HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information.
Differential Revision: https://reviews.llvm.org/D76036
Summary: For example, DenseElementsAttr currently does not properly round-trip unsigned integer values.
Differential Revision: https://reviews.llvm.org/D75374
Summary:
NFC - Moved StandardOps/Ops.h to a StandardOps/IR dir to better match surrounding
directories. This is to match other dialects, and prepare for moving StandardOps
related transforms in out for Transforms and into StandardOps/Transforms.
Differential Revision: https://reviews.llvm.org/D74940
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
This CL utilizies the more robust fusion feasibility analysis being built out in LoopFusionUtils, which will eventually be used to replace the current affine loop fusion pass.
PiperOrigin-RevId: 281112340
- fix store to load forwarding for a certain set of cases (where
forwarding shouldn't have happened); use AffineValueMap difference
based MemRefAccess equality checking; utility logic is also greatly
simplified
- add missing equality/inequality operators for AffineExpr ==/!= ints
- add == != operators on MemRefAccess
Closestensorflow/mlir#136
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/136 from bondhugula:store-load-forwarding d79fd1add8bcfbd9fa71d841a6a9905340dcd792
PiperOrigin-RevId: 270457011
- add canonicalization pattern to compose maps into affine loads/stores;
templatize the pattern and reuse it for affine.apply as well
- rename getIndices -> getMapOperands() (getIndices is confusing since
these are no longer the indices themselves but operands to the map
whose results are the indices). This also makes the accessor uniform
across affine.apply/load/store. Change arg names on the affine
load/store builder to avoid confusion. Drop an unused confusing build
method on AffineStoreOp.
- update incomplete doc comment for canonicalizeMapAndOperands (this was
missed from a previous update).
Addresses issue tensorflow/mlir#121
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#122
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/122 from bondhugula:compose-load-store e71de1771e56a85c4282c10cb43f30cef0701c4f
PiperOrigin-RevId: 269619540
This is done by providing a walk callback that returns a WalkResult. This result is either `advance` or `interrupt`. `advance` means that the walk should continue, whereas `interrupt` signals that the walk should stop immediately. An example is shown below:
auto result = op->walk([](Operation *op) {
if (some_invariant)
return WalkResult::interrupt();
return WalkResult::advance();
});
if (result.wasInterrupted())
...;
PiperOrigin-RevId: 266436700
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.
PiperOrigin-RevId: 263953918
There are currently several different terms used to refer to a parent IR unit in 'get' methods: getParent/getEnclosing/getContaining. This cl standardizes all of these methods to use 'getParent*'.
PiperOrigin-RevId: 262680287
The loop parallelism detection utility only collects the affine.load and
affine.store operations appearing inside the loop to analyze the access
patterns for the absence of dependences. However, any operation, including
unregistered operations, can appear in a body of an affine loop. If such
operation has side effects, the result of parallelism analysis is incorrect.
Conservatively assume affine loops are not parallel in presence of operations
other than affine.load, affine.store, affine.for, affine.terminator that may
have side effects.
This required to update the loop-fusion unit test that relies on parallelism
analysis and was exercising loop fusion in presence of an unregistered
operation.
PiperOrigin-RevId: 259560935
In most places, this is just a name change (with the exception of affine.dma_start swapping the operand positions of its tag memref and num_elements operands).
Significant code changes occur here:
*) Vectorization: LoopAnalysis.cpp, Vectorize.cpp
*) Affine Transforms: Transforms/Utils/Utils.cpp
PiperOrigin-RevId: 256395088
Extract common methods into ShapedType.
Simplify methods.
Remove some extraneous asserts.
Replace sentinel value with a helper method to check the same.
--
PiperOrigin-RevId: 250945261
*) Factors slice union computation out of LoopFusion into Analysis/Utils (where other iteration slice utilities exist).
*) Generalizes slice union computation to take the union of slices computed on all loads/stores pairs between source and destination loop nests.
*) Fixes a bug in FlatAffineConstraints::addSliceBounds where redundant constraints were added.
*) Takes care of a TODO to expose FlatAffineConstraints::mergeAndAlignIds as a public method.
--
PiperOrigin-RevId: 250561529
* dyn_cast_or_null
- This will first check if the operation is null before trying to 'dyn_cast':
Value *v = ...;
if (auto forOp = dyn_cast_or_null<AffineForOp>(v->getDefiningOp()))
...
* isa_nonnull
- This will first check if the pointer is null before trying to 'isa':
Value *v = ...;
if (isa_nonnull<AffineForOp>(v->getDefiningOp());
...
--
PiperOrigin-RevId: 242171343
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().
This removes another 200 lines of code.
PiperOrigin-RevId: 240068113
This also eliminates some incorrect reinterpret_cast logic working around it, and numerous const-incorrect issues (like block argument iteration).
PiperOrigin-RevId: 239712029
This eliminate ConstOpPointer (but keeps OpPointer for now) by making OpPointer
implicitly launder const in a const incorrect way. It will eventually go away
entirely, this is a progressive step towards the new const model.
PiperOrigin-RevId: 239512640