC module by splitting up the body
/// into field declarations, initializations done in a newly added systemc.ctor,
/// and internal methods to be registered in the constructor.
struct ConvertHWModule : public OpConversionPattern<HWModuleOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(HWModuleOp module, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Parameterized modules are supported yet.
if (!module.getParameters().empty())
return emitError(module->getLoc(), "module parameters not supported yet");
auto ports = module.getPortList();
if (llvm::any_of(ports, [](auto &port) { return port.isInOut(); }))
return emitError(module->getLoc(), "inout arguments not supported yet");
// Create the SystemC module.
for (size_t i = 0; i < ports.size(); ++i)
ports[i].type = typeConverter->convertType(ports[i].type);
auto scModule = SCModuleOp::create(rewriter, module.getLoc(),
module.getNameAttr(), ports);
auto *outputOp = module.getBodyBlock()->getTerminator();
scModule.setVisibility(module.getVisibility());
auto portAttrs = module.getAllPortAttrs();
if (!portAttrs.empty())
scModule.setAllArgAttrs(portAttrs);
// Create a systemc.func operation inside the module after the ctor.
// TODO: implement logic to extract a better name and properly unique it.
rewriter.setInsertionPointToStart(scModule.getBodyBlock());
auto scFunc = SCFuncOp::create(rewriter, module.getLoc(),
rewriter.getStringAttr("innerLogic"));
// Inline the HW module body into the systemc.func body.
// TODO: do some dominance analysis to detect use-before-def and cycles in
// the use chain, which are allowed in graph regions but not in SSACFG
// regions, and when possible fix them.
scFunc.getBodyBlock()->erase();
Region &scFuncBody = scFunc.getBody();
rewriter.inlineRegionBefore(module.getBody(), scFuncBody, scFuncBody.end());
// Register the systemc.func inside the systemc.ctor
rewriter.setInsertionPointToStart(
scModule.getOrCreateCtor().getBodyBlock());
MethodOp::create(rewriter, scModule.getLoc(), scFunc.getHandle());
// Register the sensitivities of above SC_METHOD registration.
SmallVector<Value> sensitivityValues(
llvm::make_filter_range(scModule.getArguments(), [](BlockArgument arg) {
return !isa<OutputType>(arg.getType());
}));
if (!sensitivityValues.empty())
SensitiveOp::create(rewriter, scModule.getLoc(), sensitivityValues);
// Move the block arguments of the systemc.func (that we got from the
// hw.module) to the systemc.module
rewriter.setInsertionPointToStart(scFunc.getBodyBlock());
auto portsLocal = module.getPortList();
for (size_t i = 0, e = scFunc.getRegion().getNumArguments(); i < e; ++i) {
auto inputRead = SignalReadOp::create(rewriter, scFunc.getLoc(),
scModule.getArgument(i))
.getResult();
auto converted = typeConverter->materializeSourceConversion(
rewriter, scModule.getLoc(), portsLocal[i].type, inputRead);
scFuncBody.getArgument(0).replaceAllUsesWith(converted);
scFuncBody.eraseArgument(0);
}
// Erase the HW module.
rewriter.eraseOp(module);
SmallVector<Value> outPorts;
for (auto val : scModule.getArguments()) {
if (isa<OutputType>(val.getType()))
outPorts.push_back(val);
}
rewriter.setInsertionPoint(outputOp);
for (auto args : llvm::zip(outPorts, outputOp->getOperands())) {
Value portValue = std::get<0>(args);
auto converted = typeConverter->materializeTargetConversion(
rewriter, scModule.getLoc(), getSignalBaseType(portValue.getType()),
std::get<1>(args));
SignalWriteOp::create(rewriter, outputOp->getLoc(), portValue, converted);
}
// Erase the HW OutputOp.
outputOp->dropAllReferences();
rewriter.eraseOp(outputOp);
return success();
}
};
/// Convert hw.instance operations to systemc.instance.decl and a
/// systemc.instance.bind_port operation for each port in the constructor. Also
/// insert the necessary intermediate signals and write or read their state in
/// the update function accordingly.
class ConvertInstance : public OpConversionPattern<InstanceOp> {
using OpConversionPattern::OpConversionPattern;
private:
template <typename PortTy>
LogicalResult
collectPortInfo(ValueRange ports, ArrayAttr portNames,
SmallVector<systemc::ModuleType::PortInfo> &portInfo) const {
for (auto inPort : llvm::zip(ports, portNames)) {
Type ty = std::get<0>(inPort).getType();
systemc::ModuleType::PortInfo info;
if (isa<hw::InOutType>(ty))
return failure();
info.type = typeConverter->convertType(PortTy::get(ty));
info.name = cast<StringAttr>(std::get<1>(inPort));
portInfo.push_back(info);
}
return success();
}
public:
LogicalResult
matchAndRewrite(InstanceOp instanceOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Make sure the parent is already converted such that we already have a
// constructor and update function to insert operations into.
auto scModule = instanceOp->getParentOfType<SCModuleOp>();
if (!scModule)
return rewriter.notifyMatchFailure(instanceOp,
"parent was not an SCModuleOp");
// Get the builders for the different places to insert operations.
auto ctor = scModule.getOrCreateCtor();
OpBuilder stateBuilder(ctor);
OpBuilder initBuilder = OpBuilder::atBlockEnd(ctor.getBodyBlock());
// Collect the port types and names of the instantiated module and convert
// them to appropriate systemc types.
SmallVector<systemc::ModuleType::PortInfo> portInfo;
if (failed(collectPortInfo<InputType>(adaptor.getInputs(),
adaptor.getArgNames(), portInfo)) ||
failed(collectPortInfo<OutputType>(instanceOp->getResults(),
adaptor.getResultNames(), portInfo)))
return instanceOp->emitOpError("inout ports not supported");
Location loc = instanceOp->getLoc();
auto instanceName = instanceOp.getInstanceNameAttr();
auto instModuleName = instanceOp.getModuleNameAttr();
// Declare the instance.
auto instDecl = InstanceDeclOp::create(stateBuilder, loc, instanceName,
instModuleName, portInfo);
// Bind the input ports.
for (size_t i = 0, numInputs = adaptor.getInputs().size(); i < numInputs;
++i) {
Value input = adaptor.getInputs()[i];
auto portId = rewriter.getIndexAttr(i);
StringAttr signalName = rewriter.getStringAttr(
instanceName.getValue() + "_" + portInfo[i].name.getValue());
if (auto readOp = input.getDefiningOp<SignalReadOp>()) {
// Use the read channel directly without adding an
// intermediate signal.
BindPortOp::create(initBuilder, loc, instDecl, portId,
readOp.getInput());
continue;
}
// Otherwise, create an intermediate signal to bind the instance port to.
Type sigType = SignalType::get(getSignalBaseType(portInfo[i].type));
Value channel = SignalOp::create(stateBuilder, loc, sigType, signalName);
BindPortOp::create(initBuilder, loc, instDecl, portId, channel);
SignalWriteOp::create(rewriter, loc, channel, input);
}
// Bind the output ports.
for (size_t i = 0, numOutputs = instanceOp->getNumResults(); i < numOutputs;
++i) {
size_t numInputs = adaptor.getInputs().size();
Value output = instanceOp->getResult(i);
auto portId = rewriter.getIndexAttr(i + numInputs);
StringAttr signalName =
rewriter.getStringAttr(instanceName.getValue() + "_" +
portInfo[i + numInputs].name.getValue());
if (output.hasOneUse()) {
if (auto writeOp = dyn_cast<SignalWriteOp>(*output.user_begin())) {
// Use the channel written to directly. When there are multiple
// channels this value is written to or it is used somewhere else, we
// cannot shortcut it and have to insert an intermediate value because
// we cannot insert multiple bind statements for one submodule port.
// It is also necessary to bind it to an intermediate signal when it
// has no uses as every port has to be bound to a channel.
BindPortOp::create(initBuilder, loc, instDecl, portId,
writeOp.getDest());
writeOp->erase();
continue;
}
}
// Otherwise, create an intermediate signal.
Type sigType =
SignalType::get(getSignalBaseType(portInfo[i + numInputs].type));
Value channel = SignalOp::create(stateBuilder, loc, sigType, signalName);
BindPortOp::create(initBuilder, loc, instDecl, portId, channel);
auto instOut = SignalReadOp::create(rewriter, loc, channel);
output.replaceAllUsesWith(instOut);
}
rewriter.eraseOp(instanceOp);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Conversion Infrastructure
//===----------------------------------------------------------------------===//
static void populateLegality(ConversionTarget &target) {
target.addIllegalDialect<HWDialect>();
target.addLegalDialect<mlir::BuiltinDialect>();
target.addLegalDialect<systemc::SystemCDialect>();
target.addLegalDialect<comb::CombDialect>();
target.addLegalDialect<emitc::EmitCDialect>();
target.addLegalOp<hw::ConstantOp>();
}
static void populateOpConversion(RewritePatternSet &patterns,
TypeConverter &typeConverter) {
patterns.add<ConvertHWModule, ConvertInstance>(typeConverter,
patterns.getContext());
}
static void populateTypeConversion(TypeConverter &converter) {
converter.addConversion([](Type type) { return type; });
converter.addConversion([&](SignalType type) {
return SignalType::get(converter.convertType(type.getBaseType()));
});
converter.addConversion([&](InputType type) {
return InputType::get(converter.convertType(type.getBaseType()));
});
converter.addConversion([&](systemc::InOutType type) {
return systemc::InOutType::get(converter.convertType(type.getBaseType()));
});
converter.addConversion([&](OutputType type) {
return OutputType::get(converter.convertType(type.getBaseType()));
});
converter.addConversion([](IntegerType type) -> Type {
auto bw = type.getIntOrFloatBitWidth();
if (bw == 1)
return type;
if (bw <= 64) {
if (type.isSigned())
return systemc::IntType::get(type.getContext(), bw);
return UIntType::get(type.getContext(), bw);
}
if (bw <= 512) {
if (type.isSigned())
return BigIntType::get(type.getContext(), bw);
return BigUIntType::get(type.getContext(), bw);
}
return BitVectorType::get(type.getContext(), bw);
});
converter.addSourceMaterialization(
[](OpBuilder &builder, Type type, ValueRange values, Location loc) {
assert(values.size() == 1);
auto op = ConvertOp::create(builder, loc, type, values[0]);
return op.getResult();
});
converter.addTargetMaterialization(
[](OpBuilder &builder, Type type, ValueRange values, Location loc) {
assert(values.size() == 1);
auto op = ConvertOp::create(builder, loc, type, values[0]);
return op.getResult();
});
}
//===----------------------------------------------------------------------===//
// HW to SystemC Conversion Pass
//===----------------------------------------------------------------------===//
namespace {
struct HWToSystemCPass
: public circt::impl::ConvertHWToSystemCBase<HWToSystemCPass> {
void runOnOperation() override;
};
} // namespace
/// Create a HW to SystemC dialects conversion pass.
std::unique_ptr<OperationPass<ModuleOp>> circt::createConvertHWToSystemCPass() {
return std::make_unique<HWToSystemCPass>();
}
/// This is the main entrypoint for the HW to SystemC conversion pass.
void HWToSystemCPass::runOnOperation() {
MLIRContext &context = getContext();
ModuleOp module = getOperation();
// Create the include operation here to have exactly one 'systemc' include at
// the top instead of one per module.
OpBuilder builder(module.getRegion());
emitc::IncludeOp::create(builder, module->getLoc(), "systemc.h", true);
ConversionTarget target(context);
TypeConverter typeConverter;
RewritePatternSet patterns(&context);
populateLegality(target);
populateTypeConversion(typeConverter);
populateOpConversion(patterns, typeConverter);
if (failed(applyFullConversion(module, target, std::move(patterns))))
signalPassFailure();
}