HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information.
Differential Revision: https://reviews.llvm.org/D76036
This revision performs some basic refactoring towards more easily defining Linalg "named" ops. Such named ops form the backbone of operations that are ubiquitous in the ML application domain.
This CL refactors EDSCs to layer them better and break unnecessary
dependencies. After this refactoring, the top-level EDSC target only
depends on IR but not on Dialects anymore and each dialect has its
own EDSC directory.
This simplifies the layering and breaks cyclic dependencies.
In particular, the declarative builder + folder are made explicit and
are now confined to Linalg.
As the refactoring occurred, certain classes and abstractions that were not
paying for themselves have been removed.
Differential Revision: https://reviews.llvm.org/D74302
Summary:
After the `subview` operation was migrated from Linalg to Standard, it changed
semantics and does not guarantee the absence of out-of-bounds accesses through
the created view anymore. Compute the size of the subview to make sure it
always fits within the view (subviews in last iterations of the loops may be
smaller than those in other iterations).
Differential Revision: https://reviews.llvm.org/D73614
Summary:
This diff moves the conversion pass declaration closer to its definition
and makes the namespacing of passes consistent with the rest of the
infrastructure (i.e. `mlir::linalg::createXXXPass` -> `mlir::createXXXPass`).
Reviewers: ftynse, jpienaar, mehdi_amini
Subscribers: rriddle, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72766
Summary:
This diff fixes issues with the semantics of linalg.generic on tensors that appeared when converting directly from HLO to linalg.generic.
The changes are self-contained within MLIR and can be captured and tested independently of XLA.
The linalg.generic and indexed_generic are updated to:
To allow progressive lowering from the value world (a.k.a tensor values) to
the buffer world (a.k.a memref values), a linalg.generic op accepts
mixing input and output ranked tensor values with input and output memrefs.
```
%1 = linalg.generic #trait_attribute %A, %B {other-attributes} :
tensor<?x?xf32>,
memref<?x?xf32, stride_specification>
-> (tensor<?x?xf32>)
```
In this case, the number of outputs (args_out) must match the sum of (1) the
number of output buffer operands and (2) the number of tensor return values.
The semantics is that the linalg.indexed_generic op produces (i.e.
allocates and fills) its return values.
Tensor values must be legalized by a buffer allocation pass before most
transformations can be applied. Such legalization moves tensor return values
into output buffer operands and updates the region argument accordingly.
Transformations that create control-flow around linalg.indexed_generic
operations are not expected to mix with tensors because SSA values do not
escape naturally. Still, transformations and rewrites that take advantage of
tensor SSA values are expected to be useful and will be added in the near
future.
Subscribers: bmahjour, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72555
Summary: This is part of an ongoing cleanup and uniformization work.
Reviewers: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72084
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
This will be evolved into a simple programming model for custom ops and custom layers in followup CLs.
This CL also deletes the obsolete tablegen's reference-impl.td that was using EDSCs.
PiperOrigin-RevId: 285459545
This patch closes issue tensorflow/mlir#272
We add a standalone iterator permutation transformation to Linalg.
This transformation composes a permutation map with the maps in the
"indexing_maps" attribute. It also permutes "iterator_types"
accordingly.
Change-Id: I7c1e693b8203aeecc595a7c012e738ca1100c857
Closestensorflow/mlir#307
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/307 from tetuante:issue272 f7908d58792f4111119721885e247045104f1131
PiperOrigin-RevId: 284824102
This patch closes issue tensorflow/mlir#271.
It adds an optional permutation map to declarative tiling transformations.
The map is expressed as a list of integers.
Closestensorflow/mlir#288
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/288 from tetuante:issue271 2df2938d6a1f01b3bc404ded08dea2dd1e10b588
PiperOrigin-RevId: 284064151
This CL uses the now standard std.subview in linalg.
Two shortcuts are currently taken to allow this port:
1. the type resulting from a view is currently degraded to fully dynamic to pass the SubViewOp verifier.
2. indexing into SubViewOp may access out of bounds since lowering to LLVM does not currently enforce it by construction.
These will be fixed in subsequent commits after discussions.
PiperOrigin-RevId: 280250129
This operation is a companion operation to the std.view operation added as proposed in "Updates to the MLIR MemRefType" RFC.
PiperOrigin-RevId: 279766410
This will be used to specify declarative Linalg transformations in a followup CL. In particular, the PatternRewrite mechanism does not allow folding and has its own way of tracking erasure.
PiperOrigin-RevId: 277149158
This CL creates a new Linalg promotion pass that operates on SubViewOp and decouples it from Linalg tiling. This is mostly moving code around.
PiperOrigin-RevId: 275329213
When the implementation of the strided memref [RFC](https://groups.google.com/a/tensorflow.org/forum/#!msg/mlir/MaL8m2nXuio/1scRqZa6AQAJ) landed, linalg started using this type instead of the now retired !linalg.view.
As static and partially static cases appear, the stride information needs to be maintained properly. In particular, the result type of the subview op was generally incorrect.
This CL fixes the issue by computing a return type that:
1. always has dynamic sizes, which is generally the only correct way to construct a subview in the absence of data padding and/or code versioning.
2. has the same strides as the base strided memref.
Point 1. above can be further refined but will needs further analysis and canonicalization to optimize the particular case where:
1. The base memref has static size along a given dimension.
2. The subview size can be statically derived (e.g. after canonicalization).
3. *And* the subview size is an even divisor of the base memref.
This 3rd constraint is well-known in the case of tiled layouts that don't assume implicit padding: the boundary tile may be only partial and has size given by `problem_size % tile_size`.
Tests are updated as appropriate.
PiperOrigin-RevId: 274578624
This CL finishes the implementation of the Linalg + Affine type unification of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
As a consequence, the !linalg.view type, linalg::DimOp, linalg::LoadOp and linalg::StoreOp can now disappear and Linalg can use standard types everywhere.
PiperOrigin-RevId: 272187165
This CL adds support for proper cloning of Linalg ops that have regions (i.e. the generic linalg op). This is used to properly implement tiling and fusion for such ops. Adequate tests are added.
PiperOrigin-RevId: 267027176
This interface will allow for providing hooks to interrop with operation folding. The first hook, 'shouldMaterializeInto', will allow for controlling which region to insert materialized constants into. The folder will generally materialize constants into the top-level isolated region, this allows for materializing into a lower level ancestor region if it is more profitable/correct.
PiperOrigin-RevId: 266702972
This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:
op->walk<AffineForOp>([](AffineForOp op) { ... });
is now accomplished via:
op->walk([](AffineForOp op) { ... });
PiperOrigin-RevId: 266209552