Catchret transfers control from a catch funclet to an earlier funclet.
However, it is not completely clear which funclet the catchret target is
part of. Make this clear by stapling the catchret target's funclet
membership onto the CATCHRET SDAG node.
llvm-svn: 249052
AVX-512 does not provide an instruction that shuffles mask register. So I do the following way:
mask-2-simd , shuffle simd , simd-2-mask
Differential Revision: http://reviews.llvm.org/D12727
llvm-svn: 247876
The changes in:
test/CodeGen/X86/machine-cp.ll
are just due to scheduling differences after some logic instructions were reassociated.
llvm-svn: 247516
This takes the existing static function hasLiveCondCodeDef and makes it a member function of the X86InstrInfo class. This is a useful utility function that an upcoming change would like to use. NFC.
Patch by: Kevin B. Smith
Differential Revision: http://reviews.llvm.org/D12371
llvm-svn: 246073
This is a 'no functional change intended' patch. It removes one FIXME, but adds several more.
Motivation: the FeatureFastUAMem attribute may be too general. It is used to determine if any
sized misaligned memory access under 32-bytes is 'fast'. From the added FIXME comments, however,
you can see that we're not consistent about this. Changing the name of the attribute makes it
clearer to see the logic holes.
Changing this to a 'slow' attribute also means we don't have to add an explicit 'fast' attribute
to new chips; fast unaligned accesses have been standard for several generations of CPUs now.
Differential Revision: http://reviews.llvm.org/D12154
llvm-svn: 245729
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
NaCl's sandbox doesn't allow PUSHF/POPF out of security concerns (priviledged emulators have forgotten to mask system bits in the past, and EFLAGS's DF bit is a constant source of hilarity). Commit r220529 fixed PR20376 by saving cmpxchg's flags result using EFLAGS, this commit now generated LAHF/SAHF instead, for all of x86 (not just NaCl) because it leads to an overall performance gain over PUSHF/POPF.
As with the previous patch this code generation is pretty bad because it occurs very later, after register allocation, and in many cases it rematerializes flags which were already available (e.g. already in a register through SETE). Fortunately it's somewhat rare that this code needs to fire.
I did [[ https://github.com/jfbastien/benchmark-x86-flags | a bit of benchmarking ]], the results on an Intel Haswell E5-2690 CPU at 2.9GHz are:
| Time per call (ms) | Runtime (ms) | Benchmark |
| 0.000012514 | 6257 | sete.i386 |
| 0.000012810 | 6405 | sete.i386-fast |
| 0.000010456 | 5228 | sete.x86-64 |
| 0.000010496 | 5248 | sete.x86-64-fast |
| 0.000012906 | 6453 | lahf-sahf.i386 |
| 0.000013236 | 6618 | lahf-sahf.i386-fast |
| 0.000010580 | 5290 | lahf-sahf.x86-64 |
| 0.000010304 | 5152 | lahf-sahf.x86-64-fast |
| 0.000028056 | 14028 | pushf-popf.i386 |
| 0.000027160 | 13580 | pushf-popf.i386-fast |
| 0.000023810 | 11905 | pushf-popf.x86-64 |
| 0.000026468 | 13234 | pushf-popf.x86-64-fast |
Clearly `PUSHF`/`POPF` are suboptimal. It doesn't really seems to be worth teaching LLVM about individual flags, at least not for this purpose.
Reviewers: rnk, jvoung, t.p.northover
Subscribers: llvm-commits
Differential revision: http://reviews.llvm.org/D6629
llvm-svn: 244503
This commit implements the initial serialization of the machine operand target
flags. It extends the 'TargetInstrInfo' class to add two new methods that help
to provide text based serialization for the target flags.
This commit can serialize only the X86 target flags, and the target flags for
the other targets will be serialized in the follow-up commits.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244185
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
In the commentary for D11660, I wasn't sure if it was alright to create new
integer machine instructions without also creating the implicit EFLAGS operand.
From what I can see, the implicit operand is always created by the MachineInstrBuilder
based on the instruction type, so we don't have to do that explicitly. However, in
reviewing the debug output, I noticed that the operand was not marked as 'dead'.
The machine combiner should do that to preserve future optimization opportunities
that may be checking for that dead EFLAGS operand themselves.
Differential Revision: http://reviews.llvm.org/D11696
llvm-svn: 243990
Add i16, i32, i64 imul machine instructions to the list of reassociation
candidates.
A new bit of logic is needed to handle integer instructions: they have an
implicit EFLAGS operand, so we have to make sure it's dead in order to do
any reassociation with integer ops.
Differential Revision: http://reviews.llvm.org/D11660
llvm-svn: 243756
This is a follow-up to the FIXME that was added with D7474 ( http://reviews.llvm.org/rL229531 ).
I thought this load folding bug had been made hard-to-hit, but it turns out to be very easy
when targeting 32-bit x86 and causes a miscompile/crash in Wine:
https://bugs.winehq.org/show_bug.cgi?id=38826https://llvm.org/bugs/show_bug.cgi?id=22371#c25
The quick fix is to simply remove the scalar FP logical instructions from the load folding table
in X86InstrInfo, but that causes us to miss load folds that should be possible when lowering fabs,
fneg, fcopysign. So the majority of this patch is altering those lowerings to use *vector* FP
logical instructions (because that's all x86 gives us anyway). That lets us do the load folding
legally.
Differential Revision: http://reviews.llvm.org/D11477
llvm-svn: 243361
Adds pushes to the folding tables.
This also required a fix to the TD definition, since the memory forms of
the push instructions did not have the right mayLoad/mayStore flags.
Differential Revision: http://reviews.llvm.org/D11340
llvm-svn: 243010
canFoldMemoryOperand is not actually used anywhere in the codebase - all existing users instead call foldMemoryOperand directly when they wish to fold and can correctly deduce what they need from the return value.
This patch removes the canFoldMemoryOperand base function and the target implementations; only x86 had a real (bit-rotted) implementation, although AMDGPU had a preparatory stub that had never needed to be completed.
Differential Revision: http://reviews.llvm.org/D11331
llvm-svn: 242638
MOVSDto64rr and MOV64toSDrr are defined to convert between FR64 (%xmm)
<-> GR64 registers, not VR64 (%mm) <-> GR64. This is wrong.
I found this by inspection and could not find a suitable testcase for it
since (1) we don't handle MMX bitcasts in Peephole optimizer as to
generate COPYs that (2) could be expanded back to the appropriate x86
instruction in ExpandPostRA.
Switch to use the appropriate instructions: MMX_MOVD64from64rr and
MMX_MOVD64to64rr here.
llvm-svn: 242191
Extend the reassociation optimization of http://reviews.llvm.org/rL240361 (D10460)
to SSE scalar FP SP adds in addition to AVX scalar FP SP adds.
With the 'switch' in place, we can trivially add other opcodes and test cases in
future patches.
Differential Revision: http://reviews.llvm.org/D10975
llvm-svn: 241515
Currently ( D10321, http://reviews.llvm.org/rL239486 ), we can use the machine combiner pass
to reassociate the following sequence to reduce the critical path:
A = ? op ?
B = A op X
C = B op Y
-->
A = ? op ?
B = X op Y
C = A op B
'op' is currently limited to x86 AVX scalar FP adds (with fast-math on), but in theory, it could
be any associative math/logic op (see TODO in code comment).
This patch generalizes the pattern match to ignore the instruction that defines 'A'. So instead of
a sequence of 3 adds, we now only need to find 2 dependent adds and decide if it's worth
reassociating them.
This generalization has a compile-time cost because we can now match more instruction sequences
and we rely more heavily on the machine combiner to discard sequences where reassociation doesn't
improve the critical path.
For example, in the new test case:
A = M div N
B = A add X
C = B add Y
We'll match 2 reassociation patterns, but this transform doesn't reduce the critical path:
A = M div N
B = A add Y
C = B add X
We need the combiner to reject that pattern but select this:
A = M div N
B = X add Y
C = B add A
Differential Revision: http://reviews.llvm.org/D10460
llvm-svn: 240361
The _Int instructions are special, in that they operate on the full
VR128 instead of FR32. The load folding then looks at MOVSS, at the
user, and bails out when it sees a size mismatch.
What we really know is that the rm_Int instructions don't load the
higher lanes, so folding is fine.
This happens for the straightforward intrinsic code, e.g.:
_mm_add_ss(a, _mm_load_ss(p));
Fixes PR23349.
Differential Revision: http://reviews.llvm.org/D10554
llvm-svn: 240326