This seems to only work some of the time. In some situations,
this seems to use a nonsensical type and isn't actually aware of the
memory being accessed. e.g. if branch condition is an icmp of a pointer,
it checks the addressing mode of i1.
llvm-svn: 245137
Summary: Similar to the change we applied to ASan. The same test case works.
Reviewers: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11961
llvm-svn: 245067
This introduces the basic functionality to support "token types".
The motivation stems from the need to perform operations on a Value
whose provenance cannot be obscured.
There are several applications for such a type but my immediate
motivation stems from WinEH. Our personality routine enforces a
single-entry - single-exit regime for cleanups. After several rounds of
optimizations, we may be left with a terminator whose "cleanup-entry
block" is not entirely clear because control flow has merged two
cleanups together. We have experimented with using labels as operands
inside of instructions which are not terminators to indicate where we
came from but found that LLVM does not expect such exotic uses of
BasicBlocks.
Instead, we can use this new type to clearly associate the "entry point"
and "exit point" of our cleanup. This is done by having the cleanuppad
yield a Token and consuming it at the cleanupret.
The token type makes it impossible to obscure or otherwise hide the
Value, making it trivial to track the relationship between the two
points.
What is the burden to the optimizer? Well, it turns out we have already
paid down this cost by accepting that there are certain calls that we
are not permitted to duplicate, optimizations have to watch out for
such instructions anyway. There are additional places in the optimizer
that we will probably have to update but early examination has given me
the impression that this will not be heroic.
Differential Revision: http://reviews.llvm.org/D11861
llvm-svn: 245029
its creation function.
This required shifting a bunch of method definitions to be out-of-line
so that we could leave most of the implementation guts in the .cpp file.
llvm-svn: 245021
I've used forward declarations and reorderd the source code some to make
this reasonably clean and keep as much of the code as possible in the
source file, including all the stratified set details. Just the basic AA
interface and the create function are in the header file, and the header
file is now included into the relevant locations.
llvm-svn: 245009
Summary:
This patch implements my promised optimization to reunites certain sexts from
operands after we extract the constant offset. See the header comment of
reuniteExts for its motivation.
One key building block that enables this optimization is Bjarke's poison value
analysis (D11212). That helps to prove "a +nsw b" can't overflow.
Reviewers: broune
Subscribers: jholewinski, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D12016
llvm-svn: 245003
AliasAnalysis in LoopIdiomRecognize.
The previous commit to LIR, r244879, exposed some scary bug in the loop
pass pipeline with an assert failure that showed up on several bots.
This patch got reverted as part of getting that revision reverted, but
they're actually independent and unrelated. This patch has no functional
change and should be completely safe. It is also useful for my current
work on the AA infrastructure.
llvm-svn: 244993
If <src> is non-zero we can safely set the flag to true, and this
results in less code generated for, e.g. ffs(x) + 1 on FreeBSD.
Thanks to majnemer for suggesting the fix and reviewing.
Code generated before the patch was applied:
0: 0f bc c7 bsf %edi,%eax
3: b9 20 00 00 00 mov $0x20,%ecx
8: 0f 45 c8 cmovne %eax,%ecx
b: 83 c1 02 add $0x2,%ecx
e: b8 01 00 00 00 mov $0x1,%eax
13: 85 ff test %edi,%edi
15: 0f 45 c1 cmovne %ecx,%eax
18: c3 retq
Code generated after the patch was applied:
0: 0f bc cf bsf %edi,%ecx
3: 83 c1 02 add $0x2,%ecx
6: 85 ff test %edi,%edi
8: b8 01 00 00 00 mov $0x1,%eax
d: 0f 45 c1 cmovne %ecx,%eax
10: c3 retq
It seems we can still use cmove and save another 'test' instruction, but
that can be tackled separately.
Differential Revision: http://reviews.llvm.org/D11989
llvm-svn: 244947
We used to be over-conservative about preserving inbounds. Actually, the second
GEP (which applies the constant offset) can inherit the inbounds attribute of
the original GEP, because the resultant pointer is equivalent to that of the
original GEP. For example,
x = GEP inbounds a, i+5
=>
y = GEP a, i // inbounds removed
x = GEP inbounds y, 5 // inbounds preserved
llvm-svn: 244937
DeadStoreElimination does eliminate a store if it stores a value which was loaded from the same memory location.
So far this worked only if the store is in the same block as the load.
Now we can also handle stores which are in a different block than the load.
Example:
define i32 @test(i1, i32*) {
entry:
%l2 = load i32, i32* %1, align 4
br i1 %0, label %bb1, label %bb2
bb1:
br label %bb3
bb2:
; This store is redundant
store i32 %l2, i32* %1, align 4
br label %bb3
bb3:
ret i32 0
}
Differential Revision: http://reviews.llvm.org/D11854
llvm-svn: 244901
Consider this code:
BB:
%i = phi i32 [ 0, %if.then ], [ %c, %if.else ]
%add = add nsw i32 %i, %b
...
In this common case the add can be moved to the %if.else basic block, because
adding zero is an identity operation. If we go though %if.then branch it's
always a win, because add is not executed; if not, the number of instructions
stays the same.
This pattern applies also to other instructions like sub, shl, shr, ashr | 0,
mul, sdiv, div | 1.
Patch by Jakub Kuderski!
llvm-svn: 244887
simplified form to remove redundant checks and simplify the code for
popcount recognition. We don't actually need to handle all of these
cases.
I've left a FIXME for one in particular until I finish inspecting to
make sure we don't actually *rely* on the predicate in any way.
llvm-svn: 244879
Most SSE/AVX (non-constant) vector shift instructions only use the lower 64-bits of the 128-bit shift amount vector operand, this patch calls SimplifyDemandedVectorElts to optimize for this.
I had to refactor some of my recent InstCombiner work on the vector shifts to avoid quite a bit of duplicate code, it means that SimplifyX86immshift now (re)decodes the type of shift.
Differential Revision: http://reviews.llvm.org/D11938
llvm-svn: 244872
Summary: This patch moves the check of OptimizeForSize before traversing over all basic blocks in current loop. If OptimizeForSize is set to true, no non-trivial unswitch is ever allowed. Therefore, the early exit will help reduce compilation time. This patch should be NFC.
Reviewers: reames, weimingz, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11997
llvm-svn: 244868
code into methods on LoopIdiomRecognize.
This simplifies the code somewhat and also makes it much easier to move
the analyses around. Ultimately, the separate class wasn't providing
significant value over methods -- it contained the precondition basic
block and the current loop. The current loop is already available and
the precondition block wasn't needed everywhere and is easy to pass
around.
In several cases I just moved things to be static functions because they
already accepted most of their inputs as arguments.
This doesn't fix the way we manage analyses yet, that will be the next
patch, but it already makes the code over 50 lines shorter.
No functionality changed.
llvm-svn: 244851
complexity.
There is only one function that was called from multiple locations, and
that was 'getBranch' which has a reasonable one-line spelling already:
dyn_cast<BranchInst>(BB->getTerminator). We could make this shorter, but
it doesn't seem to add much value. Instead, we should avoid calling it
so many times on the same basic blocks, but that will be in a subsequent
patch.
The other functions are only called in one location, so inline them
there, and take advantage of this to use direct early exit and reduce
indentation. This makes it much more clear what is being tested for, and
in fact makes it clear now to me that there are simpler ways to do this
work. However, this patch just does the mechanical inlining. I'll clean
up the functionality of the code to leverage loop simplified form more
effectively in a follow-up.
Despite lots of early line breaks due to early-exit, this is still
shorter than it was before.
llvm-svn: 244841
a significant code cleanup here.
The handling of analyses in this pass is overly complex and can be
simplified significantly, but the right way to do that is to simplify
all of the code not just the analyses, and that'll require pretty
extensive edits that would be noisy with formatting changes mixed into
them.
llvm-svn: 244828
To be clear: this is an *optimization* not a correctness change.
CodeGenPrep likes to duplicate icmps feeding branch instructions to take advantage of x86's ability to fuze many comparison/branch patterns into a single micro-op and to reduce the need for materializing i1s into general registers. PlaceSafepoints likes to place safepoint polls right at the end of basic blocks (immediately before terminators) when inserting entry and backedge safepoints. These two heuristics interact in a somewhat unfortunate way where the branch terminating the original block will be controlled by a condition driven by unrelocated pointers. This forces the register allocator to keep both the relocated and unrelocated values of the pointers feeding the icmp alive over the safepoint poll.
One simple fix would have been to just adjust PlaceSafepoints to move one back in the basic block, but you can reach similar cases as a result of LICM or other hoisting passes. As a result, doing a post insertion fixup seems to be more robust.
I considered doing this in CodeGenPrep itself, but having to update the live sets of already rewritten safepoints gets complicated fast. In particular, you can't just use def/use information because by moving the icmp, we're extending the live range of it's inputs potentially.
Instead, this patch teaches RewriteStatepointsForGC to make the required adjustments before making the relocations explicit in the IR. This change really highlights the fact that RSForGC is a CodeGenPrep-like pass which is performing target specific lowering. In the long run, we may even want to combine the two though this would require a lot more smarts to be integrated into RSForGC first. We currently rely on being able to run a set of cleanup passes post rewriting because the IR RSForGC generates is pretty damn ugly.
Differential Revision: http://reviews.llvm.org/D11819
llvm-svn: 244821
When rewriting the IR such that base pointers are available for every live pointer, we potentially need to duplicate instructions to propagate the base. The original code had only handled PHI and Select under the belief those were the only instructions which would need duplicated. When I added support for vector instructions, I'd added a collection of hacks for ExtractElement which caught most of the common cases. Of course, I then found the one test case my hacks couldn't cover. :)
This change removes all of the early hacks for extract element. By defining extractelement as a BDV (rather than trying to look through it), we can extend the rewriting algorithm to duplicate the extract as needed. Note that a couple of peephole optimizations were left in for the moment, because while we now handle extractelement as a first class citizen, we're not yet handling insertelement. That change will follow in the near future.
llvm-svn: 244808
AliasAnalysis.
Same as the other commits, the TLI access from an alias analysis is
going away and isn't very clean -- it is better to explicitly mark the
dependencies.
llvm-svn: 244785
just depend on it directly.
This was particularly frustrating because there was a really wide
mixture of using a member variable and re-extracting it from the AA that
happened to be around. I think the result is much more clear.
I've also deleted all of the pointless null checks and used references
across the APIs where I could to make it explicit that this cannot be
null in a useful fashion.
llvm-svn: 244780
r243382 changed the behavior to always require a set of memchecks to be
passed to LoopVer. This change restores the prior behavior as an
alternative to the new behavior. This allows the checks to be
implicitly taken from the LAA object.
Patch by Ashutosh Nema!
llvm-svn: 244763
As discussed in D11886, this patch moves the SSE/AVX vector blend folding to instcombiner from PerformINTRINSIC_WO_CHAINCombine (which allows us to remove this completely).
InstCombiner already had partial support for this, I just had to add support for zero (ConstantAggregateZero) masks and also the case where both selection inputs were the same (allowing us to ignore the mask).
I also moved all the relevant combine tests into InstCombine/blend_x86.ll
Differential Revision: http://reviews.llvm.org/D11934
llvm-svn: 244723
`InstCombiner::OptimizeOverflowCheck` was asserting an
invariant (operands to binary operations are ordered by decreasing
complexity) that wasn't really an invariant. Fix this by instead having
`InstCombiner::OptimizeOverflowCheck` establish the invariant if it does
not hold.
llvm-svn: 244676
Summary: This patch adds check for dead blocks and skip them for processSwitchInst(). This will help reduce compilation time.
Reviewers: reames, hans
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11953
llvm-svn: 244656
Summary: LowerSwitch crashed with the attached test case after deleting the default block. This happened because the current implementation of deleting dead blocks is wrong. After the default block being deleted, it contains no instruction or terminator, and it should no be traversed anymore. However, since the iterator is advanced before processSwitchInst() function is executed, the block advanced to could be deleted inside processSwitchInst(). The deleted block would then be visited next and crash dyn_cast<SwitchInst>(Cur->getTerminator()) because Cur->getTerminator() returns a nullptr. This patch fixes this problem by recording dead default blocks into a list, and delete them after all processSwitchInst() has been done. It still possible to visit dead default blocks and waste time process them. But it is a compile time issue, and I plan to have another patch to add support to skip dead blocks.
Reviewers: kariddi, resistor, hans, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11852
llvm-svn: 244642
Summary:
For LTO we need to enable this pass in the LTO pipeline,
as it is skipped during the "-flto -c" compile step (when PrepareForLTO is
set).
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11919
llvm-svn: 244622
The select pattern recognition in ValueTracking (as used by InstCombine
and SelectionDAGBuilder) only knew about integer patterns. This teaches
it about minimum and maximum operations.
matchSelectPattern() has been extended to return a struct containing the
existing Flavor and a new enum defining the pattern's behavior when
given one NaN operand.
C minnum() is defined to return the non-NaN operand in this case, but
the idiomatic C "a < b ? a : b" would return the NaN operand.
ARM and AArch64 at least have different instructions for these different cases.
llvm-svn: 244580
This adds somewhat basic preparation functionality including:
- Formation of funclets via coloring basic blocks.
- Cloning of polychromatic blocks to ensure that funclets have unique
program counters.
- Demotion of values used between different funclets.
- Some amount of cleanup once we have removed predecessors from basic
blocks.
- Verification that we are left with a CFG that makes some amount of
sense.
N.B. Arguments and numbering still need to be done.
Differential Revision: http://reviews.llvm.org/D11750
llvm-svn: 244558
This patch and a relatec clang patch solve the problem of having to explicitly enable analysis when specifying a loop hint pragma to get the diagnostics. Passing AlwasyPrint as the pass name (see below) causes the front-end to print the diagnostic if the user has specified '-Rpass-analysis' without an '=<target-pass>’. Users of loop hints can pass that compiler option without having to specify the pass and they will get diagnostics for only those loops with loop hints.
llvm-svn: 244555
This patch moves checking the threshold of runtime pointer checks to the vectorization requirements (late diagnostics) and emits a diagnostic that infroms the user the loop would be vectorized if not for exceeding the pointer-check threshold. Clang will also append the options that can be used to allow vectorization.
llvm-svn: 244523
As discussed in D11760, this patch moves the (V)PSRA(WD) arithmetic shift-by-constant folding to InstCombine to match the logical shift implementations.
Differential Revision: http://reviews.llvm.org/D11886
llvm-svn: 244495
This patch moves the verification of fast-math to just before vectorization is done. This way we can tell clang to append the command line options would that allow floating-point commutativity. Specifically those are enableing fast-math or specifying a loop hint.
llvm-svn: 244489
Sometimes interleaving is not beneficial, as determined by the cost-model and sometimes it is disabled by a loop hint (by the user). This patch modifies the diagnostic messages to make it clear why interleaving wasn't done.
llvm-svn: 244485
This change adds the unroll metadata "llvm.loop.unroll.enable" which directs
the optimizer to unroll a loop fully if the trip count is known at compile time, and
unroll partially if the trip count is not known at compile time. This differs from
"llvm.loop.unroll.full" which explicitly does not unroll a loop if the trip count is not
known at compile time.
The "llvm.loop.unroll.enable" is intended to be added for loops annotated with
"#pragma unroll".
llvm-svn: 244466
Summary:
This adds a hook to TTI which enables us to selectively turn on by default
interleaved access vectorization for targets on which we have have performed
the required benchmarking.
Reviewers: rengolin
Subscribers: rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D11901
llvm-svn: 244449
The scalarizer can cache incorrect entries when walking up a chain of
insertelement instructions. This occurs when it encounters more than one
instruction that it is not actively searching for, as it unconditionally caches
every element it finds. The fix is to only cache the first element that it
isn't searching for so we don't overwrite correct entries.
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D11559
llvm-svn: 244448
This is the full set of checks that clients can further filter. IOW,
it's client-agnostic. This makes LAA complete in the sense that it now
provides the two main results of its analysis precomputed:
1. memory dependences via getDepChecker().getInsterestingDependences()
2. run-time checks via getRuntimePointerCheck().getChecks()
However, as a consequence we now compute this information pro-actively.
Thus if the client decides to skip the loop based on the dependences
we've computed the checks unnecessarily. In order to see whether this
was a significant overhead I checked compile time on SPEC2k6 LTO bitcode
files. The change was in the noise.
The checks are generated in canCheckPtrAtRT, at the same place where we
used to call groupChecks to merge checks.
llvm-svn: 244368
Summary: llvm::ConstantFoldTerminator function can convert SwitchInst with single case (and default) to a conditional BranchInst. This patch adds support to preserve make.implicit metadata on this conversion.
Reviewers: sanjoy, weimingz, chenli
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D11841
llvm-svn: 244348
This patch fixes the sse2/avx2 vector shift by constant instcombine call to correctly deal with the fact that the shift amount is formed from the entire lower 64-bit and not just the lowest element as it currently assumes.
e.g.
%1 = tail call <4 x i32> @llvm.x86.sse2.psrl.d(<4 x i32> %v, <4 x i32> <i32 15, i32 15, i32 15, i32 15>)
In this case, (V)PSRLD doesn't perform a lshr by 15 but in fact attempts to shift by 64424509455 ((15 << 32) | 15) - giving a zero result.
In addition, this review also recognizes shift-by-zero from a ConstantAggregateZero type (PR23821).
Differential Revision: http://reviews.llvm.org/D11760
llvm-svn: 244341
As a follow-up to r244181, resolve uniquing cycles underneath distinct
nodes on the fly. This prevents uniquing cycles in early operands from
affecting later operands. It also removes an iteration through distinct
nodes' operands.
No real functional change here, just more prompt resolution of temporary
nodes.
llvm-svn: 244302
After r244074, we now have a successors() method to iterate over
all the successors of a TerminatorInst. This commit changes a bunch
of eligible loops to use it.
llvm-svn: 244260
iisUnmovableInstruction() had a list of instructions hardcoded which are
considered unmovable. The list lacked (at least) an entry for the va_arg
and cmpxchg instructions.
Fix this by introducing a new Instruction::mayBeMemoryDependent()
instead of maintaining another instruction list.
Patch by Matthias Braun <matze@braunis.de>.
Differential Revision: http://reviews.llvm.org/D11577
rdar://problem/22118647
llvm-svn: 244244
This is the first mechanical step in preparation for making this and all
the other alias analysis passes available to the new pass manager. I'm
factoring out all the totally boring changes I can so I'm moving code
around here with no other changes. I've even minimized the formatting
churn.
I'll reformat and freshen comments on the interface now that its located
in the right place so that the substantive changes don't triger this.
llvm-svn: 244197
around a DataLayout interface in favor of directly querying DataLayout.
This wrapper specifically helped handle the case where this no
DataLayout, but LLVM now requires it simplifynig all of this. I've
updated callers to directly query DataLayout. This in turn exposed
a bunch of places where we should have DataLayout readily available but
don't which I've fixed. This then in turn exposed that we were passing
DataLayout around in a bunch of arguments rather than making it readily
available so I've also fixed that.
No functionality changed.
llvm-svn: 244189
Rotate the algorithm for remapping distinct nodes in order to simplify
how uniquing cycles get resolved. This removes some of the recursion,
and, most importantly, exposes all uniquing cycles at the top-level.
Besides being a little more efficient -- temporary MDNodes won't live as
long -- the clearer logic should help protect against bugs like those
fixed in r243961 and r243976.
What are uniquing cycles? Why do they present challenges when remapping
metadata?
!0 = !{!1}
!1 = !{!0}
!0 and !1 form a simple uniquing cycle. When remapping from one
metadata graph to another, every uniquing cycle gets "duplicated"
through a dance:
!0-temp = !{!1?} ; map(!0): clone !0, VM[!0] = !0-temp
!1-temp = !{!0?} ; ..map(!1): clone !1, VM[!1] = !1-temp
!1-temp = !{!0-temp} ; ..map(!1): remap !1's operands
!2 = !{!0-temp} ; ..map(!1): uniquify: !1-temp => !2
!0-temp = !{!2} ; map(!0): remap !0's operands
!3 = !{!2} ; map(!0): uniquify: !0-temp => !3
; Result
!2 = !{!3}
!3 = !{!2}
(In the two "uniquify" steps above, the operands of !X-temp are compared
to the operands of !X. If they're the same, then !X-temp gets RAUW'ed
to !X; if they're different, then !X-temp is promoted to a new unique
node. The latter case always hits in for uniquing cycles, so we
duplicate all the nodes involved.)
Why is this a problem? Uniquable Metadata nodes that have temporary
node as transitive operands keep RAUW support until the temporary nodes
get finalized. With non-cycles, this happens automatically: when a
uniquable node's count of unresolved operands drops to zero, it
immediately sheds its own RAUW support (possibly triggering the same in
any node that references it). However, uniquing cycles create a
reference cycle, and uniqued nodes that transitively reference a
uniquing cycle are "stuck" in an unresolved state until someone calls
`MDNode::resolveCycles()` on a node in the unresolved subgraph.
Distinct nodes should help here (and mostly do): since they aren't
uniqued anywhere, they are guaranteed not to be RAUW'ed. They
effectively form a barrier between uniqued nodes, breaking some uniquing
cycles, and shielding uniqued nodes from uniquing cycles.
Unfortunately, with this barrier in place, the unresolved subgraph(s)
can be disjoint from the top-level node. The mapping algorithm needs to
find at least one representative from each disjoint subgraph. But which
nodes are *stuck*, and which will get resolved automatically? And which
nodes are in the unresolved subgraph? The old logic was conservative.
This commit rotates the logic for distinct nodes, so that we have access
to unresolved nodes at the top-level call to `llvm::MapMetadata()`.
Each time we return to the top-level, we know that all temporaries have
been RAUW'ed away. Here, it's safe (and necessary) to call
`resolveCycles()` immediately on unresolved operands.
This should also perform better than the old algorithm. The recursion
stack is shorter, temporary nodes don't live as long, and there are
fewer tracking references to unresolved nodes. As the debug info graph
introduces more 'distinct' nodes, remapping should incrementally get
cheaper and cheaper.
Aside from possible performance improvements (and reduced cruft in the
`LLVMContext`), there should be no functionality change here.
llvm-svn: 244181
Rename `remap()` to `remapOperands()`, and restrict its contract to
remapping operands. Previously, it also called `mapToMetadata()`, but
this logic is hard to reason about externally. In particular, this
refactors `mapUniquedNode()` to avoid redundant mapping calls, taking
advantage of the RAUWs that are already in place.
llvm-svn: 244168
The only place that tries to return a CallGraph by value
(CallGraphAnalysis::run) doesn't seem to be used right now, but it's a
reasonable bit of cleanup anyway.
llvm-svn: 244122
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
r243883 and r243961 made a use-after-free far more likely:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/6041/steps/check-llvm%20asan/logs/stdio
Unresolved nodes get inserted into the `Cycles` array. If they later
get resolved through RAUW, we need to update the reference. It's
interesting that this never hit before (maybe an asan-ified clang
bootstrap with `-flto -g` would have hit it, but I admit I haven't tried
anything quite that crazy).
llvm-svn: 243976
This change was done as an audit and is by inspection. The new EH
system is still very much a work in progress. NFC for the landingpad
case.
llvm-svn: 243965
r243883 started moving 'distinct' nodes instead of duplicated them in
lib/Linker. This had the side-effect of sometimes not cloning uniqued
nodes that reference them. I missed a corner case:
!named = !{!0}
!0 = !{!1}
!1 = distinct !{!0}
!0 is the entry point for "remapping", and a temporary clone (say,
!0-temp) is created and mapped in case we need to model a uniquing
cycle.
Recursive descent into !1. !1 is distinct, so we leave it alone,
but update its operand to !0-temp.
Pop back out to !0. Its only operand, !1, hasn't changed, so we don't
need to use !0-temp. !0-temp goes out of scope, and we're finished
remapping, but we're left with:
!named = !{!0}
!0 = !{!1}
!1 = distinct !{null} ; uh oh...
Previously, if !0 and !0-temp ended up with identical operands, then
!0-temp couldn't have been referenced at all. Now that distinct nodes
don't get duplicated, that assumption is invalid. We need to
!0-temp->replaceAllUsesWith(!0) before freeing !0-temp.
I found this while running an internal `-flto -g` bootstrap. Strangely,
there was no case of this in the open source bootstrap I'd done before
commit...
llvm-svn: 243961
through PHI nodes across iterations.
This patch teaches the new advanced loop unrolling heuristics to propagate
constants into the loop from the preheader and around the backedge after
simulating each iteration. This lets us brute force solve simple recurrances
that aren't modeled effectively by SCEV. It also makes it more clear why we
need to process the loop in-order rather than bottom-up which might otherwise
make much more sense (for example, for DCE).
This came out of an attempt I'm making to develop a principled way to account
for dead code in the unroll estimation. When I implemented
a forward-propagating version of that it produced incorrect results due to
failing to propagate *cost* between loop iterations through the PHI nodes, and
it occured to me we really should at least propagate simplifications across
those edges, and it is quite easy thanks to the loop being in canonical and
LCSSA form.
Differential Revision: http://reviews.llvm.org/D11706
llvm-svn: 243900
Instead of cloning distinct `MDNode`s when linking in a module, just
move them over. The module linker destroys the source module, so the
old node would otherwise just be leaked on the context. Create the new
node in place. This also reduces the number of cloned uniqued nodes
(since it's less likely their operands have changed).
This mapping strategy is only correct when we're discarding the source,
so the linker turns it on via a ValueMapper flag, `RF_MoveDistinctMDs`.
There's nothing observable in terms of `llvm-link` output here: the
linked module should be semantically identical.
I'll be adding more 'distinct' nodes to the debug info metadata graph in
order to break uniquing cycles, so the benefits of this will partly come
in future commits. However, we should get some gains immediately, since
we have a fair number of 'distinct' `DILocation`s being linked in.
llvm-svn: 243883
This is a minor optimization to only check for unresolved operands
inside `mapDistinctNode()` if the operands have actually changed. This
shouldn't really cause any change in behaviour. I didn't actually see a
slowdown in a profile, I was just poking around nearby and saw the
opportunity.
llvm-svn: 243866
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
The patch changes the SLPVectorizer::vectorizeStores to choose the immediate
succeeding or preceding candidate for a store instruction when it has multiple
consecutive candidates. In this way it has better chance to find more slp
vectorization opportunities.
Differential Revision: http://reviews.llvm.org/D10445
llvm-svn: 243666
The reason I was passing this vector by value in the constructor so that
I wouldn't have to copy when initializing the corresponding member but
then I forgot the std::move.
The use-case is LoopDistribution which filters the checks then
std::moves it to LoopVersioning's constructor. With this interface we
can avoid any copies.
llvm-svn: 243616
Before, we were passing the pointer partitions to LAA. Now, we get all
the checks from LAA and filter out the checks within partitions in
LoopDistribution.
This effectively concludes the steps to move filtering memchecks from
LAA into its clients. There is still some cleanup left to remove the
unused interfaces in LAA that still take PtrPartition.
(Moving this functionality to LoopDistribution also requires
needsChecking on pointers to be made public.)
llvm-svn: 243613
Bonus change to remove emacs major mode marker from SystemZMachineFunctionInfo.cpp because emacs already knows it's C++ from the extension. Also fix typo "appeary" in AMDGPUMCAsmInfo.h.
llvm-svn: 243585
Summary:
returns_twice (most importantly, setjmp) functions are
optimization-hostile: if local variable is promoted to register, and is
changed between setjmp() and longjmp() calls, this update will be
undone. This is the reason why "man setjmp" advises to mark all these
locals as "volatile".
This can not be enough for ASan, though: when it replaces static alloca
with dynamic one, optionally called if UAR mode is enabled, it adds a
whole lot of SSA values, and computations of local variable addresses,
that can involve virtual registers, and cause unexpected behavior, when
these registers are restored from buffer saved in setjmp.
To fix this, just disable dynamic alloca and UAR tricks whenever we see
a returns_twice call in the function.
Reviewers: rnk
Subscribers: llvm-commits, kcc
Differential Revision: http://reviews.llvm.org/D11495
llvm-svn: 243561
ASan shadow on Android starts at address 0 for both historic and
performance reasons. This is possible because the platform mandates
-pie, which makes lower memory region always available.
This is not such a good idea on 64-bit platforms because of MAP_32BIT
incompatibility.
This patch changes Android/AArch64 mapping to be the same as that of
Linux/AAarch64.
llvm-svn: 243548
Summary:
As added initially, statepoints required their call targets to be a
constant pointer null if ``numPatchBytes`` was non-zero. This turns out
to be a problem ergonomically, since there is no way to mark patchable
statepoints as calling a (readable) symbolic value.
This change remove the restriction of requiring ``null`` call targets
for patchable statepoints, and changes PlaceSafepoints to maintain the
symbolic call target through its transformation.
Reviewers: reames, swaroop.sridhar
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11550
llvm-svn: 243502
Before the patch, the checks were generated internally in
addRuntimeCheck. Now, we use the new overloaded version of
addRuntimeCheck that takes the ready-made set of checks as a parameter.
The checks are now generated by the client (LoopDistribution) with the
new RuntimePointerChecking::generateChecks API.
Also the new printChecks API is used to print out the checks for
debugging.
This is to continue the transition over to the new model whereby clients
will get the full set of checks from LAA, filter it and then pass it to
LoopVersioning and in turn to addRuntimeCheck.
llvm-svn: 243382
Summary:
If a scale or a base register can be rewritten as "Zext({A,+,1})" then
LSR will now consider a formula of that form in its normal cost
computation.
Depends on D9180
Reviewers: qcolombet, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9181
llvm-svn: 243348
Summary:
Was D9784: "Remove loop variant range check when induction variable is
strictly increasing"
This change re-implements D9784 with the two differences:
1. It does not use SCEVExpander and does not generate new
instructions. Instead, it does a quick local search for existing
`llvm::Value`s that it needs when modifying the `icmp`
instruction.
2. It is more general -- it deals with both increasing and decreasing
induction variables.
I've added all of the tests included with D9784, and two more.
As an example on what this change does (copied from D9784):
Given C code:
```
for (int i = M; i < N; i++) // i is known not to overflow
if (i < 0) break;
a[i] = 0;
}
```
This transformation produces:
```
for (int i = M; i < N; i++)
if (M < 0) break;
a[i] = 0;
}
```
Which can be unswitched into:
```
if (!(M < 0))
for (int i = M; i < N; i++)
a[i] = 0;
}
```
I went back and forth on whether the top level logic should live in
`SimplifyIndvar::eliminateIVComparison` or be put into its own
routine. Right now I've put it under `eliminateIVComparison` because
even though the `icmp` is not *eliminated*, it no longer is an IV
comparison. I'm open to putting it in its own helper routine if you
think that is better.
Reviewers: reames, nicholas, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11278
llvm-svn: 243331
Now that we are generating sane codegen for vector sext/zext nodes on SSE targets, this patch uses instcombine to replace the SSE41/AVX2 pmovsx and pmovzx intrinsics with the equivalent native IR code.
Differential Revision: http://reviews.llvm.org/D11503
llvm-svn: 243303
This reverts commit r243167.
Duncan pointed out that dyn_cast can return null in these cases, so this
was an unsafe commit to make. Sorry for the noise.
Worryingly there were no tests which fail...
llvm-svn: 243302
r243250 appeared to break clang/test/Analysis/dead-store.c on one of the build
slaves, but I couldn't reproduce this failure locally. Probably a false
positive as I saw this test was broken by r243246 or r243247 too but passed
later without people fixing anything.
llvm-svn: 243253
Summary:
This patch updates TargetTransformInfoImplCRTPBase::getGEPCost to consider
addressing modes. It now returns TCC_Free when the GEP can be completely folded
to an addresing mode.
I started this patch as I refactored SLSR. Function isGEPFoldable looks common
and is indeed used by some WIP of mine. So I extracted that logic to getGEPCost.
Furthermore, I noticed getGEPCost wasn't directly tested anywhere. The best
testing bed seems CostModel, but its getInstructionCost method invokes
getAddressComputationCost for GEPs which provides very coarse estimation. So
this patch also makes getInstructionCost call the updated getGEPCost for GEPs.
This change inevitably breaks some tests because the cost model changes, but
nothing looks seriously wrong -- if we believe the new cost model is the right
way to go, these tests should be updated.
This patch is not perfect yet -- the comments in some tests need to be updated.
I want to know whether this is a right approach before fixing those details.
Reviewers: chandlerc, hfinkel
Subscribers: aschwaighofer, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D9819
llvm-svn: 243250
Summary:
This patch improves trivial loop unswitch.
The current trivial loop unswitch only checks if loop header's terminator contains a trivial unswitch condition. But if the loop header only has one reachable successor (due to intentionally or unintentionally missed code simplification), we should consider the successor as part of the loop header. Therefore, instead of stopping at loop header's terminator, we should keep traversing its successors within loop until reach a *real* conditional branch or switch (whose condition can not be constant folded). This change will enable a single -loop-unswitch pass to unswitch multiple trivial conditions (unswitch one trivial condition could open opportunity to unswitch another one in the same loop), while the old implementation can unswitch only one per pass.
Reviewers: reames, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11481
llvm-svn: 243203
This patch extend LoopReroll pass to hand the loops which
is similar to the following:
while (len > 1) {
sum4 += buf[len];
sum4 += buf[len-1];
len -= 2;
}
llvm-svn: 243171
Since both places which set this variable do so with dyn_cast, and not
dyn_cast_or_null, its impossible to get a nullptr here, so we can remove
the check.
llvm-svn: 243167
Instead of the pattern
for (auto I = x.rbegin(), E = x.end(); I != E; ++I)
we can use make_range to construct the reverse range and iterate using
that instead.
llvm-svn: 243163
Summary:
This threshold limited FunctionAttrs ability to prove arguments to be read-only.
In NVPTX, a specialized instruction ld.global.nc can be used to load memory
with non-coherent texture cache. We notice that in SHOC [1] benchmark, some
function arguments are not marked with readonly because FunctionAttrs reaches
a hardcoded threshold when analysis uses.
Removing this threshold won't cause significant regression in compilation time, because the worst-case time complexity of the algorithm is still O(# of instructions) for each parameter.
Patched by Xuetian Weng.
[1] https://github.com/vetter/shoc
Reviewers: nlewycky, jingyue, nicholas
Subscribers: nicholas, test, llvm-commits
Differential Revision: http://reviews.llvm.org/D11311
llvm-svn: 243141
The names for instructions inserted were previous dependent on iteration order. By deriving the names from the original instructions, we can avoid instability in tests without resorting to ordered traversals. It also makes the IR mildly easier to read at large scale.
llvm-svn: 243140
We had a few places where we did
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
but those could instead do
for (auto *EltTy : STy->elements()) {
llvm-svn: 243136
Summary:
Resolving a branch allows us to ignore blocks that won't be executed, and thus make our estimate more accurate.
This patch is intended to be applied after D10205 (though it could be applied independently).
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10206
llvm-svn: 243084
The new code should hopefully be equivalent to the old code; it just uses a worklist to track instructions which need to visited rather than iterating over all instructions visited each time. This should be faster, but the primary benefit is that the purpose should be more clear and the diff of adding another instruction type (forthcoming) much more obvious.
Differential Revision: http://reviews.llvm.org/D11480
llvm-svn: 243071
Deleting much of the code using trace-rewrite-statepoints and use idiomatic DEBUG statements instead. This includes adding operator<< to a helper class.
llvm-svn: 243054
We don't need to pass in the map from BDV to PhiStates; we can instead handle that externally and let the MeetPhiStates helper class just meet PhiStates.
llvm-svn: 243045
Summary:
Scalarizer has two data structures that hold information about changes
to the function, Gathered and Scattered. These are cleared in finish()
at the end of runOnFunction() if finish() detects any changes to the
function.
However, finish() was checking for changes by only checking if
Gathered was non-empty. The function visitStore() only modifies
Scattered without touching Gathered. As a result, Scattered could have
ended up having stale data if Scalarizer only scalarized store
instructions. Since the data in Scattered is used during the execution
of the pass, this introduced dangling pointer errors.
The fix is to check whether both Scattered and Gathered are empty
before deciding what to do in finish(). This also fixes a problem
where the Function can be modified although the pass returns false.
Reviewers: rnk
Subscribers: rnk, srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D10459
llvm-svn: 243040
We currently version `__asan_init` and when the ABI version doesn't match, the linker gives a `undefined reference to '__asan_init_v5'` message. From this, it might not be obvious that it's actually a version mismatch error. This patch makes the error message much clearer by changing the name of the undefined symbol to be `__asan_version_mismatch_check_xxx` (followed by the version string). We obviously don't want the initializer to be named like that, so it's a separate symbol that is used only for the purpose of version checking.
Reviewed at http://reviews.llvm.org/D11004
llvm-svn: 243003
the general GMR-in-non-LTO flag.
Without this, we have the global information during the CGSCC pipeline
for GVN and such, but don't have it available during the late loop
optimizations such as the vectorizer. Moreover, after the CGSCC pipeline
has finished we have substantially more accurate and refined call graph
information, function annotations, etc, which will make GMR even more
powerful than it is early in the pipelien.
Note that we have to play silly games with preserving AliasAnalysis
(which is now trivially preserved) in order to let a module analysis
magically be preserved into the entire function pass pipeline.
Simultaneously we have to not make GMR an immutable pass in order to be
able to re-run it and collect fresh data on the final call graph.
llvm-svn: 242999
preparation for de-coupling the AA implementations.
In order to do this, they had to become fake-scoped using the
traditional LLVM pattern of a leading initialism. These can't be actual
scoped enumerations because they're bitfields and thus inherently we use
them as integers.
I've also renamed the behavior enums that are specific to reasoning
about the mod/ref behavior of functions when called. This makes it more
clear that they have a very narrow domain of applicability.
I think there is a significantly cleaner API for all of this, but
I don't want to try to do really substantive changes for now, I just
want to refactor the things away from analysis groups so I'm preserving
the exact original design and just cleaning up the names, style, and
lifting out of the class.
Differential Revision: http://reviews.llvm.org/D10564
llvm-svn: 242963
Summary:
While working on a project I wound up generating a fairly large lookup table (10k entries) of callbacks inside of a static constructor. Clang was taking upwards of ~10 minutes to compile the lookup table. I generated a smaller test case (http://www.inolen.com/static_initializer_test.ll) that, after running with -ftime-report, pointed fingers at GlobalOpt and MemCpyOptimizer.
Running globalopt took around ~9 minutes. The slowdown came from how GlobalOpt merged stores from static constructors individually into the global initializer in EvaluateStaticConstructor. For each store it discovered and wanted to commit, it would copy the existing global initializer and then merge in the individual store. I changed this so that stores are now grouped by global, and sorted from most significant to least significant by their GEP indexes (e.g. a store to GEP 0, 0 comes before GEP 0, 0, 1). With this representation, the existing initializer can be copied and all new stores merged into it in a single pass.
With this patch and http://reviews.llvm.org/D11198, the lookup table that was taking ~10 minutes to compile now compiles in around 5 seconds. I've ran 'make check' and the test-suite, which all passed.
I'm not really sure who to tag as a reviewer, Lang mentioned that Chandler may be appropriate.
Reviewers: chandlerc, nlewycky
Subscribers: nlewycky, llvm-commits
Differential Revision: http://reviews.llvm.org/D11200
llvm-svn: 242935
pipeline.
Even before I started improving its runtime, it was already crazy fast
once the call graph exists, and if we can get it to be conservatively
correct, will still likely catch a lot of interesting and useful cases.
So it may well be useful to enable by default.
But more importantly for me, this should make it easier for me to test
that changes aren't breaking it in fundamental ways by enabling it for
normal builds.
llvm-svn: 242895
Currently, a load from an alloca that is used in as single block and is not preceded
by a store is replaced by undef. This is not always correct if the single block is
inside a loop.
Fix the logic so that:
1) If there are no stores in the block, replace the load with an undef, as before.
2) If there is a store (regardless of where it is in the block w.r.t the load), bail
out, and let the rest of mem2reg handle this alloca.
Patch by: gil.rapaport@intel.com
Differential Revision: http://reviews.llvm.org/D11355
llvm-svn: 242884
In r242510, non-instrumented allocas are now moved into the first basic block. This patch limits that to only move allocas that are present *after* the first instrumented one (i.e. only move allocas up). A testcase was updated to show behavior in these two cases. Without the patch, an alloca could be moved down, and could cause an invalid IR.
Differential Revision: http://reviews.llvm.org/D11339
llvm-svn: 242883
through APIs that are no longer necessary now that the update API has
been removed.
This will make changes to the AA interfaces significantly less
disruptive (I hope). Either way, it seems like a really nice cleanup.
llvm-svn: 242882
part of simplifying its interface and usage in preparation for porting
to work with the new pass manager.
Note that this will likely expose that we have dead arguments, members,
and maybe even pass requirements for AA. I'll be cleaning those up in
seperate patches. This just zaps the actual update API.
Differential Revision: http://reviews.llvm.org/D11325
llvm-svn: 242881
change because the diff is *useless*. I assure you, I just switched to
early-return in this function.
Cleanup in preparation for my next commit, as requested in code review!
llvm-svn: 242880
Summary: The current code in LoopUnswtich::processCurrentLoop() mixes trivial loop unswitch and non-trivial loop unswitch together. It goes over all basic blocks in the loop and checks if a condition is trivial or non-trivial unswitch condition. However, trivial unswitch condition can only occur in the loop header basic block (where it controls whether or not the loop does something at all). This refactoring separate trivial loop unswitch and non-trivial loop unswitch. Before going over all basic blocks in the loop, it checks if the loop header contains a trivial unswitch condition. If so, unswitch it. Otherwise, go over all blocks like before but don't check trivial condition any more since they are not possible to be in the other blocks. This code has no functionality change.
Reviewers: meheff, reames, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11276
llvm-svn: 242873
types and loads, loads or stores widened past the size of an alloca,
etc.
This started off with a bug report about big-endian behavior with
bitfields and loads and stores to a { i32, i24 } struct. An initial
attempt to fix this was sent for review in D10357, but that didn't
really get to the root of the problem.
The core issue was that canConvertValue and convertValue in SROA were
handling different bitwidth integers by doing a zext of the integer. It
wouldn't do a trunc though, only a zext! This would in turn lead SROA to
form an i24 load from an i24 alloca, zext it to i32, and then use it.
This would at least produce the wrong value for big-endian systems.
One of my many false starts here was to correct the computation for
big-endian systems by shifting. But this doesn't actually work because
the original code has a 64-bit store to the entire 8 bytes, and a 32-bit
load of the last 4 bytes, and because the alloc size is 8 bytes, we
can't lose that last (least significant if bigendian) byte! The real
problem here is that we're forming an i24 load in SROA which is actually
not sufficiently wide to load all of the necessary bits here. The source
has an i32 load, and SROA needs to form that as well.
The straightforward way to do this is to disable the zext logic in
canConvertValue and convertValue, forcing us to actually load all
32-bits. This seems like a really good change, but it in turn breaks
several other parts of SROA.
First in the chain of knock-on failures, we had places where we were
doing integer-widening promotion even though some of the integer loads
or stores extended *past the end* of the alloca's memory! There was even
a comment about preventing this, but it only prevented the case where
the type had a different bit size from its store size. So I added checks
to handle the cases where we actually have a widened load or store and
to avoid trying to special integer widening promotion in those cases.
Second, we actually rely on the ability to promote in the face of loads
past the end of an alloca! This is important so that we can (for
example) speculate loads around PHI nodes to do more promotion. The bits
loaded are garbage, but as long as they aren't used and the alignment is
suitable high (which it wasn't in the test case!) this is "fine". And we
can't stop promoting here, lots of things stop working well if we do. So
we need to add specific logic to handle the extension (and truncation)
case, but *only* where that extension or truncation are over bytes that
*are outside the alloca's allocated storage* and thus totally bogus to
load or store.
And of course, once we add back this correct handling of extension or
truncation, we need to correctly handle bigendian systems to avoid
re-introducing the exact bug that started us off on this chain of misery
in the first place, but this time even more subtle as it only happens
along speculated loads atop a PHI node.
I've ported an existing test for PHI speculation to the big-endian test
file and checked that we get that part correct, and I've added several
more interesting big-endian test cases that should help check that we're
getting this correct.
Fun times.
llvm-svn: 242869
We insert a bitcast which obfuscates the getCalledFunction for the utility
function which looks up attributes from the called function. Loosing ABI
changing parameter attributes is a bad thing.
rdar://21516488
llvm-svn: 242807
A bit more code cleanup: delete some a trivial true assertion and supporting code, remove a redundant cast, and use count in assertions where feasible.
llvm-svn: 242805
We can use builders to simplify part of the code and we only check for the existance of the metadata value; this enables us to delete some redundant code.
llvm-svn: 242751
Summary:
Arguments to llvm.localescape must be static allocas. They must be at
some statically known offset from the frame or stack pointer so that
other functions can access them with localrecover.
If we ever want to instrument these, we can use more indirection to
recover the addresses of these local variables. We can do it during
clang irgen or with the asan module pass.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11307
llvm-svn: 242726
Not sure if the optimizer will save the call as getCalledFunction()
is not a trivial access function but the code is clearer this way.
llvm-svn: 242641
directly model in the new PM.
This also was an incredibly brittle and expensive update API that was
never fully utilized by all the passes that claimed to preserve AA, nor
could it reasonably have been extended to all of them. Any number of
places add uses of values. If we ever wanted to reliably instrument
this, we would want a callback hook much like we have with ValueHandles,
but doing this for every use addition seems *extremely* expensive in
terms of compile time.
The only user of this update mechanism is GlobalsModRef. The idea of
using this to keep it up to date doesn't really work anyways as its
analysis requires a symmetric analysis of two different memory
locations. It would be very hard to make updates be sufficiently
rigorous to *guarantee* symmetric analysis in this way, and it pretty
certainly isn't true today.
However, folks have been using GMR with this update for a long time and
seem to not be hitting the issues. The reported issue that the update
hook fixes isn't even a problem any more as other changes to
GetUnderlyingObject worked around it, and that issue stemmed from *many*
years ago. As a consequence, a prior patch provided a flag to control
the unsafe behavior of GMR, and this patch removes the update mechanism
that has questionable compile-time tradeoffs and is causing problems
with moving to the new pass manager. Note the lack of test updates --
not one test in tree actually requires this update, even for a contrived
case.
All of this was extensively discussed on the dev list, this patch will
just enact what that discussion decides on. I'm sending it for review in
part to show what I'm planning, and in part to show the *amazing* amount
of work this avoids. Every call to the AA here is something like three
to six indirect function calls, which in the non-LTO pipeline never do
any work! =[
Differential Revision: http://reviews.llvm.org/D11214
llvm-svn: 242605
Instrumentation and the runtime library were in disagreement about
ASan shadow offset on Android/AArch64.
This fixes a large number of existing tests on Android/AArch64.
llvm-svn: 242595
Since r230724 ("Skip promotable allocas to improve performance at -O0"), there is a regression in the generated debug info for those non-instrumented variables. When inspecting such a variable's value in LLDB, you often get garbage instead of the actual value. ASan instrumentation is inserted before the creation of the non-instrumented alloca. The only allocas that are considered standard stack variables are the ones declared in the first basic-block, but the initial instrumentation setup in the function breaks that invariant.
This patch makes sure uninstrumented allocas stay in the first BB.
Differential Revision: http://reviews.llvm.org/D11179
llvm-svn: 242510
Internalizing an individual comdat group member without also internalizing
the other members of the comdat can break comdat semantics. For example,
if a module contains a reference to an internalized comdat member, and the
linker chooses a comdat group from a different object file, this will break
the reference to the internalized member.
This change causes the internalizer to only internalize comdat members if all
other members of the comdat are not externally visible. Once a comdat group
has been fully internalized, there is no need to apply comdat rules to its
members; later optimization passes (e.g. globaldce) can legally drop individual
members of the comdat. So we drop the comdat attribute from all comdat members.
Differential Revision: http://reviews.llvm.org/D10679
llvm-svn: 242423
This new wrapper pass is useful when we want to do branch probability analysis conditionally (e.g. only in PGO mode) but don't want to add one more pass dependence.
http://reviews.llvm.org/D11241
llvm-svn: 242349
Summary:
This is a trivial code change with no functionality effect.
When LoopUnswitch determines trivial unswitch condition, it checks whether the loop header's terminator instruction is a branch instruction or switch instruction since trivial unswitch condition can only apply to these two instruction types. The current code does not fail the check directly on other instruction types, but check the nullness of LoopExitBB variable instead. The added else clause makes the check fail immediately on other instruction types and makes the code more obvious.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11239
llvm-svn: 242345
Self-referential constants containing references to a merged function
no longer cause the MergeFunctions pass to infinite loop. Also adds a
reproduction IR which would otherwise fail, which was isolated from a similar
issue in Chromium.
Author: jrkoenig
Reviewers: nlewycky, jfb
Subscribers: llvm-commits, nlewycky, jfb
Differential Revision: http://reviews.llvm.org/D11208
llvm-svn: 242337
During estimation of unrolling effect we should be able to propagate
constants through casts.
Differential Revision: http://reviews.llvm.org/D10207
llvm-svn: 242257
This is useful when we want to do block frequency analysis
conditionally (e.g. only in PGO mode) but don't want to add
one more pass dependence.
Patch by congh.
Approved by dexonsmith.
Differential Revision: http://reviews.llvm.org/D11196
llvm-svn: 242248
I am planning to add more nested classes inside RuntimePointerCheck so
all these triple-nesting would be hard to follow.
Also rename it to RuntimePointerChecking (i.e. append 'ing').
llvm-svn: 242218
Sometimes an incidentally created instruction can duplicate a Value used
elsewhere. It then often doesn't end up in the leader table. If it's later
removed, we attempt to remove it from the leader table and segfault.
Instead we should just ignore the removal request, which won't cause any
problems. The reverse situation, where the original instruction is replaced by
the new one (which you might think could leave the leader table empty) cannot
occur, because the incidental instruction will never be found in the first
place.
llvm-svn: 242199
Volatile loads and stores are made visible in global state regardless of
what memory is involved. It is not correct to disregard the ordering
and synchronization scope because it is possible to synchronize with
memory operations performed by hardware.
This partially addresses PR23737.
llvm-svn: 242126
Previously we would refrain from attempting to increase the linkage of
available_externally globals because they were considered weak for the
linker. Now they are treated more like a declaration instead of a weak
definition.
This was causing SSE alignment faults in Chromuim, when some code
assumed it could increase the alignment of a dllimported global that it
didn't control. http://crbug.com/509256
llvm-svn: 242091
When spotting that a loop can use ctpop, we were incorrectly replacing all uses of a value with a value derived from ctpop.
The bug here was exposed because we were replacing a use prior to the ctpop with the ctpop value and so we have a use before def, i.e., we changed
%tobool.5 = icmp ne i32 %num, 0
store i1 %tobool.5, i1* %ptr
br i1 %tobool.5, label %for.body.lr.ph, label %for.end
to
store i1 %1, i1* %ptr
%0 = call i32 @llvm.ctpop.i32(i32 %num)
%1 = icmp ne i32 %0, 0
br i1 %1, label %for.body.lr.ph, label %for.end
Even if we inserted the ctpop so that it dominates the store here, that would still be incorrect. The store doesn’t want the result of ctpop.
The fix is very simple, and involves replacing only the branch condition with the ctpop instead of all uses.
Reviewed by Hal Finkel.
llvm-svn: 242068
Enable runtime unrolling for loops with unroll count metadata ("#pragma unroll N")
and a runtime trip count. Also, do not unroll loops with unroll full metadata if the
loop has a runtime loop count. Previously, such loops would be unrolled with a
very large threshold (pragma-unroll-threshold) if runtime unrolled happened to be
enabled resulting in a very large (and likely unwise) unroll factor.
llvm-svn: 242047
Passes should never modify it, just use the const version. While there
reduce copying in LoopInterchange. No functional change intended.
llvm-svn: 242041
There is no suitable basic block to sink instructions in loops without
exits. The only way an instruction in a loop without exits can be used
is as an incoming value to a PHI. In such cases, the incoming block for
the corresponding value is unreachable.
This fixes PR24013.
Differential Revision: http://reviews.llvm.org/D10903
llvm-svn: 241987
The following functions are moved from the LoopVectorizer to VectorUtils:
- getGEPInductionOperand
- stripGetElementPtr
- getUniqueCastUse
- getStrideFromPointer
These used to be static functions in LoopVectorize, but will also be used by
the upcoming loop versioning LICM transformation.
Patch by Ashutosh Nema!
llvm-svn: 241980
No in-tree alias analysis used this facility, and it was not called in
any particularly rigorous way, so it seems unlikely to be correct.
Note that one of the only stateful AA implementations in-tree,
GlobalsModRef is completely broken currently (and any AA passes like it
are equally broken) because Module AA passes are not effectively
invalidated when a function pass that fails to update the AA stack runs.
Ultimately, it doesn't seem like we know how we want to build stateful
AA, and until then trying to support and maintain correctness for an
untested API is essentially impossible. To that end, I'm planning to rip
out all of the update API. It can return if and when we need it and know
how to build it on top of the new pass manager and as part of *tested*
stateful AA implementations in the tree.
Differential Revision: http://reviews.llvm.org/D10889
llvm-svn: 241975
Summary:
Following the discussion on r241884, it's more reasonable to assume that a
target has no vector registers by default instead of letting every such
target overrides getNumberOfRegisters.
Therefore, this patch modifies BasicTTIImpl::getNumberOfRegisters to
return 0 when Vector is true, and partially reverts r241884 which
modifies NVPTXTTIImpl::getNumberOfRegisters.
It also fixes a performance bug in LoopVectorizer. Even if a target has
no vector registers, vectorization may still help ILP. So, we need both
checks to be false before disabling loop vectorization all together.
Reviewers: hfinkel
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11108
llvm-svn: 241942
Summary:
The class will obviously need improvement down the road. For one, there
is no reason that addPHINodes would have to be exposed like that. I
will make this and other improvements in follow-up patches.
The main goal is to be able to share this functionality. The
LoopLoadElimination pass I am working on needs it too. Later we can
move other clients as well (LV and Ashutosh's LICMVer).
Reviewers: hfinkel, ashutosh.nema
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10577
llvm-svn: 241932
Summary:
This makes them available to the LoopVersioning class as that is moved
to its own module in the next patch.
Reviewers: ashutosh.nema, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10576
llvm-svn: 241931
After changes in rL231820 loop re-rotation is performed even in -Oz mode. Since loop rotation is disabled for -Oz, it seems loop re-rotation should be disabled too.
Differential Revision: http://reviews.llvm.org/D10961
llvm-svn: 241897
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
llvm-svn: 241888
Not doing this can lead to misoptimizations down the line, e.g. because
of range metadata on the replacing load excluding values that are valid
for the load that is being replaced.
llvm-svn: 241886
Summary:
In RewriteLoopExitValues, before expanding out an SCEV expression using
SCEVExpander, try to see if an existing LLVM IR expression already
computes the value we're interested in. If so use that existing
expression.
Apart from reducing IndVars' reliance on the rest of the compilation
pipeline, this also prevents IndVars from concluding some expressions as
"high cost" when they're not. For instance,
`InductiveRangeCheckElimination` often emits code of the following form:
```
len = umin(len_A, len_B)
loop:
...
if (i++ < len)
goto loop
outside_loop:
use(i)
```
`SCEVExpander` refuses to rewrite the use of `i` in `outside_loop`,
since it thinks the value of `i` on loop exit, `len`, is a high cost
expansion since it contains an `umax` in it. With this change,
`IndVars` can see that it can re-use `len` instead of creating a new
expression to compute `umin(len_A, len_B)`.
I considered putting this cleverness in `SCEVExpander`, but I was
worried that it may then have a deterimental effect on other passes
that use it. So I decided it was better to just do this in the one
place where it seems like an obviously good idea, with the intent of
generalizing later if needed.
Reviewers: atrick, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10782
llvm-svn: 241838
Place all code corresponding to a run-time check in one place.
Previously we generated some code, then proceeded to a next check, then
finished the code for the first check (like splitting blocks and
generating branches). Now the code for generating a check is
self-contained.
llvm-svn: 241741
Summary:
Initially, these intrinsics seemed like part of a family of "frame"
related intrinsics, but now I think that's more confusing than helpful.
Initially, the LangRef specified that this would create a new kind of
allocation that would be allocated at a fixed offset from the frame
pointer (EBP/RBP). We ended up dropping that design, and leaving the
stack frame layout alone.
These intrinsics are really about sharing local stack allocations, not
frame pointers. I intend to go further and add an `llvm.localaddress()`
intrinsic that returns whatever register (EBP, ESI, ESP, RBX) is being
used to address locals, which should not be confused with the frame
pointer.
Naming suggestions at this point are welcome, I'm happy to re-run sed.
Reviewers: majnemer, nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11011
llvm-svn: 241633
This reverts commit r241602. We had a latent bug in SCCP where we would
make a basic block empty and then proceed to ask questions about it's
terminator.
llvm-svn: 241616
This change includes a fix for https://code.google.com/p/chromium/issues/detail?id=499508#c3,
which required updating the visibility for symbols with eliminated definitions.
--Original Commit Message--
Add new EliminateAvailableExternally module pass, which is performed in
O2 compiles just before GlobalDCE, unless we are preparing for LTO.
This pass eliminates available externally globals (turning them into
declarations), regardless of whether they are dead/unreferenced, since
we are guaranteed to have a copy available elsewhere at link time.
This enables additional opportunities for GlobalDCE.
If we are preparing for LTO (e.g. a -flto -c compile), the pass is not
included as we want to preserve available externally functions for possible
link time inlining. The FE indicates whether we are doing an -flto compile
via the new PrepareForLTO flag on the PassManagerBuilder.
llvm-svn: 241466
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
This is mostly an NFC, which increases code readability (instead of
saving old terminator, generating new one in front of old, and deleting
old, we just call a function). However, it would additionaly copy
the debug location from old instruction to replacement, which
would help PR23837.
llvm-svn: 241197
We would create a phi node with a zero initialized operand instead of
undef in the case where no value was originally available. This was
problematic for x86_mmx which has no null value.
llvm-svn: 241143
Surprisingly, this is a correctness issue: the mmx type exists for
calling convention purposes, LLVM doesn't have a zero representation for
them.
This partially fixes PR23999.
llvm-svn: 241142
Summary:
nsw are flaky and can often be removed by optimizations. This patch enhances
nsw by leveraging @llvm.assume in the IR. Specifically, NaryReassociate now
understands that
assume(a + b >= 0) && assume(a >= 0) ==> a +nsw b
As a result, it can split more sext(a + b) into sext(a) + sext(b) for CSE.
Test Plan: nary-gep.ll
Reviewers: broune, meheff
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10822
llvm-svn: 241139
Set debug location for terminator instruction in loop backedge block
(which is an unconditional jump to loop header). We can't copy debug
location from original backedges, as there can be several of them,
with different debug info locations. So, we follow the approach of
SplitBlockPredecessors, and copy the debug info from first non-PHI
instruction in the header (i.e. destination block).
This is yet another change for PR23837.
llvm-svn: 240999
If we are dealing with a pointer induction variable, isInductionPHI
gives back a step value of Stride / size of pointer. However, we might
be indexing with a legal type wider than the pointer width.
Handle this by inserting casts where appropriate instead of crashing.
This fixes PR23954.
llvm-svn: 240877
The PruneEH pass tries to annotate functions as 'noreturn' if it doesn't
see a ReturnInst. However, a naked function containing inline assembly
can contain control flow leaving the function.
This fixes PR23971.
llvm-svn: 240876
It is possible for a global to be substituted with another global of a
different type or a different kind (i.e. an alias) at IR link time. One
example of this scenario is when a Microsoft ABI vtable is substituted with
an alias referring to a larger vtable containing an RTTI reference.
This will cause the global to be RAUW'd with a possibly bitcasted reference
to the other global. This will of course also affect any references to the
global in bitset metadata.
The right way to handle such metadata is simply to ignore it. This is sound
because the linked module should contain another copy of the bitset entries as
applied to the new global.
llvm-svn: 240866
This change extends the detection of base pointers for vector constructs to handle arbitrary phi and select nodes. The existing non-vector code already handles those, so this is basically just extending the vector special case to be less special cased. It still isn't generalized vector handling since we can't handle arbitrary vector instructions (e.g. shufflevectors), but it's a lot closer.
The general structure of the change is as follows:
* Extend the base defining value relation over a subset of vector instructions and vector typed phi & select instructions.
* Move scalarization from before base pointer rewriting to after base pointer rewriting. The extension of the BDV relation is sufficient to find vector base phis for vector inputs.
* Preserve the existing special case logic for when the base of a vector element is locally obvious. This general idea could be extended to the scalar case as well.
Differential Revision: http://reviews.llvm.org/D10461#inline-84275
llvm-svn: 240850
It can be more robust than copying debug info from first non-alloca
instruction in the entry basic block. We use the same strategy in
coverage instrumentation.
llvm-svn: 240738
Do not instrument globals that are placed in sections containing "__llvm"
in their name.
This fixes a bug in ASan / PGO interoperability. ASan interferes with LLVM's
PGO, which places its globals into a special section, which is memcpy-ed by
the linker as a whole. When those goals are instrumented, ASan's memcpy wrapper
reports an issue.
http://reviews.llvm.org/D10541
llvm-svn: 240723
Summary:
Fixes PR23809. Without passing the context to SimplifyICmpInst, we would
use the assume to prove that the condition feeding the assume is
trivially true (see isValidAssumeForContext in ValueTracking.cpp),
causing the removal of the assume which may be useful for later
optimizations.
Test Plan: pr23800.ll
Reviewers: hfinkel, majnemer
Reviewed By: hfinkel
Subscribers: henryhu, llvm-commits, wengxt, broune, meheff, eliben
Differential Revision: http://reviews.llvm.org/D10695
llvm-svn: 240683
This previously caused miscompilations as a result of phi nodes receiving
undef incoming values from blocks dominated by such successors.
Differential Revision: http://reviews.llvm.org/D10726
llvm-svn: 240670
Summary:
This is the LLVM part of the PPC memory sanitizer implementation in
D10648.
Reviewers: kcc, samsonov, willschm, wschmidt, eugenis
Reviewed By: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10649
llvm-svn: 240627
r240214 fixed some UB in IndVarSimplify, and it needed a temporary
`WeakVH` to do it. Add `simplify_type<const WeakVH>` so that this
temporary isn't necessary.
llvm-svn: 240599
We performed a simple, but incomplete, intersection when it came time to
CSE instructions. It didn't handle, for example, the 'exact' flag.
This fixes PR23922.
llvm-svn: 240595
Reassociate mutated existing instructions in order to form negations
which would create additional reassociate opportunities.
This fixes PR23926.
llvm-svn: 240593
With option OptForSize enabled, the Loop Vectorizer is not supposed to
create tail loop. The condition checking that was invalid and was not
matching to the comment above.
Patch by Marianne Mailhot-Sarrasin.
llvm-svn: 240556
Currently some users of this function do this explicitly, and all the
rest forget to do this.
ThreadSanitizer was one of such users, and had missing debug
locations for calls into TSan runtime handling atomic operations,
eventually leading to poorly symbolized stack traces and malfunctioning
suppressions.
This is another change relevant to PR23837.
llvm-svn: 240460
Change 1: Unswitching on trivial conditions should always happen regardless of the computed unswitching cost, as really the cost is zero. While there is code to make that happen, the logic that checks the unswitching cost against a threshold was moved to an earlier point (revision 147935) than the point where trivial unswitching is detected, so trivial unswitching is currently blocked by the cost threshold. This change fixes that.
Change 2: Before revision 147935 (from 2012-01-11), the threshold parameter was a per-loop threshold. So an unswitching happened only if the cost of the unswitching was less than the threshold. In an indirect way (and I believe unintentionally), the logic for this since then has been that the threshold is an over-all budget across all loops for all loop unswitching done by a given LoopUnswitch loop pass object. So if an unswitching with cost 100 happens in one function, that in effect reduces the threshold from 100 to 0 for the loops even in another function. This persists for the lifetime of that loop pass object. This makes no difference for most small examples but it is important for large examples. This revision fixes that.
Change 3: The cost is currently calculated as std::min(NumInstructions, 5 * NumBlocks). So a loop with 2 blocks and a million instructions will have an unswitching cost of 10. I changed this to just NumInstructions, as it were before revision 147935, though I'm open to e.g. instead replacing std::min with std::max.
I've tried to make the change minimally invasive while staying with what I think was the original intent of the code.
Submitted on behalf of broune@.
llvm-svn: 240438
As with the previous patch, the goal is to turn the class into a general
loop-versioning class. This patch removes any references to loop
distribution.
llvm-svn: 240352
This avoids creating an unnecessary undefined reference on targets such as
NVPTX that require such references to be declared in asm output.
llvm-svn: 240321
This will allow classes to implement the AA interface without deriving
from the class or referencing an internal enum of some other class as
their return types.
Also, to a pretty fundamental extent, concepts such as 'NoAlias',
'MayAlias', and 'MustAlias' are first class concepts in LLVM and we
aren't saving anything by scoping them heavily.
My mild preference would have been to use a scoped enum, but that
feature is essentially completely broken AFAICT. I'm extremely
disappointed. For example, we cannot through any reasonable[1] means
construct an enum class (or analog) which has scoped names but converts
to a boolean in order to test for the possibility of aliasing.
[1]: Richard Smith came up with a "solution", but it requires class
templates, and lots of boilerplate setting up the enumeration multiple
times. Something like Boost.PP could potentially bundle this up, but
even that would be quite painful and it doesn't seem realistically worth
it. The enum class solution would probably work without the need for
a bool conversion.
Differential Revision: http://reviews.llvm.org/D10495
llvm-svn: 240255
Calling operator* on a WeakVH whose Value is null hits undefined
behaviour, since we bind the value to a reference. Instead, go through
`operator Value*` so that we work with the pointer itself.
Found by ubsan.
llvm-svn: 240214
When a case of INT64_MIN was followed by a case that was greater than
zero, we were overflowing a signed integer here. Since we've sorted
the cases here anyway (and thus currentValue must be greater than
nextValue) it's simple enough to avoid this by using addition rather
than subtraction.
Found by UBSAN on existing tests.
llvm-svn: 240201
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This patch adds initial support for the -fsanitize=kernel-address flag to Clang.
Right now it's quite restricted: only out-of-line instrumentation is supported, globals are not instrumented, some GCC kasan flags are not supported.
Using this patch I am able to build and boot the KASan tree with LLVMLinux patches from github.com/ramosian-glider/kasan/tree/kasan_llvmlinux.
To disable KASan instrumentation for a certain function attribute((no_sanitize("kernel-address"))) can be used.
llvm-svn: 240131
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
Change builtin function name and signature ( add third parameter - rounding mode ).
Added tests for intrinsics.
Differential Revision: http://reviews.llvm.org/D10473
llvm-svn: 239888
This is now living in MemoryLocation, which is what it pertains to. It
is also an enum there rather than a static data member which is left
never defined.
llvm-svn: 239886
that it is its own entity in the form of MemoryLocation, and update all
the callers.
This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.
llvm-svn: 239885
The original change broke clang side tests. I will be submitting those momentarily. This change includes post commit feedback on the original change from from Pete Cooper.
Original Submission comments:
If a parameter to a function is known non-null, use the existing parameter attributes to record that fact at the call site. This has no optimization benefit by itself - that I know of - but is an enabling change for http://reviews.llvm.org/D9129.
Differential Revision: http://reviews.llvm.org/D9132
llvm-svn: 239849
A reduction is a special kind of recurrence. In the loop vectorizer we currently
identify basic reductions. Future patches will extend this to identifying basic
recurrences.
llvm-svn: 239835
This change is hopefully NFC. The only tricky part is that I changed the context instruction being used to the branch rather than the comparison. I believe both to be correct, but the branch is strictly more powerful. With the moved code, using the branch instruction is required for the basic block comparison test to return the same result. The previous code was able to directly access both the branch and the comparison where the revised code is not.
Differential Revision: http://reviews.llvm.org/D9652
llvm-svn: 239797