LLVM has changed the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
https://bugs.llvm.org/show_bug.cgi?id=32382
rdar://problem/31205000
llvm-svn: 300523
MOVNTDQA non-temporal aligned vector loads can be correctly represented using generic builtin loads, allowing us to remove the existing x86 intrinsics.
LLVM companion patch: D31767.
Differential Revision: https://reviews.llvm.org/D31766
llvm-svn: 300326
For OpenCL, the private address space qualifier is 0 in AST. Before this change, 0 address space qualifier
is always mapped to target address space 0. As now target private address space is specified by
alloca address space in data layout, address space qualifier 0 needs to be mapped to alloca addr space specified by the data layout.
This change has no impact on targets whose alloca addr space is 0.
With contributions from Matt Arsenault, Tony Tye and Wen-Heng (Jack) Chung
Differential Revision: https://reviews.llvm.org/D31404
llvm-svn: 299965
This re-lands r299875.
I introduced a bug in Clang code responsible for replacing K&R, no
prototype declarations with a real function definition with a prototype.
The bug was here:
// Collect any return attributes from the call.
- if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
- newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
- oldAttrs.getRetAttributes()));
+ newAttrs.push_back(oldAttrs.getRetAttributes());
Previously getRetAttributes() carried AttributeList::ReturnIndex in its
AttributeList. Now that we return the AttributeSetNode* directly, it no
longer carries that index, and we call this overload with a single node:
AttributeList::get(LLVMContext&, ArrayRef<AttributeSetNode*>)
That aborted with an assertion on x86_32 targets. I added an explicit
triple to the test and added CHECKs to help find issues like this in the
future sooner.
llvm-svn: 299899
Previously __cfi_check was created in LTO optimization pipeline, which
means LLD has no way of knowing about the existence of this symbol
without rescanning the LTO output object. As a result, LLD fails to
export __cfi_check, even when given --export-dynamic-symbol flag.
llvm-svn: 299806
It's used by MS headers in VS 2017 without including intrin.h, so we
can't implement it in the header anymore.
Differential Revision: https://reviews.llvm.org/D31736
llvm-svn: 299782
This adds the new pragma and the first variant, contract(on/off/fast).
The pragma has the same block scope rules as STDC FP_CONTRACT, i.e. it can be
placed at the beginning of a compound statement or at file scope.
Similarly to STDC FP_CONTRACT there is no need to use attributes. First an
annotate token is inserted with the parsed details of the pragma. Then the
annotate token is parsed in the proper contexts and the Sema is updated with
the corresponding FPOptions using the shared ActOn function with STDC
FP_CONTRACT.
After this the FPOptions from the Sema is propagated into the AST expression
nodes. There is no change here.
I was going to add a 'default' option besides 'on/off/fast' similar to STDC
FP_CONTRACT but then decided against it. I think that we'd have to make option
uppercase then to avoid using 'default' the keyword. Also because of the
scoped activation of pragma I am not sure there is really a need a for this.
Differential Revision: https://reviews.llvm.org/D31276
llvm-svn: 299470
With this, FMF(contract) becomes an alternative way to express the request to
contract.
These are currently only propagated for FMul, FAdd and FSub. The rest will be
added as more FMFs are hooked up for this.
This is toward fixing PR25721.
Differential Revision: https://reviews.llvm.org/D31168
llvm-svn: 299469
MS assembly syntax provide us with the 'EVEN' directive as a synonymous to at&t '.even'.
This patch include the (small, simple) changes need to allow it.
llvm-side:
https://reviews.llvm.org/D27417
Differential Revision: https://reviews.llvm.org/D27418
llvm-svn: 299454
This patch is a part two of two reviews, one for the clang and the other for LLVM.
In this patch, I covered the clang side, by introducing the intrinsic to the front end.
This is done by creating a generic replacement.
Differential Revision: https://reviews.llvm.org/D31394a
llvm-svn: 299431
Summary:
Use PreCodeGenModuleHook to invoke the correct writer when emitting LLVM
IR, returning false to skip codegen from within thinBackend.
Reviewers: pcc, mehdi_amini
Subscribers: Prazek, cfe-commits
Differential Revision: https://reviews.llvm.org/D31534
llvm-svn: 299274
Our _MM_HINT_T0/T1 constant values are 3/2 which matches gcc, but not icc or Intel documentation. Interestingly gcc had this same bug on their implementation of the gather/scatter builtins at one point too.
Fixes PR32411.
llvm-svn: 299233
Reasoning behind this change was allowing the function to accept all values
from range [-128, 255] since all of them can be encoded in an 8bit wide
value.
This differs from the prior state where only range [-128, 127] was accepted,
where values were assumed to be signed, whereas now the actual
interpretation of the immediate is deferred to the consumer as required.
Patch by Stefan Maksimovic.
Differential Revision: https://reviews.llvm.org/D31082
llvm-svn: 299229
Sigh, another follow-on fix needed for test in r299152 causing bot
failures. We also need the target-cpu for the ThinLTO BE clang
invocation.
llvm-svn: 299178
Third and hopefully final fix to test for r299152 that is causing bot
failures: make sure the target triple specified for the ThinLTO backend
clang invocations as well.
llvm-svn: 299176
Summary:
This involved refactoring out pieces of
EmitAssemblyHelper::CreateTargetMachine for use in runThinLTOBackend.
Subsumes D31114.
Reviewers: mehdi_amini, pcc
Subscribers: Prazek, cfe-commits
Differential Revision: https://reviews.llvm.org/D31508
llvm-svn: 299152
Summary:
The refactoring introduced a regression in the flag processing for
-fxray-instruction-threshold which causes it to not get passed properly.
This change should restore the previous behaviour.
Reviewers: rnk, pelikan
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31491
llvm-svn: 299126
GCC has the alloc_align attribute, which is similar to assume_aligned, except the attribute's parameter is the index of the integer parameter that needs aligning to.
Differential Revision: https://reviews.llvm.org/D29599
llvm-svn: 299117
Summary:
The -fxray-always-instrument= and -fxray-never-instrument= flags take
filenames that are used to imbue the XRay instrumentation attributes
using a whitelist mechanism (similar to the sanitizer special cases
list). We use the same syntax and semantics as the sanitizer blacklists
files in the implementation.
As implemented, we respect the attributes that are already defined in
the source file (i.e. those that have the
[[clang::xray_{always,never}_instrument]] attributes) before applying
the always/never instrument lists.
Reviewers: rsmith, chandlerc
Subscribers: jfb, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D30388
llvm-svn: 299041
attributes.
These patches don't work because we can't currently access the parameter
information in a reliable way when building attributes. I thought this
would be relatively straightforward to fix, but it seems not to be the
case. Fixing this will requrie a substantial re-plumbing of machinery to
allow attributes to be handled in this location, and several other fixes
to the attribute machinery should probably be made at the same time. All
of this will make the patch .... substantially more complicated.
Reverting for now as there are active miscompiles caused by the current
version.
llvm-svn: 298695
Summary:
Clang companion patch to LLVM patch D31027, which adds support
for emitting minimized bitcode file for use in the thin link step.
Add a cc1 option -fthin-link-bitcode=<file> to trigger this behavior.
Depends on D31027.
Reviewers: mehdi_amini, pcc
Subscribers: cfe-commits, Prazek
Differential Revision: https://reviews.llvm.org/D31050
llvm-svn: 298639
It seems MS headers have started using __readgsqword, and since it's
used in a header that doesn't include intrin.h, we can't implement it as
an inline function anymore.
That was already the case for __readfsdword, which Saleem added support
for in r220859. This patch reuses that codegen to implement all of
__read[fg]s{byte,word,dword,qword}.
Differential Revision: https://reviews.llvm.org/D31248
llvm-svn: 298538
explaining why we have to ignore errors here even though in other parts
of codegen we can be more strict with builtins.
Also add a test case based on the code in a TSan test that found this
issue.
llvm-svn: 298494
declarations and calls instead of just definitions, and then teach it to
*not* attach such attributes even if the source code contains them.
This follows the design direction discussed on cfe-dev here:
http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
The idea is that for C standard library builtins, even if the library
vendor chooses to annotate their routines with __attribute__((nonnull)),
we will ignore those attributes which pertain to pointer arguments that
have an associated size. This allows the widespread (and seemingly
reasonable) pattern of calling these routines with a null pointer and
a zero size. I have only done this for the library builtins currently
recognized by Clang, but we can now trivially add to this set. This will
be controllable with -fno-builtin if anyone should care to do so.
Note that this does *not* change the AST. As a consequence, warnings,
static analysis, and source code rewriting are not impacted.
This isn't even a regression on any platform as neither Clang nor LLVM
have ever put 'nonnull' onto these arguments for declarations. All this
patch does is enable it on other declarations while preventing us from
ever accidentally enabling it on these libc functions due to a library
vendor.
It will also allow any other libraries using this annotation to gain
optimizations based on the annotation even when only a declaration is
visible.
llvm-svn: 298491
The alias was only ever used on darwin and had some issues there,
and isn't used in practice much. Also fixes a problem with -mno-altivec
not turning off -maltivec.
Also add a diagnostic for faltivec/fno-altivec that directs users to use
maltivec options and include the altivec.h file explicitly.
llvm-svn: 298449
Summary:
Because SamplePGO passes will be invoked twice in ThinLTO build: once at compile phase, the other at backend. We want to make sure the IR at the 2nd phase matches the hot part in pro
file, thus we do not want to inline hot callsites in the first phase.
Reviewers: tejohnson, eraman
Reviewed By: tejohnson
Subscribers: mehdi_amini, cfe-commits, Prazek
Differential Revision: https://reviews.llvm.org/D31202
llvm-svn: 298429
This patch introduces X86AsmParser with the ability to handle the aforementioned ops within compound "MS" arithmetical expressions.
Currently - only supported as a stand alone Operand, e.g.:
"TYPE X"
now allowed :
"4 + TYPE X * 128"
LLVM side: https://reviews.llvm.org/D31173
Differential Revision: https://reviews.llvm.org/D31174
llvm-svn: 298426
x86 has undef SSE/AVX intrinsics that should represent a bogus register operand.
This is not the same as LLVM's undef value which can take on multiple bit patterns.
There are better solutions / follow-ups to this discussed here:
https://bugs.llvm.org/show_bug.cgi?id=32176
...but this should prevent miscompiles with a one-line code change.
Differential Revision: https://reviews.llvm.org/D30834
llvm-svn: 297588
Removes immediate range checks for these instructions, since they have GPR
rt as their input operand.
Patch by Stefan Maksimovic.
Differential Revision: https://reviews.llvm.org/D30693
llvm-svn: 297485
This patch honors the unaligned type qualifier (currently available through he
keyword __unaligned and -fms-extensions) in CodeGen. In the current form the
patch affects declarations and expressions. It does not affect fields of
classes.
Differential Revision: https://reviews.llvm.org/D30166
llvm-svn: 297276
This test broke with an LLVM instcombine patch (r297166).
I changed the RUN line to only run -mem2reg (to save time checking this large chunk of tests)
and updated the checks using the script attached to D17999:
https://reviews.llvm.org/D17999
The goal is to make this test immune to optimizer changes. If there's something in these
tests that was checking for an IR optimization, that should be tested in LLVM, not Clang.
llvm-svn: 297189
Summary:
Functions with the "xray_log_args" attribute will tell LLVM to emit a special
XRay sled for compiler-rt to copy any call arguments to your logging handler.
Reviewers: dberris
Reviewed By: dberris
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D29704
llvm-svn: 296999
Teach ubsan to diagnose remainder operations which have undefined
behavior due to signed overflow (e.g INT_MIN % -1).
Differential Revision: https://reviews.llvm.org/D29437
llvm-svn: 296214
C requires the operands of arithmetic expressions to be promoted if
their types are smaller than an int. Ubsan emits overflow checks when
this sort of type promotion occurs, even if there is no way to actually
get an overflow with the promoted type.
This patch teaches clang how to omit the superflous overflow checks
(addressing PR20193).
Testing: check-clang and check-ubsan.
Differential Revision: https://reviews.llvm.org/D29369
llvm-svn: 296213
routines for variables that are const-captured
This is a preparation commit that improves code-coverage in code that emits
block copy/dispose routines.
llvm-svn: 296040
This fixes an assertion failure in cases where we had expression
statements that declared variables nested inside of pass_object_size
args. Since we were emitting the same ExprStmt twice (once for the arg,
once for the @llvm.objectsize call), we were getting issues with
redefining locals.
This also means that we can be more lax about when we emit
@llvm.objectsize for pass_object_size args: since we're reusing the
arg's value itself, we don't have to care so much about side-effects.
llvm-svn: 295935
The following code would crash clang:
void foo(unsigned *const __attribute__((pass_object_size(0))));
void bar(unsigned *i) { foo(i); }
This is because we were always selecting the version of
`@llvm.objectsize` that takes an i8* in CodeGen. Passing an i32* as an
i8* makes LLVM very unhappy.
(Yes, I'm surprised that this remained uncaught for so long, too. :) )
As an added bonus, we'll now also use the appropriate address space when
emitting @llvm.objectsize calls.
llvm-svn: 295805
Summary:
POSIX requires lgamma writes to an external global variable, signgam.
This prevents annotating lgamma with readnone, which is incorrect on
targets that write to signgam.
Reviewers: efriedma, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D29778
llvm-svn: 295781
Summary: I'm not sure why they were in different files, but it's kind of harder to maintain. I create this patch partially for initiate a discussion.
Reviewers: dberris
Subscribers: nemanjai, cfe-commits
Differential Revision: https://reviews.llvm.org/D30118
llvm-svn: 295778
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
I also compiled X86FastISel.cpp with -fsanitize=null using
patched/unpatched clangs based on r293572. Here are the number of null
checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Changes since the initial commit:
- Don't introduce any unintentional object-size or alignment checks.
- Don't rely on IRGen of C labels in the test.
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295515
This reverts commit r295401. It breaks the ubsan self-host. It inserts
object size checks once per C++ method which fire when the structure is
empty.
llvm-svn: 295494
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang and check-ubsan. I also compiled X86FastISel.cpp
with -fsanitize=null using patched/unpatched clangs based on r293572.
Here are the number of null checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Changes since the initial commit: don't rely on IRGen of C labels in the
test.
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295401
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang and check-ubsan. I also compiled X86FastISel.cpp
with -fsanitize=null using patched/unpatched clangs based on r293572.
Here are the number of null checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295391
Summary:
The -mmcu option for GCC sets macros like __AVR_ATmega328P__ (with the trailing
underscores), be sure to include these underscores for Clangs -mcpu option.
See "AVR Built-in Macros" in https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html
Reviewers: jroelofs, dylanmckay
Reviewed By: jroelofs, dylanmckay
Subscribers: efriedma, cfe-commits
Differential Revision: https://reviews.llvm.org/D29817
llvm-svn: 294869
What we want to actually control this behavior is something more local
than an EvalutationMode. Please see the linked revision for more
discussion on why/etc.
This fixes PR31843.
Differential Revision: https://reviews.llvm.org/D29469
llvm-svn: 294800
until we can get better TargetMachine::isCompatibleDataLayout to compare - otherwise
we can't code generate existing bitcode without a string equality data layout.
This reverts commit r294703.
llvm-svn: 294708
For other platforms we should find out what they need and likely
make the same change, however, a smaller additional change is easier
for platforms we know have it specified in the ABI.
clang support for r294702
llvm-svn: 294703
__fastfail terminates the process immediately with a special system
call. It does not run any process shutdown code or exception recovery
logic.
Fixes PR31854
llvm-svn: 294606
1. Adds the command line flag for clzero.
2. Includes the clzero flag under znver1.
3. Defines the macro for clzero.
4. Adds a new file which has the intrinsic definition for clzero instruction.
Patch by Ganesh Gopalasubramanian with some additional tests from me.
Differential revision: https://reviews.llvm.org/D29386
llvm-svn: 294559
Summary:
This teaches clang how to parse and lower the 'interrupt' and 'naked'
attributes.
This allows interrupt signal handlers to be written.
Reviewers: aaron.ballman
Subscribers: malcolm.parsons, cfe-commits
Differential Revision: https://reviews.llvm.org/D28451
llvm-svn: 294402
Summary:
This tells clang about all of the different AVR microcontrollers.
It also adds code to define the correct preprocessor macros for each
device.
Reviewers: jroelofs, asl
Reviewed By: asl
Subscribers: asl, cfe-commits
Differential Revision: https://reviews.llvm.org/D28346
llvm-svn: 294177
Summary:
Previously the method would simply return false, causing every single
inline assembly constraint to trigger a compile error.
This adds inline assembly constraint support for the AVR target.
This patch is derived from the code in
AVRISelLowering::getConstraintType.
More details can be found on the AVR-GCC reference wiki
http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
Reviewers: jroelofs, asl
Reviewed By: asl
Subscribers: asl, ahatanak, saaadhu, cfe-commits
Differential Revision: https://reviews.llvm.org/D28344
llvm-svn: 294176
This re-applies r293343 (reverts commit r293475) with a fix for an
assertion failure caused by a missing integer cast. I tested this patch
by using the built compiler to compile X86FastISel.cpp.o with ubsan.
Original commit message:
Ubsan does not report UB shifts in some cases where the shift exponent
needs to be truncated to match the type of the shift base. We perform a
range check on the truncated shift amount, leading to false negatives.
Fix the issue (PR27271) by performing the range check on the original
shift amount.
Differential Revision: https://reviews.llvm.org/D29234
llvm-svn: 293572
Ubsan does not report UB shifts in some cases where the shift exponent
needs to be truncated to match the type of the shift base. We perform a
range check on the truncated shift amount, leading to false negatives.
Fix the issue (PR27271) by performing the range check on the original
shift amount.
Differential Revision: https://reviews.llvm.org/D29234
llvm-svn: 293343
The handler that deals with IR passed/missed/analysis remarks is extended to
also handle the corresponding MIR remarks.
The more thorough testing in done via llc (rL293113, rL293121). Here we just
make sure that the functionality is accessible through clang.
llvm-svn: 293146
in the current lexical scope.
clang currently emits the lifetime.start marker of a variable when the
variable comes into scope even though a variable's lifetime starts at
the entry of the block with which it is associated, according to the C
standard. This normally doesn't cause any problems, but in the rare case
where a goto jumps backwards past the variable declaration to an earlier
point in the block (see the test case added to lifetime2.c), it can
cause mis-compilation.
To prevent such mis-compiles, this commit conservatively disables
emitting lifetime variables when a label has been seen in the current
block.
This problem was discussed on cfe-dev here:
http://lists.llvm.org/pipermail/cfe-dev/2016-July/050066.html
rdar://problem/30153946
Differential Revision: https://reviews.llvm.org/D27680
llvm-svn: 293106
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
then run the old algorithm.
2) Do the right thing directly.
1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
convertFromString, next, convertToInteger, convertFromAPInt,
convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.
I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.
Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).
Differential Revision: https://reviews.llvm.org/D27872
llvm-svn: 292839
For a << b (as original vec_sl does), if b >= sizeof(a) * 8, the
behavior is undefined. However, Power instructions do define the
behavior, which is equivalent to a << (b % (sizeof(a) * 8)).
This patch changes altivec.h to use a << (b % (sizeof(a) * 8)), to
ensure the consistent semantic of the instructions. Then it combines
the generated multiple instructions back to a single shift.
This patch handles left shift only. Right shift, on the other hand, is
more complicated, considering arithematic/logical right shift.
Differential Revision: https://reviews.llvm.org/D28037
llvm-svn: 292659
Summary: LTO backend will not invoke SampleProfileLoader pass even if -fprofile-sample-use is specified. This patch passes the flag down so that pass manager can add the SampleProfileLoader pass correctly.
Reviewers: mehdi_amini, tejohnson
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D28588
llvm-svn: 291870
There is a synchronization point between the reference count of a block dropping to zero and it's destruction, which TSan does not observe. Do not report errors in the compiler-emitted block destroy method and everything called from it.
This is similar to https://reviews.llvm.org/D25857
Differential Revision: https://reviews.llvm.org/D28387
llvm-svn: 291868
clang has generated correct IR for char/short decrement since r126816,
but we didn't have any test coverage for decrement.
Patch by Andrew Rogers.
llvm-svn: 291805
Summary: LTO backend will not invoke SampleProfileLoader pass even if -fprofile-sample-use is specified. This patch passes the flag down so that pass manager can add the SampleProfileLoader pass correctly.
Reviewers: mehdi_amini, tejohnson
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D28588
llvm-svn: 291774
Summary:
In order to simplify distributed build system integration, where actions
may be scheduled before the Thin Link which determines the list of
objects selected by the linker. The gold plugin currently will emit
0-sized index files for objects not selected by the link, to enable
checking for expected output files by the build system. If the build
system then schedules a backend action for these bitcode files, we want
to be able to fall back to normal compilation instead of failing.
Fallback is enabled under an option in LLVM (D28410), in which case a
nullptr is returned from llvm::getModuleSummaryIndexForFile. Clang can
just proceed with non-ThinLTO compilation in that case.
I am investigating whether this can be addressed in our build system,
but that is a longer term fix and so this enables a workaround in the
meantime.
Reviewers: mehdi_amini
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D28362
llvm-svn: 291303
Summary:
This patch makes the type_mismatch static data 7 bytes smaller (and it
ends up being 16 bytes smaller due to alignment restrictions, at least
on some x86-64 environments).
It revs up the type_mismatch handler version since we're breaking binary
compatibility. I will soon post a patch for the compiler-rt side.
Reviewers: rsmith, kcc, vitalybuka, pgousseau, gbedwell
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28242
llvm-svn: 291236
This test would force the execution of the backend. However, the
backend already has a test for this. Effectively, this was trying to
test that an API call was made properly. We do not have a good way to
really test this. The test itself tested very little.
Addresses post-commit review comments from Eric Christopher.
llvm-svn: 291208
Add builtins for the functions and custom codegen mapping the builtins to their
corresponding intrinsics and handling the endian related swapping.
https://reviews.llvm.org/D26546
llvm-svn: 291179
It seems that the ARM buildbots do not include x86 support. However,
other x86 targets do not support the ARM target. Use a x86 triple and
require the registered target.
llvm-svn: 291142
inline assembly may use the `.include` directive to include other
content into the file. Without the integrated assembler, the `-I` group
gets passed to the assembler. Emulate this by collecting the header
search paths and passing them to the IAS.
Resolves PR24811!
llvm-svn: 291123
Front end component (back end changes are D27392). The vectorcall
calling convention was broken subtly in two cases. First,
it didn't properly handle homogeneous vector aggregates (HVAs).
Second, the vectorcall specification requires that only the
first 6 parameters be eligible for register assignment.
This patch fixes both issues.
Differential Revision: https://reviews.llvm.org/D27529
llvm-svn: 291041
The special case to widen the integer literal zero when passed to
variadic function calls should only apply to variadic functions, not
unprototyped functions. This is consistent with what MSVC does. In this
test case, MSVC uses a 4-byte store to pass the 5th argument to 'kr' and
an 8-byte store to pass the zero to 'v':
void v(int, ...);
void kr();
void f(void) {
v(1, 2, 3, 4, 0);
kr(1, 2, 3, 4, 0);
}
Aaron Ballman discovered this issue in https://reviews.llvm.org/D28166
llvm-svn: 290906
Our newly aggressive constant folding logic makes it possible for
CGExprConstant to see the same CompoundLiteralExpr more than once. So,
emitting a new GlobalVariable every time we see a CompoundLiteral is no
longer correct.
We had a similar issue with BlockExprs that was caught while testing
said aggressive folding, so I applied the same style of fix (see D26410)
here. If we find yet another case where this needs to happen, we should
probably refactor this so we don't have a third DenseMap+getter+setter.
As a design note: getAddrOfConstantCompoundLiteralIfEmitted is really
only intended to be called by ConstExprEmitter::EmitLValue. So,
returning a GlobalVariable* instead of a ConstantAddress costs us
effectively nothing, and saves us either a few bytes per entry in our
map or a bit of code duplication.
llvm-svn: 290661
This is kind of funny because I specifically did work to make this easy
and then it didn't actually get implemented.
I've also ported a set of tests that rely on this functionality to run
with the new PM as well as the old PM so that we don't mess this up in
the future.
llvm-svn: 290558
manager, and a code path to use it.
The option is actually a top-level option but does contain
'experimental' in the name. This is the compromise suggested by Richard
in discussions. We expect this option will be around long enough and
have enough users towards the end that it merits not being relegated to
CC1, but it still needs to be clear that this option will go away at
some point.
The backend code is a fresh codepath dedicated to handling the flow with
the new pass manager. This was also Richard's suggested code structuring
to essentially leave a clean path for development rather than carrying
complexity or idiosyncracies of how we do things just to share code with
the parts of this in common with the legacy pass manager. And it turns
out, not much is really in common even though we use the legacy pass
manager for codegen at this point.
I've switched a couple of tests to run with the new pass manager, and
they appear to work. There are still plenty of bugs that need squashing
(just with basic experiments I've found two already!) but they aren't in
this code, and the whole point is to expose the necessary hooks to start
experimenting with the pass manager in more realistic scenarios.
That said, I want to *strongly caution* anyone itching to play with
this: it is still *very shaky*. Several large components have not yet
been shaken down. For example I have bugs in both the always inliner and
inliner that I have already spotted and will be fixing independently.
Still, this is a fun milestone. =D
One thing not in this patch (but that might be very reasonable to add)
is some level of support for raw textual pass pipelines such as what
Sean had a patch for some time ago. I'm mostly interested in the more
traditional flow of getting the IR out of Clang and then running it
through opt, but I can see other use cases so someone may want to add
it.
And of course, *many* features are not yet supported!
- O1 is currently more like O2
- None of the sanitizers are wired up
- ObjC ARC optimizer isn't wired up
- ...
So plenty of stuff still lef to do!
Differential Revision: https://reviews.llvm.org/D28077
llvm-svn: 290450
Summary:
We compile user opencl kernel code with spir triple. But built-ins are written in OpenCL and we compile it with triple x86_64 to be able to use x86 intrinsics. And we need address spaces to match in both cases. So, we change fake address space map in OpenCL for matching with spir.
On CPU address spaces are not really important but we'd like to preserve address space information in order to perform optimizations relying on this info like enhanced alias analysis.
Reviewers: pekka.jaaskelainen, Anastasia
Subscribers: pekka.jaaskelainen, yaxunl, bader, cfe-commits
Differential Revision: https://reviews.llvm.org/D28048
llvm-svn: 290436
-fno-inline-functions, -O0, and optnone.
These were really, really tangled together:
- We used the noinline LLVM attribute for -fno-inline
- But not for -fno-inline-functions (breaking LTO)
- But we did use it for -finline-hint-functions (yay, LTO is happy!)
- But we didn't for -O0 (LTO is sad yet again...)
- We had weird structuring of CodeGenOpts with both an inlining
enumeration and a boolean. They interacted in weird ways and
needlessly.
- A *lot* of set smashing went on with setting these, and then got worse
when we considered optnone and other inlining-effecting attributes.
- A bunch of inline affecting attributes were managed in a completely
different place from -fno-inline.
- Even with -fno-inline we failed to put the LLVM noinline attribute
onto many generated function definitions because they didn't show up
as AST-level functions.
- If you passed -O0 but -finline-functions we would run the normal
inliner pass in LLVM despite it being in the O0 pipeline, which really
doesn't make much sense.
- Lastly, we used things like '-fno-inline' to manipulate the pass
pipeline which forced the pass pipeline to be much more
parameterizable than it really needs to be. Instead we can *just* use
the optimization level to select a pipeline and control the rest via
attributes.
Sadly, this causes a bunch of churn in tests because we don't run the
optimizer in the tests and check the contents of attribute sets. It
would be awesome if attribute sets were a bit more FileCheck friendly,
but oh well.
I think this is a significant improvement and should remove the semantic
need to change what inliner pass we run in order to comply with the
requested inlining semantics by relying completely on attributes. It
also cleans up tho optnone and related handling a bit.
One unfortunate aspect of this is that for generating alwaysinline
routines like those in OpenMP we end up removing noinline and then
adding alwaysinline. I tried a bunch of other approaches, but because we
recompute function attributes from scratch and don't have a declaration
here I couldn't find anything substantially cleaner than this.
Differential Revision: https://reviews.llvm.org/D28053
llvm-svn: 290398
Much to my surprise, '-disable-llvm-optzns' which I thought was the
magical flag I wanted to get at the raw LLVM IR coming out of Clang
deosn't do that. It still runs some passes over the IR. I don't want
that, I really want the *raw* IR coming out of Clang and I strongly
suspect everyone else using it is in the same camp.
There is actually a flag that does what I want that I didn't know about
called '-disable-llvm-passes'. I suspect many others don't know about it
either. It both does what I want and is much simpler.
This removes the confusing version and makes that spelling of the flag
an alias for '-disable-llvm-passes'. I've also moved everything in Clang
to use the 'passes' spelling as it seems both more accurate (*all* LLVM
passes are disabled, not just optimizations) and much easier to remember
and spell correctly.
This is part of simplifying how Clang drives LLVM to make it cleaner to
wire up to the new pass manager.
Differential Revision: https://reviews.llvm.org/D28047
llvm-svn: 290392
This is a recommit of r290149, which was reverted in r290169 due to msan
failures. msan was failing because we were calling
`isMostDerivedAnUnsizedArray` on an invalid designator, which caused us
to read uninitialized memory. To fix this, the logic of the caller of
said function was simplified, and we now have a `!Invalid` assert in
`isMostDerivedAnUnsizedArray`, so we can catch this particular bug more
easily in the future.
Fingers crossed that this patch sticks this time. :)
Original commit message:
This patch does three things:
- Gives us the alloc_size attribute in clang, which lets us infer the
number of bytes handed back to us by malloc/realloc/calloc/any user
functions that act in a similar manner.
- Teaches our constexpr evaluator that evaluating some `const` variables
is OK sometimes. This is why we have a change in
test/SemaCXX/constant-expression-cxx11.cpp and other seemingly
unrelated tests. Richard Smith okay'ed this idea some time ago in
person.
- Uniques some Blocks in CodeGen, which was reviewed separately at
D26410. Lack of uniquing only really shows up as a problem when
combined with our new eagerness in the face of const.
llvm-svn: 290297
This commit fails MSan when running test/CodeGen/object-size.c in
a confusing way. After some discussion with George, it isn't really
clear what is going on here. We can make the MSan failure go away by
testing for the invalid bit, but *why* things are invalid isn't clear.
And yet, other code in the surrounding area is doing precisely this and
testing for invalid.
George is going to take a closer look at this to better understand the
nature of the failure and recommit it, for now backing it out to clean
up MSan builds.
llvm-svn: 290169
This patch does three things:
- Gives us the alloc_size attribute in clang, which lets us infer the
number of bytes handed back to us by malloc/realloc/calloc/any user
functions that act in a similar manner.
- Teaches our constexpr evaluator that evaluating some `const` variables
is OK sometimes. This is why we have a change in
test/SemaCXX/constant-expression-cxx11.cpp and other seemingly
unrelated tests. Richard Smith okay'ed this idea some time ago in
person.
- Uniques some Blocks in CodeGen, which was reviewed separately at
D26410. Lack of uniquing only really shows up as a problem when
combined with our new eagerness in the face of const.
Differential Revision: https://reviews.llvm.org/D14274
llvm-svn: 290149