Summary:
Asan stack-use-after-scope check should poison alloca even if there is
no access between start and end.
This is possible for code like this:
for (int i = 0; i < 3; i++) {
int x;
p = &x;
}
"Loop Invariant Code Motion" will move "p = &x;" out of the loop, making
start/end range empty.
PR27453
Reviewers: eugenis
Differential Revision: https://reviews.llvm.org/D22842
llvm-svn: 277068
We were able to fold masked loads with an all-ones mask to a normal
load. However, we couldn't turn a masked load with a mask with mixed
ones and undefs into a normal load.
llvm-svn: 275380
This actually uncovered a surprisingly large chain of ultimately unused
TLI args.
From what I can gather, this argument is a remnant of when
isKnownNonNull would look at the TLI directly.
The current approach seems to be that InferFunctionAttrs runs early in
the pipeline and uses TLI to annotate the TLI-dependent non-null
information as return attributes.
This also removes the dependence of functionattrs on TLI altogether.
llvm-svn: 274455
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
Unlike native shifts, the AVX2 per-element shift instructions VPSRAV/VPSRLV/VPSLLV handle out of range shift values (logical shifts set the result to zero, arithmetic shifts splat the sign bit).
If the shift amount is constant we can sometimes convert these instructions to native shifts:
1 - if all shift amounts are in range then the conversion is trivial.
2 - out of range arithmetic shifts can be clamped to the (bitwidth - 1) (a legal shift amount) before conversion.
3 - logical shifts just return zero if all elements have out of range shift amounts.
In addition, UNDEF shift amounts are handled - either as an UNDEF shift amount in a native shift or as an UNDEF in the logical 'all out of range' zero constant special case for logical shifts.
Differential Revision: http://reviews.llvm.org/D19675
llvm-svn: 271996
This patch adds support for folding undef/zero/constant inputs to MOVMSK instructions.
The SSE/AVX versions can be fully folded, but the MMX version can only handle undef inputs.
Differential Revision: http://reviews.llvm.org/D20998
llvm-svn: 271990
This patch removes the llvm intrinsics VPMOVSX and (V)PMOVZX sign/zero extension intrinsics and auto-upgrades to SEXT/ZEXT calls instead. We already did this for SSE41 PMOVSX sometime ago so much of that implementation can be reused.
Reapplied now that the the companion patch (D20684) removes/auto-upgrade the clang intrinsics has been committed.
Differential Revision: http://reviews.llvm.org/D20686
llvm-svn: 271131
This patch removes the llvm intrinsics VPMOVSX and (V)PMOVZX sign/zero extension intrinsics and auto-upgrades to SEXT/ZEXT calls instead. We already did this for SSE41 PMOVSX sometime ago so much of that implementation can be reused.
A companion patch (D20684) removes/auto-upgrade the clang intrinsics.
Differential Revision: http://reviews.llvm.org/D20686
llvm-svn: 270973
When a va_start or va_copy is immediately followed by a va_end (ignoring
debug information or other start/end in between), then it is safe to
remove the pair. As this code shares some commonalities with the lifetime
markers, this has been factored to helper functions.
This InstCombine pattern kicks-in 3 times when running the LLVM test
suite.
llvm-svn: 269033
Make use of Constant::getAggregateElement instead of checking constant types - first step towards adding support for UNDEF mask elements.
llvm-svn: 268158
Make use of Constant::getAggregateElement instead of checking constant types - first step towards adding support for UNDEF mask elements.
llvm-svn: 268115
We neglected to transfer operand bundles for some transforms. These
were found via inspection, I'll try to come up with some test cases.
llvm-svn: 268010
This patch improves support for determining the demanded vector elements through SSE scalar intrinsics:
1 - recognise that we only need the lowest element of the second input for binary scalar operations (and all the elements of the first input)
2 - recognise that the roundss/roundsd intrinsics use the lowest element of the second input and the remaining elements from the first input
Differential Revision: http://reviews.llvm.org/D17490
llvm-svn: 267356
This bug was introduced with:
http://reviews.llvm.org/rL262269
AVX masked loads are specified to set vector lanes to zero when the high bit of the mask
element for that lane is zero:
"If the mask is 0, the corresponding data element is set to zero in the load form of these
instructions, and unmodified in the store form." --Intel manual
Differential Revision: http://reviews.llvm.org/D19017
llvm-svn: 266148
`allocsize` is a function attribute that allows users to request that
LLVM treat arbitrary functions as allocation functions.
This patch makes LLVM accept the `allocsize` attribute, and makes
`@llvm.objectsize` recognize said attribute.
The review for this was split into two patches for ease of reviewing:
D18974 and D14933. As promised on the revisions, I'm landing both
patches as a single commit.
Differential Revision: http://reviews.llvm.org/D14933
llvm-svn: 266032
Two or more identical assumes are occasionally next to each other in a
basic block.
While our generic machinery will turn a redundant assume into a no-op,
it is not super cheap.
We can perform a simpler check to achieve the same result for this case.
llvm-svn: 265801
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Originally landed as r261544, then reverted in r261544 for (incidental)
build breakage. Re-landed here with no changes.
Reviewers: chandlerc, jingyue
Subscribers: llvm-commits, tra, jhen, hfinkel
Differential Revision: http://reviews.llvm.org/D17739
llvm-svn: 263481
This follows up on the related AVX instruction transforms, but this
one is too strange to do anything more with. Intel's behavioral
description of this instruction in its Software Developer's Manual
is tragi-comic.
llvm-svn: 263340
The intended effect of this patch in conjunction with:
http://reviews.llvm.org/rL259392http://reviews.llvm.org/rL260145
is that customers using the AVX intrinsics in C will benefit from combines when
the load mask is constant:
__m128 mload_zeros(float *f) {
return _mm_maskload_ps(f, _mm_set1_epi32(0));
}
__m128 mload_fakeones(float *f) {
return _mm_maskload_ps(f, _mm_set1_epi32(1));
}
__m128 mload_ones(float *f) {
return _mm_maskload_ps(f, _mm_set1_epi32(0x80000000));
}
__m128 mload_oneset(float *f) {
return _mm_maskload_ps(f, _mm_set_epi32(0x80000000, 0, 0, 0));
}
...so none of the above will actually generate a masked load for optimized code.
This is the masked load counterpart to:
http://reviews.llvm.org/rL262064
llvm-svn: 262269
The intended effect of this patch in conjunction with:
http://reviews.llvm.org/rL259392http://reviews.llvm.org/rL260145
is that customers using the AVX intrinsics in C will benefit from combines when
the store mask is constant:
void mstore_zero_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set1_epi32(0), v);
}
void mstore_fake_ones_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set1_epi32(1), v);
}
void mstore_ones_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set1_epi32(0x80000000), v);
}
void mstore_one_set_elt_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set_epi32(0x80000000, 0, 0, 0), v);
}
...so none of the above will actually generate a masked store for optimized code.
Differential Revision: http://reviews.llvm.org/D17485
llvm-svn: 262064
This is a part of the refactoring to unify isSafeToLoadUnconditionally and isDereferenceablePointer functions. In subsequent change I'm going to eliminate isDerferenceableAndAlignedPointer from Loads API, leaving isSafeToLoadSpecualtively the only function to check is load instruction can be speculated.
Reviewed By: hfinkel
Differential Revision: http://reviews.llvm.org/D16180
llvm-svn: 261736
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Reviewers: chandlerc, jingyue
Subscribers: hfinkel, jhen, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17317
llvm-svn: 261544
We introduced gc.relocates of vector-of-pointer types a couple of weeks back. Somehow, I missed updating the InstCombine rule to account for this. If we hit this code path with a vector-of-pointers gc.relocate, we'd crash on a cast<PointerType>.
I also took the chance to do a bit of code style cleanup.
llvm-svn: 260279
A masked store with a zero mask means there's no store.
A masked store with an allOnes mask means it's a normal vector store.
This is a continuation of:
http://reviews.llvm.org/rL259369
llvm-svn: 259392
A masked load with a zero mask means there's no load.
A masked load with an allOnes mask means it's a normal vector load.
Differential Revision: http://reviews.llvm.org/D16691
llvm-svn: 259369
The intrinsic target prefix should match the target name
as it appears in the triple.
This is not yet complete, but gets most of the important ones.
llvm.AMDGPU.* intrinsics used by mesa and libclc are still handled
for compatability for now.
llvm-svn: 258557
Summary:
This commit renames GCRelocateOperands to GCRelocateInst and makes it an
intrinsic wrapper, similar to e.g. MemCpyInst. Also, all users of
GCRelocateOperands were changed to use the new intrinsic wrapper instead.
Reviewers: sanjoy, reames
Subscribers: reames, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15762
llvm-svn: 256811
time.
The new overloaded function is used when an attribute is added to a
large number of slots of an AttributeSet (for example, to function
parameters). This is much faster than calling AttributeSet::addAttribute
once per slot, because AttributeSet::getImpl (which calls
FoldingSet::FIndNodeOrInsertPos) is called only once per function
instead of once per slot.
With this commit, clang compiles a file which used to take over 22
minutes in just 13 seconds.
rdar://problem/23581000
Differential Revision: http://reviews.llvm.org/D15085
llvm-svn: 254491
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
There are plenty more instcombines we could probably do with bitreverse, but this seems like a very obvious and trivial starting point and was brought up by Hal in his review.
llvm-svn: 252879
This patch improves support for combining the SSE4A EXTRQ(I) and INSERTQ(I) intrinsics:
1 - Converts INSERTQ/EXTRQ calls to INSERTQI/EXTRQI if the 'bit index' and 'length' operands are constant
2 - Converts INSERTQI/EXTRQI calls to shufflevector if the bit index/length are both byte aligned (we can already lower shuffles to INSERTQI/EXTRQI if its useful)
3 - Constant folding support
4 - Add zeroinitializer handling
Differential Revision: http://reviews.llvm.org/D13348
llvm-svn: 250609
As discussed in D13348 - the INSERTQI range combining code is wrong in that it confuses the insertion bit index with an extraction bit index.
The remaining legal combines are very unlikely (especially once we've converted to shuffles in D13348) so I'm removing the optimization.
llvm-svn: 250160
Summary:
Some passes may open up opportunities for optimizations, leaving empty
lifetime start/end ranges. For example, with the following code:
void foo(char *, char *);
void bar(int Size, bool flag) {
for (int i = 0; i < Size; ++i) {
char text[1];
char buff[1];
if (flag)
foo(text, buff); // BBFoo
}
}
the loop unswitch pass will create 2 versions of the loop, one with
flag==true, and the other one with flag==false, but always leaving
the BBFoo basic block, with lifetime ranges covering the scope of the for
loop. Simplify CFG will then remove BBFoo in the case where flag==false,
but will leave the lifetime markers.
This patch teaches InstCombine to remove trivially empty lifetime marker
ranges, that is ranges ending right after they were started (ignoring
debug info or other lifetime markers in the range).
This fixes PR24598: excessive compile time after r234581.
Reviewers: reames, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13305
llvm-svn: 249018
This patch teaches InstCombiner how to convert a SSSE3/AVX2 byte shuffle to a
builtin shuffle if the mask is constant.
Converting byte shuffle intrinsic calls to builtin shuffles can help finding
more opportunities for combining shuffles later on in selection dag.
We may end up with byte shuffles with constant masks as the result of inlining.
Differential Revision: http://reviews.llvm.org/D13252
llvm-svn: 248913
This patches removes the x86.sse41.pmovsx* intrinsics, provides a suitable upgrade path and updates relevant tests to sign extend a subvector instead.
LLVM counterpart to D12835
Differential Revision: http://reviews.llvm.org/D13002
llvm-svn: 248368
The SSE4A instructions EXTRQ/INSERTQ only use the lower 64-bits (or less) for many of their input vector operands and all of them have undefined upper 64-bits results.
Differential Revision: http://reviews.llvm.org/D12680
llvm-svn: 247934
Summary: This patch replaces isKnownNonNull() with isKnownNonNullAt() when checking nullness of passing arguments at callsite. In this way it can handle cases where the argument does not have nonnull attribute but has a dominating null check from the CFG. It also adds assertions in isKnownNonNull() and isKnownNonNullFromDominatingCondition() to make sure the value checked is pointer type (as defined in LLVM document). These assertions might trip failures in things which are not covered under llvm/test, but fixes should be pretty obvious.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12779
llvm-svn: 247587
Improved InstCombine support for CVTPH2PS (F16C half 2 float conversion):
<4 x float> @llvm.x86.vcvtph2ps.128(<8 x i16>) - only uses the bottom 4 i16 elements for the conversion.
Added constant folding support.
Differential Revision: http://reviews.llvm.org/D12731
llvm-svn: 247504
Summary: This patch replaces isKnownNonNull() with isKnownNonNullAt() when checking nullness of passing arguments at callsite. In this way it can handle cases where the argument does not have nonnull attribute but has a dominating null check from the CFG.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12779
llvm-svn: 247356
Summary: This patch replaces isKnownNonNull() with isKnownNonNullAt() when checking nullness of gc.relocate return value. In this way it can handle cases where the relocated value does not have nonnull attribute but has a dominating null check from the CFG.
Reviewers: reames
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D12772
llvm-svn: 247353
Most SSE/AVX (non-constant) vector shift instructions only use the lower 64-bits of the 128-bit shift amount vector operand, this patch calls SimplifyDemandedVectorElts to optimize for this.
I had to refactor some of my recent InstCombiner work on the vector shifts to avoid quite a bit of duplicate code, it means that SimplifyX86immshift now (re)decodes the type of shift.
Differential Revision: http://reviews.llvm.org/D11938
llvm-svn: 244872
As discussed in D11886, this patch moves the SSE/AVX vector blend folding to instcombiner from PerformINTRINSIC_WO_CHAINCombine (which allows us to remove this completely).
InstCombiner already had partial support for this, I just had to add support for zero (ConstantAggregateZero) masks and also the case where both selection inputs were the same (allowing us to ignore the mask).
I also moved all the relevant combine tests into InstCombine/blend_x86.ll
Differential Revision: http://reviews.llvm.org/D11934
llvm-svn: 244723
As discussed in D11760, this patch moves the (V)PSRA(WD) arithmetic shift-by-constant folding to InstCombine to match the logical shift implementations.
Differential Revision: http://reviews.llvm.org/D11886
llvm-svn: 244495
This patch fixes the sse2/avx2 vector shift by constant instcombine call to correctly deal with the fact that the shift amount is formed from the entire lower 64-bit and not just the lowest element as it currently assumes.
e.g.
%1 = tail call <4 x i32> @llvm.x86.sse2.psrl.d(<4 x i32> %v, <4 x i32> <i32 15, i32 15, i32 15, i32 15>)
In this case, (V)PSRLD doesn't perform a lshr by 15 but in fact attempts to shift by 64424509455 ((15 << 32) | 15) - giving a zero result.
In addition, this review also recognizes shift-by-zero from a ConstantAggregateZero type (PR23821).
Differential Revision: http://reviews.llvm.org/D11760
llvm-svn: 244341
Now that we are generating sane codegen for vector sext/zext nodes on SSE targets, this patch uses instcombine to replace the SSE41/AVX2 pmovsx and pmovzx intrinsics with the equivalent native IR code.
Differential Revision: http://reviews.llvm.org/D11503
llvm-svn: 243303
The original change broke clang side tests. I will be submitting those momentarily. This change includes post commit feedback on the original change from from Pete Cooper.
Original Submission comments:
If a parameter to a function is known non-null, use the existing parameter attributes to record that fact at the call site. This has no optimization benefit by itself - that I know of - but is an enabling change for http://reviews.llvm.org/D9129.
Differential Revision: http://reviews.llvm.org/D9132
llvm-svn: 239849
If a parameter to a function is known non-null, use the existing parameter attributes to record that fact at the call site. This has no optimization benefit by itself - that I know of - but is an enabling change for http://reviews.llvm.org/D9129.
Differential Revision: http://reviews.llvm.org/D9132
llvm-svn: 239795