[sanitizer] Implement TwoLevelByteMap and use it for the internal allocator on 64-bit.

Summary:
Implement TwoLevelByteMap and use it for the internal allocator on 64-bit.
This reduces bss on 64-bit by ~8Mb because we don't use FlatByteMap on 64-bits any more.

Dmitry, please check my understanding of atomics.

Reviewers: dvyukov

Reviewed By: dvyukov

CC: samsonov, llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D2259

llvm-svn: 195637
This commit is contained in:
Kostya Serebryany 2013-11-25 11:33:41 +00:00
parent f59125f5bb
commit ccfc0481f1
3 changed files with 133 additions and 6 deletions

View File

@ -587,7 +587,69 @@ class FlatByteMap {
u8 map_[kSize];
};
// FIXME: Also implement TwoLevelByteMap.
// TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
// It is implemented as a two-dimensional array: array of kSize1 pointers
// to kSize2-byte arrays. The secondary arrays are mmaped on demand.
// Each value is initially zero and can be set to something else only once.
// Setting and getting values from multiple threads is safe w/o extra locking.
template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback>
class TwoLevelByteMap {
public:
void TestOnlyInit() {
internal_memset(map1_, 0, sizeof(map1_));
mu_.Init();
}
void TestOnlyUnmap() {
for (uptr i = 0; i < kSize1; i++) {
u8 *p = Get(i);
if (!p) continue;
MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
UnmapOrDie(p, kSize2);
}
}
uptr size() const { return kSize1 * kSize2; }
uptr size1() const { return kSize1; }
uptr size2() const { return kSize2; }
void set(uptr idx, u8 val) {
CHECK_LT(idx, kSize1 * kSize2);
u8 *map2 = GetOrCreate(idx / kSize2);
CHECK_EQ(0U, map2[idx % kSize2]);
map2[idx % kSize2] = val;
}
u8 operator[] (uptr idx) const {
CHECK_LT(idx, kSize1 * kSize2);
u8 *map2 = Get(idx / kSize2);
if (!map2) return 0;
return map2[idx % kSize2];
}
private:
u8 *Get(uptr idx) const {
CHECK_LT(idx, kSize1);
return reinterpret_cast<u8 *>(
atomic_load(&map1_[idx], memory_order_acquire));
}
u8 *GetOrCreate(uptr idx) {
u8 *res = Get(idx);
if (!res) {
SpinMutexLock l(&mu_);
if (!(res = Get(idx))) {
res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap");
MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
memory_order_release);
}
}
return res;
}
atomic_uintptr_t map1_[kSize1];
StaticSpinMutex mu_;
};
// SizeClassAllocator32 -- allocator for 32-bit address space.
// This allocator can theoretically be used on 64-bit arch, but there it is less

View File

@ -27,21 +27,25 @@ static const uptr kInternalAllocatorSpace = 0;
#if SANITIZER_WORDSIZE == 32
static const u64 kInternalAllocatorSize = (1ULL << 32);
static const uptr kInternalAllocatorRegionSizeLog = 20;
static const uptr kInternalAllocatorNumRegions =
kInternalAllocatorSize >> kInternalAllocatorRegionSizeLog;
typedef FlatByteMap<kInternalAllocatorNumRegions> ByteMap;
#else
static const u64 kInternalAllocatorSize = (1ULL << 47);
static const uptr kInternalAllocatorRegionSizeLog = 24;
#endif
static const uptr kInternalAllocatorFlatByteMapSize =
static const uptr kInternalAllocatorNumRegions =
kInternalAllocatorSize >> kInternalAllocatorRegionSizeLog;
typedef TwoLevelByteMap<(kInternalAllocatorNumRegions >> 12), 1 << 12> ByteMap;
#endif
typedef SizeClassAllocator32<
kInternalAllocatorSpace, kInternalAllocatorSize, 16, InternalSizeClassMap,
kInternalAllocatorRegionSizeLog,
FlatByteMap<kInternalAllocatorFlatByteMapSize> > PrimaryInternalAllocator;
kInternalAllocatorRegionSizeLog, ByteMap> PrimaryInternalAllocator;
typedef SizeClassAllocatorLocalCache<PrimaryInternalAllocator>
InternalAllocatorCache;
// We don't want our internal allocator to do any map/unmap operations.
// We don't want our internal allocator to do any map/unmap operations from
// LargeMmapAllocator.
struct CrashOnMapUnmap {
void OnMap(uptr p, uptr size) const {
RAW_CHECK_MSG(0, "Unexpected mmap in InternalAllocator!");

View File

@ -794,4 +794,65 @@ TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) {
}
#endif
TEST(SanitizerCommon, TwoLevelByteMap) {
const u64 kSize1 = 1 << 6, kSize2 = 1 << 12;
const u64 n = kSize1 * kSize2;
TwoLevelByteMap<kSize1, kSize2> m;
m.TestOnlyInit();
for (u64 i = 0; i < n; i += 7) {
m.set(i, (i % 100) + 1);
}
for (u64 j = 0; j < n; j++) {
if (j % 7)
EXPECT_EQ(m[j], 0);
else
EXPECT_EQ(m[j], (j % 100) + 1);
}
m.TestOnlyUnmap();
}
typedef TwoLevelByteMap<1 << 12, 1 << 13, TestMapUnmapCallback> TestByteMap;
struct TestByteMapParam {
TestByteMap *m;
size_t shard;
size_t num_shards;
};
void *TwoLevelByteMapUserThread(void *param) {
TestByteMapParam *p = (TestByteMapParam*)param;
for (size_t i = p->shard; i < p->m->size(); i += p->num_shards) {
size_t val = (i % 100) + 1;
p->m->set(i, val);
EXPECT_EQ((*p->m)[i], val);
}
return 0;
}
TEST(SanitizerCommon, ThreadedTwoLevelByteMap) {
TestByteMap m;
m.TestOnlyInit();
TestMapUnmapCallback::map_count = 0;
TestMapUnmapCallback::unmap_count = 0;
static const int kNumThreads = 4;
pthread_t t[kNumThreads];
TestByteMapParam p[kNumThreads];
for (int i = 0; i < kNumThreads; i++) {
p[i].m = &m;
p[i].shard = i;
p[i].num_shards = kNumThreads;
EXPECT_EQ(0, pthread_create(&t[i], 0, TwoLevelByteMapUserThread, &p[i]));
}
for (int i = 0; i < kNumThreads; i++) {
EXPECT_EQ(0, pthread_join(t[i], 0));
}
EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1());
EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, 0UL);
m.TestOnlyUnmap();
EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1());
EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, m.size1());
}
#endif // #if TSAN_DEBUG==0