template<typename T>
struct X {
struct Inner;
};
template struct X<int>::Inner;
This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>.
This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).
Stuart vouched for me. Blame him.
llvm-svn: 71756
of class members (recursively). Only member classes are actually
instantiated; the instantiation logic for member functions and
variables are just stubs.
llvm-svn: 71713
templates. In particular:
- An explicit instantiation can follow an implicit instantiation (we
were improperly diagnosing this as an error, previously).
- In C++0x, an explicit instantiation that follows an explicit
specialization of the same template specialization is ignored. In
C++98, we just emit an extension warning.
- In C++0x, an explicit instantiation must be in a namespace
enclosing the original template. C++98 has no such requirement.
Also, fixed a longstanding FIXME regarding the integral type that is
used for the size of a constant array type when it is being instantiated.
llvm-svn: 71689
still aren't instantiating the definitions of class template members,
and core issues 275 and 259 will both affect the checking that we do
for explicit instantiations (but are not yet implemented).
llvm-svn: 71613
TemplateArgumentList. This avoids the need to pass around
pointer/length pairs of template arguments lists, and will eventually
make it easier to introduce member templates and variadic templates.
llvm-svn: 71517
specialization" within a C++ template, and permit name lookup into the
current instantiation. For example, given:
template<typename T, typename U>
struct X {
typedef T type;
X* x1; // current instantiation
X<T, U> *x2; // current instantiation
X<U, T> *x3; // not current instantiation
::X<type, U> *x4; // current instantiation
X<typename X<type, U>::type, U>: *x5; // current instantiation
};
llvm-svn: 71471
semantic rules that gcc and icc use. This implements the variadic
and concrete versions as builtins and has sema do the
disambiguation. There are probably a bunch of details to finish up
but this seems like a large monotonic step forward :)
llvm-svn: 71212
return type and the selector. This is inconsistent with C functions
(where such attributes would be placed on the return type, not the the
FunctionDecl), and is inconsistent with what people are use to seeing.
llvm-svn: 70878
in C++, taking into account conversions to the "composite pointer
type" so that we can compare, e.g., a pointer to a derived class to a
pointer to a base class.
Also, upgrade the "comparing distinct pointer types" from a warning to
an error for C++, since this is clearly an error. Turns out that we
hadn't gone through and audited this code for C++, ever.
Fixes <rdar://problem/6816420>.
llvm-svn: 70829
reason for adding these is to error out in CodeGen when trying to generate
them instead of silently emitting a call to a non-existent function.
(Note that it is not valid to lower these to setjmp/longjmp; in addition
to that lowering being different from the intent, setjmp and longjmp
require a larger buffer.)
llvm-svn: 70658
appear between the return type and the selector. This is a separate code path
from regular attribute processing, as we only want to (a) accept only a specific
set of attributes in this place and (b) want to distinguish to clients the
context in which an attribute was added to an ObjCMethodDecl.
Currently, the attribute 'objc_ownership_returns' is the only attribute that
uses this new feature. Shortly I will add a warning for 'objc_ownership_returns'
to be placed at the end of a method declaration.
llvm-svn: 70504
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
pools, combined). The methods in the global method pool are lazily
loaded from an on-disk hash table when Sema looks into its version of
the hash tables.
llvm-svn: 69989
As part of this, make ObjCImplDecl inherit from NamedDecl (since
ObjCImplementationDecls now need to have names so that they can be
found). This brings ObjCImplDecl very, very close to
ObjCContainerDecl; we may be able to merge them soon.
llvm-svn: 69941
their own namespace (IDNS_Protocol) and use the normal name-lookup
routines to find them. Aside from the simplification this provides
(one less DenseMap!), it means that protocols will be lazily
deserialized from PCH files.
Make the code size of the selector table block match the code size of
the type and decl blocks.
llvm-svn: 69939
in a bunch of declarations from the PCH file. We're down to loading
very few declarations in Carbon-prefixed "Hello, World!":
*** PCH Statistics:
6/20693 types read (0.028995%)
7/59230 declarations read (0.011818%)
50/44914 identifiers read (0.111324%)
0/32954 statements read (0.000000%)
5/6187 macros read (0.080815%)
llvm-svn: 69825
start of the declspec. The fixit still goes there, and we underline
the declspec. This helps when the start of the declspec came from a
macro that expanded from a system header. For example, we now produce:
t.c:2:8: warning: type specifier missing, defaults to 'int' [-Wimplicit-int]
static x;
~~~~~~ ^
llvm-svn: 69777
tentative definitions off to the ASTConsumer at the end of the
translation unit.
Eliminate CodeGen's internal tracking of tentative definitions, and
instead hook into ASTConsumer::CompleteTentativeDefinition. Also,
tweak the definition-deferal logic for C++, where there are no
tentative definitions.
Fixes <rdar://problem/6808352>, and will make it much easier for
precompiled headers to cope with tentative definitions in the future.
llvm-svn: 69681
Remove an atrocious amount of trailing whitespace in the overloaded operator mangler. Sorry, couldn't help myself.
Change the DeclType parameter of Sema::CheckReferenceInit to be passed by value instead of reference. It wasn't changed anywhere.
Let the parser handle C++'s irregular grammar around assignment-expression and conditional-expression.
And finally, the reason for all this stuff: implement C++ semantics for the conditional operator. The implementation is complete except for determining lvalueness.
llvm-svn: 69299