The FP16_TO_FP node only uses the bottom 16 bits of its input, so the
following pattern can be optimised by removing the AND:
(FP16_TO_FP (AND op, 0xffff)) -> (FP16_TO_FP op)
This is a common pattern for ARM targets when functions have __fp16
arguments, as they are passed as floats (so that they get passed in the
correct registers), but then bitcast and truncated to ignore the top 16
bits.
llvm-svn: 245832
TL-DR: SROA is followed by EarlyCSE which requires the DominatorTree.
There is no reason not to require it up-front for SROA.
Some history is necessary to understand why we ended-up here.
r123437 switched the second (Legacy)SROA in the optimizer pipeline to
use SSAUpdater in order to avoid recomputing the costly
DominanceFrontier. The purpose was to speed-up the compile-time.
Later r123609 removed the need for the DominanceFrontier in
(Legacy)SROA.
Right after, some cleanup was made in r123724 to remove any reference
to the DominanceFrontier. SROA existed in two flavors: SROA_SSAUp and
SROA_DT (the latter replacing SROA_DF).
The second argument of `createScalarReplAggregatesPass` was renamed
from `UseDomFrontier` to `UseDomTree`.
I believe this is were a mistake was made. The pipeline was not
updated and the call site was still:
PM->add(createScalarReplAggregatesPass(-1, false));
At that time, SROA was immediately followed in the pipeline by
EarlyCSE which required alread the DominatorTree. Not requiring
the DominatorTree in SROA didn't save anything, but unfortunately
it was lost at this point.
When the new SROA Pass was introduced in r163965, I believe the goal
was to have an exact replacement of the existing SROA, this bug
slipped through.
You can see currently:
$ echo "" | clang -x c++ -O3 -c - -mllvm -debug-pass=Structure
...
...
FunctionPass Manager
SROA
Dominator Tree Construction
Early CSE
After this patch:
$ echo "" | clang -x c++ -O3 -c - -mllvm -debug-pass=Structure
...
...
FunctionPass Manager
Dominator Tree Construction
SROA
Early CSE
This improves the compile time from 88s to 23s for PR17855.
https://llvm.org/bugs/show_bug.cgi?id=17855
And from 113s to 12s for PR16756
https://llvm.org/bugs/show_bug.cgi?id=16756
Reviewers: chandlerc
Differential Revision: http://reviews.llvm.org/D12267
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 245820
Not only do we not need to do anything to read correct values from the
object files, but the current logic actually wrongly applies twice the
section base address when there is no LoadedObjectInfo passed to the
DWARFContext creation (as the added test shows).
Simply do not apply any relocations on the mach-o debug info if there is
no load offset to apply.
llvm-svn: 245807
Summary:
WinEHPrepare is going to require that cleanuppad and catchpad produce values
of token type which are consumed by any cleanupret or catchret exiting the
pad. This change updates the signatures of those operators to require/enforce
that the type produced by the pads is token type and that the rets have an
appropriate argument.
The catchpad argument of a `CatchReturnInst` must be a `CatchPadInst` (and
similarly for `CleanupReturnInst`/`CleanupPadInst`). To accommodate that
restriction, this change adds a notion of an operator constraint to both
LLParser and BitcodeReader, allowing appropriate sentinels to be constructed
for forward references and appropriate error messages to be emitted for
illegal inputs.
Also add a verifier rule (noted in LangRef) that a catchpad with a catchpad
predecessor must have no other predecessors; this ensures that WinEHPrepare
will see the expected linear relationship between sibling catches on the
same try.
Lastly, remove some superfluous/vestigial casts from instruction operand
setters operating on BasicBlocks.
Reviewers: rnk, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12108
llvm-svn: 245797
There was already a good error path for this. Added a test for it & made
a minor code change to ensure the error path was actually reached,
rather than crashing before we got that far.
llvm-svn: 245795
Summary:
__shared__ variable may now emit undef value as initializer, do not
throw error on that.
Test Plan: test/CodeGen/NVPTX/global-addrspace.ll
Patch by Xuetian Weng
Reviewers: jholewinski, tra, jingyue
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D12242
llvm-svn: 245785
Although the basic s_load_* instructions happen to use the same
opcode, some of the special case SMRD instructions have
different opcodes.
llvm-svn: 245775
Summary:
Merge functions previously relied on unsigned comparisons of pointer values to
order functions. This caused observable non-determinism in the compiler for
large bitcode programs. Basically, opt -mergefuncs program.bc | md5sum produces
different hashes when run repeatedly on the same machine. Differing output was
observed on three large bitcodes, but it was less frequent on the smallest file.
It is possible that this only manifests on the large inputs, hence remaining
undetected until now.
This patch fixes this by removing (almost, see below) all places where
comparisons between pointers are used to order functions. Most of these changes
are local, but the comparison of global values requires assigning an identifier
to each local in the order it is visited. This is very similar to the way the
comparison function identifies Value*'s defined within a function. Because the
order of visiting the functions and their subparts is deterministic, the
identifiers assigned to the globals will be as well, and the order of functions
will be deterministic.
With these changes, there is no more observed non-determinism. There is also
only minor slowdowns (negligible to 4%) compared to the baseline, which is
likely a result of the fact that global comparisons involve hash lookups and not
just pointer comparisons.
The one caveat so far is that programs containing BlockAddress constants can
still be non-deterministic. It is not clear what the right solution is here. In
particular, even if the global numbers are used to order by function, we still
need a way to order the BasicBlock*'s. Unfortunately, we cannot just bail out
and fail to order the functions or consider them equal, because we require a
total order over functions. Note that programs with BlockAddress constants are
relatively rare, so the impact of leaving this in is minor as long as this pass
is opt-in.
Author: jrkoenig
Reviewers: nlewycky, jfb, dschuff
Subscribers: jevinskie, llvm-commits, chapuni
Differential revision: http://reviews.llvm.org/D12168
llvm-svn: 245762
SCEV expansion can invalidate previously expanded values. For example
in SCEVExpander::ReuseOrCreateCast, if we already have the requested
cast value but it's not at the desired location, a new cast is inserted
and the old cast will be invalidated.
Therefore, when expanding the bounds for the pointers, a later entry can
invalidate the IR value for an earlier one. The fix is to store a value
handle rather than the value itself.
The newly added test has a more detailed description of how the bug
triggers.
This bug can have a negative but potentially highly variable performance
impact in Loop Distribution. Because one of the bound values was
invalidated and is an undef expression now, InstCombine is free to
transform the array overlap check:
Start0 <= End1 && Start1 <= End0
into:
Start0 <= End1
So depending on the runtime location of the arrays, we would detect a
conflict and fall back on the original loop of the versioned loop.
Also tested compile time with SPEC2006 LTO bc files.
llvm-svn: 245760
This allows us to remove a bunch of code in LTOCodeGenerator and llvm-lto
and has the side effect of improving error handling in the libLTO C API.
llvm-svn: 245756
We can wait on either VM, EXP or LGKM.
The waits are independent.
Without this patch, a wait inserted because of one of them
would also wait for all the previous others.
This patch makes s_wait only wait for the ones we need for the next
instruction.
Here's an example of subtle perf reduction this patch solves:
This is without the patch:
buffer_load_format_xyzw v[8:11], v0, s[44:47], 0 idxen
buffer_load_format_xyzw v[12:15], v0, s[48:51], 0 idxen
s_load_dwordx4 s[44:47], s[8:9], 0xc
s_waitcnt lgkmcnt(0)
buffer_load_format_xyzw v[16:19], v0, s[52:55], 0 idxen
s_load_dwordx4 s[48:51], s[8:9], 0x10
s_waitcnt vmcnt(1)
buffer_load_format_xyzw v[20:23], v0, s[44:47], 0 idxen
The s_waitcnt vmcnt(1) is useless.
The reason it is added is because the last
buffer_load_format_xyzw needs s[44:47], which was issued
by the first s_load_dwordx4. It waits for all VM
before that call to have finished.
Internally after every instruction, 3 counters (for VM, EXP and LGTM)
are updated after every instruction. For example buffer_load_format_xyzw
will
increase the VM counter, and s_load_dwordx4 the LGKM one.
Without the patch, for every defined register,
the current 3 counters are stored, and are used to know
how long to wait when an instruction needs the register.
Because of that, the s[44:47] counter includes that to use the register
you need to wait for the previous buffer_load_format_xyzw.
Instead this patch stores only the counters that matter for the
register,
and puts zero for the other ones, since we don't need any wait for them.
Patch by: Axel Davy
Differential Revision: http://reviews.llvm.org/D11883
llvm-svn: 245755
The original checkin was buggy, this change has a fix.
Original commit message:
[InstCombine] Transform A & (L - 1) u< L --> L != 0
Summary:
This transform is never a pessimization at the IR level (since it
replaces an `icmp` with another), and has potentiall payoffs:
1. It may make the `icmp` fold away or become loop invariant.
2. It may make the `A & (L - 1)` computation dead.
This shows up in Java, in range checks generated by array accesses of
the form `a[i & (a.length - 1)]`.
Reviewers: reames, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12210
llvm-svn: 245753
When PPCVSXFMAMutate would look at the input addend register, it would get its
input value number. This would fail, however, if the register was undef,
causing a segfault. Don't segfault (just skip such FMA instructions).
Fixes the test case from PR24542 (although that may have been over-reduced).
llvm-svn: 245741
This commit extends the 'SlotMapping' structure and includes mappings for named
and numbered types in it. The LLParser is extended accordingly to fill out
those mappings at the end of module parsing.
This information is useful when we want to parse standalone constant values
at a later stage using the 'parseConstantValue' method. The constant values
can be constant expressions, which can contain references to types. In order
to parse such constant values, we have to restore the internal named and
numbered mappings for the types in LLParser, otherwise the parser will report
a parsing error. Therefore, this commit also introduces a new method called
'restoreParsingState' to LLParser, which uses the slot mappings to restore
some of its internal parsing state.
This commit is required to serialize constant value pointers in the machine
memory operands for the MIR format.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 245740
This commit allows the MIR printer to print the MCSymbol machine operands.
Unfortunately they can't be parsed at this time. I will create a bug that will
track the fact that the MCSymbol operands can't be parsed yet.
llvm-svn: 245737
See discussion in D12154 ( http://reviews.llvm.org/D12154 ), AMD Software
Optimization Guides for 10H/12H/15H/16H, and Agner Fog's experimental data.
llvm-svn: 245733
This is a 'no functional change intended' patch. It removes one FIXME, but adds several more.
Motivation: the FeatureFastUAMem attribute may be too general. It is used to determine if any
sized misaligned memory access under 32-bytes is 'fast'. From the added FIXME comments, however,
you can see that we're not consistent about this. Changing the name of the attribute makes it
clearer to see the logic holes.
Changing this to a 'slow' attribute also means we don't have to add an explicit 'fast' attribute
to new chips; fast unaligned accesses have been standard for several generations of CPUs now.
Differential Revision: http://reviews.llvm.org/D12154
llvm-svn: 245729
Gets a bit tricky in the ValueMapper, of course - not sure if we should
just expose a list of explicit types for each Value so that the
ValueMapper can be neutral to these special cases (it's OK for things
like load, where the explicit type is the result type - but when that's
not the case, it means plumbing through another "special" type... )
llvm-svn: 245728
David Majnemer (the original author) believes this to be an impossible
condition to reach anyway, and no test cases cover this so we'll go with
that.
llvm-svn: 245712
such as std::equal on the third argument. This reverts previous workarounds.
Predefining _DEBUG_POINTER_IMPL disables Visual C++ 2013 headers from defining
it to a function performing the null pointer check. In practice, it's not that
bad since any function actually using the nullptr will seg fault. The other
iterator sanity checks remain enabled in the headers.
Reviewed by Aaron Ballmanþ and Duncan P. N. Exon Smith.
llvm-svn: 245711
This is intended to improve code generation for GEPs, as the index value is
shifted by the element size and in GEPs of multi-dimensional arrays the index
of higher dimensions is multiplied by the lower dimension size.
Differential Revision: http://reviews.llvm.org/D12197
llvm-svn: 245689
Note: I do not implement a base pointer, so it's still impossible to
have dynamic realignment AND dynamic alloca in the same function.
This also moves the code for determining the frame index reference
into getFrameIndexReference, where it belongs, instead of inline in
eliminateFrameIndex.
[Begin long-winded screed]
Now, stack realignment for Sparc is actually a silly thing to support,
because the Sparc ABI has no need for it -- unlike the situation on
x86, the stack is ALWAYS aligned to the required alignment for the CPU
instructions: 8 bytes on sparcv8, and 16 bytes on sparcv9.
However, LLVM unfortunately implements user-specified overalignment
using stack realignment support, so for now, I'm going to go along
with that tradition. GCC instead treats objects which have alignment
specification greater than the maximum CPU-required alignment for the
target as a separate block of stack memory, with their own virtual
base pointer (which gets aligned). Doing it that way avoids needing to
implement per-target support for stack realignment, except for the
targets which *actually* have an ABI-specified stack alignment which
is too small for the CPU's requirements.
Further unfortunately in LLVM, the default canRealignStack for all
targets effectively returns true, despite that implementing that is
something a target needs to do specifically. So, the previous behavior
on Sparc was to silently ignore the user's specified stack
alignment. Ugh.
Yet MORE unfortunate, if a target actually does return false from
canRealignStack, that also causes the user-specified alignment to be
*silently ignored*, rather than emitting an error.
(I started looking into fixing that last, but it broke a bunch of
tests, because LLVM actually *depends* on having it silently ignored:
some architectures (e.g. non-linux i386) have smaller stack alignment
than spilled-register alignment. But, the fact that a register needs
spilling is not known until within the register allocator. And by that
point, the decision to not reserve the frame pointer has been frozen
in place. And without a frame pointer, stack realignment is not
possible. So, canRealignStack() returns false, and
needsStackRealignment() then returns false, assuming everyone can just
go on their merry way assuming the alignment requirements were
probably just suggestions after-all. Sigh...)
Differential Revision: http://reviews.llvm.org/D12208
llvm-svn: 245668
The module splitter splits a module into linkable partitions. It will
be used to implement parallel LTO code generation.
This initial version of the splitter does not attempt to deal with the
somewhat subtle symbol visibility issues around module splitting. These
will be dealt with in a future change.
Differential Revision: http://reviews.llvm.org/D12132
llvm-svn: 245662
When producing conditional compare sequences for or operations we need
to negate the operands and the finally tested flags. The thing is if we negate
the finally tested flags this equals a logical negation of all previously
emitted expressions. There was a case missing where we have to order OR
expressions so they get emitted first.
This fixes http://llvm.org/PR24459
llvm-svn: 245641
Create CMP;CCMP sequences from and/or trees does not gain us anything if
the and/or tree is materialized to a GP register anyway. While most of
the code already checked for hasOneUse() there was one important case
missing.
llvm-svn: 245640
Summary:
This transform is never a pessimization at the IR level (since it
replaces an `icmp` with another), and has potentiall payoffs:
1. It may make the `icmp` fold away or become loop invariant.
2. It may make the `A & (L - 1)` computation dead.
This shows up in Java, in range checks generated by array accesses of
the form `a[i & (a.length - 1)]`.
Reviewers: reames, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12210
llvm-svn: 245635
and make it always preserve debug locations, since all callers wanted this
behavior anyway.
This is addressing a post-commit review feedback for r245589.
NFC (inside the LLVM tree).
llvm-svn: 245622
Fixes PR23464: one way to use the broadcast intrinsics is:
_mm256_broadcastw_epi16(_mm_cvtsi32_si128(*(int*)src));
We don't currently fold this, but now that we use native IR for
the intrinsics (r245605), we can look through one bitcast to find
the broadcast scalar.
Differential Revision: http://reviews.llvm.org/D10557
llvm-svn: 245613
Summary:
Add an LSR test that exercises isTruncateFree. Without this change, LSR creates
another indvar representing the truncated value.
Reviewers: jholewinski, eliben
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D12058
llvm-svn: 245611
Since r245605, the clang headers don't use these anymore.
r245165 updated some of the tests already; update the others, add
an autoupgrade, remove the intrinsics, and cleanup the definitions.
Differential Revision: http://reviews.llvm.org/D10555
llvm-svn: 245606
This patch adds support for asan on aarch64-linux with 42-bit VMA
(current default config for 64K pagesize kernels). The support is
enabled by defining the SANITIZER_AARCH64_VMA to 42 at build time
for both clang/llvm and compiler-rt. The default VMA is 39 bits.
llvm-svn: 245594
Summary:
Refactor, NFC
Extracts computeOverflowForSignedAdd and isKnownNonNegative from NaryReassociate to ValueTracking in case
others need it.
Reviewers: reames
Subscribers: majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D11313
llvm-svn: 245591
Instruction::dropUnknownMetadata(KnownSet) is supposed to preserve all
metadata in KnownSet, but the condition for DebugLocs was inverted.
Most users of dropUnknownMetadata() actually worked around this by not
adding LLVMContext::MD_dbg to their list of KnowIDs.
This is now made explicit.
llvm-svn: 245589
Caught by the famous "DebugLoc describes the currect SubProgram" assertion.
When GVN is removing a nonlocal load it updates the debug location of the
SSA value it replaced the load with with the one of the load. In the
testcase this actually overwrites a valid debug location with an empty one.
In reality GVN has to make an arbitrary choice between two equally valid
debug locations. This patch changes to behavior to only update the
location if the value doesn't already have a debug location.
llvm-svn: 245588
Since Ashutosh made findDefsUsedOutsideOfLoop public, we can clean this
up.
Now clients that don't compute DefsUsedOutsideOfLoop can just call
versionLoop() and computing DefsUsedOutsideOfLoop will happen
implicitly. With that there is no reason to expose addPHINodes anymore.
Ashutosh, you can now drop the calls to findDefsUsedOutsideOfLoop and
addPHINodes in LVerLICM and things should just work.
llvm-svn: 245579
It won't go well. We've already marked 64-bit SETCCs as non-Custom, but it's just possible that a SETCC has a legal result type but an illegal operand type. If this happens, bail out before we create unselectable nodes.
Fixes PR24292. I tried to create a testcase but in 99% of cases we can't trigger this - not surprising that this bug has been latent since 2009.
llvm-svn: 245577
Summary: We know that -x & 1 is equivalent to x & 1, avoid using negation for testing if a negative integer is even or odd.
Reviewers: majnemer
Subscribers: junbuml, mssimpso, gberry, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D12156
llvm-svn: 245569
COMISD should receive QWORD because it is defined as
(V)COMISD xmm1, xmm2/m64
COMISS should receive DWORD because it is defined as
(V)COMISS xmm1, xmm2/m32
Differential Revision: http://reviews.llvm.org/D11712
llvm-svn: 245551
Usually DSE is not supposed to remove lifetime intrinsics, but it's
actually ok to remove them for dead objects in terminating blocks,
because they convey no extra information there. Until we hit a lifetime
start that cannot be removed, that is. Because from that point on the
lifetime intrinsics become interesting again, e.g. for stack coloring.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11710
llvm-svn: 245542
analyses into LLVM's Analysis library rather than having them in
a Transforms library.
This is motivated by the need to have the core AliasAnalysis
infrastructure be aware of the ObjCARCAliasAnalysis. However, it also
seems like a nice and clean separation. Everything was very easy to move
and this doesn't create much clutter in the analysis library IMO.
Differential Revision: http://reviews.llvm.org/D12133
llvm-svn: 245541
XVCMPEQDP is used for VSX v2f64 equality comparisons, but the value type needs
to be v2i64 (as that's the corresponding SETCC type).
Fixes PR24225.
llvm-svn: 245535
This DAGCombine was creating custom SDAG nodes with an illegal ppc_fp128
operand type because it was triggering on f64/f32 int2fp(fp2int(ppc_fp128 x)),
but shouldn't (it should only apply to f32/f64 types). The result was a crash.
llvm-svn: 245530
This commit modifies the serialization syntax so that the global IR values in
machine memory operands use the global value '@<name>' syntax instead of the
current '%ir.<name>' syntax.
The unnamed global IR values are handled by this commit as well, as the
existing global value parsing method can parse the unnamed globals already.
llvm-svn: 245527
The global IR values in machine memory operands should use the global value
'@<name>' syntax instead of the current '%ir.<name>' syntax.
However, the global value call entry pseudo source values use the global value
syntax already. Therefore, the syntax for the call entry pseudo source values
has to be changed so that the global values and call entry global value PSVs
can be parsed without ambiguities.
llvm-svn: 245526
Machine memory operands can contain pointer values that are constants, and
the 'getLocalSlot' method requires non-constant values.
The constant pointer values will have to be serialized in a different patch.
llvm-svn: 245523
We still need to add constant folding of vector comparisons to fold the tests for targets that don't support the respective min/max nodes
I needed to update 2011-12-06-AVXVectorExtractCombine to load a vector instead of using a constant vector to prevent it folding
Differential Revision: http://reviews.llvm.org/D12118
llvm-svn: 245503
We are already falling back to SelectionDAG when encountering an shift with UB.
This adds the same checks for shifts with UB that get folded into arithmetic or
logical operations.
This fixes rdar://problem/22345295.
llvm-svn: 245499
We don't do a great job with >= 0 comparisons against zero when the
result is used as an i8.
Given something like:
void f(long long LL, bool *B) {
*B = LL >= 0;
}
We used to generate:
shrq $63, %rdi
xorb $1, %dil
movb %dil, (%rsi)
Now we generate:
testq %rdi, %rdi
setns (%rsi)
Differential Revision: http://reviews.llvm.org/D12136
llvm-svn: 245498
Previously WebAssembly's datalayout string had -v128:8:128. This had been an
attempt to declare a certain level of support for unaligned SIMD accesses.
However, clang makes its own determinations for SIMD alignment that are
independent of the datalayout string, so this wasn't actually meaningful.
llvm-svn: 245494
Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at most two distinct vectors the same size as the result, attempt to turn this into a legal shuffle.
Differential Revision: http://reviews.llvm.org/D12125
llvm-svn: 245490
This commit serializes the machine instruction's register operand ties.
The ties are printed out only when the instructon has register ties that are
different from the ties that are specified in the instruction's description.
llvm-svn: 245482
This revision has introduced an issue that only affects bootstrapped compiler
when it is printing the ASM. I am working on resolving the issue, but in the
meantime, I'm disabling the legalization of scalar_to_vector operation for v2i64
and the associated testing until I can get this fixed.
llvm-svn: 245481
The defined registers are already serialized - they are represented by placing
them before the '=' in a machine instruction. However, certain instructions like
INLINEASM can have defined register operands after the '=', so this commit
introduces the 'def' register flag for such operands.
llvm-svn: 245480
Reintroduce r245442. Remove an overly conservative assertion introduced
in r245442. We could replace the assertion to use `shareSameRegisterFile`
instead, but in that point in `insertPHI` we already lost the original
Def subreg to check against. So drop the assertion completely.
Original commit message:
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 245479
Since r244955, we try to use the short-form ErrorInfo when both
tries failed, and the long-form match failed on a suffix operand.
However, this means we sometimes mix ErrorInfo and MatchResult
(one manifestation of this being PR24498). Instead, restore both.
llvm-svn: 245469
Rewrite some code to not use a lambda function. The non-lambda code is just
about as clean as the original, and not any longer. The lambda function causes
an internal compiler error in GCC 4.8.0, and it is not worth breaking support
for that compiler over this. NFC.
llvm-svn: 245466
This patch updates the X86 lowering so that the Exception Pointer and Selector
are 64-bit wide only if Subtarget.isTarget64BitLP64.
Patch by João Porto
Reviewers: dschuff, rnk
Differential Revision: http://reviews.llvm.org/D12111
llvm-svn: 245454
Reapply r243486.
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 245442
Summary:
The mid-end was generating vector smin/smax/umin/umax nodes, but
we were using vbsl to generatate the code. This adds the vmin/vmax
patterns and a test to check that we are now generating vmin/vmax
instructions.
Reviewers: rengolin, jmolloy
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D12105
llvm-svn: 245439
There are some cases where the mul sequence is smaller, but for the most part,
using a div is preferable. This does not apply to vectors, since x86 doesn't
have vector idiv, and a vector mul/shifts sequence ought to be smaller than a
scalarized division.
Differential Revision: http://reviews.llvm.org/D12082
llvm-svn: 245431
This removes the isPow2SDivCheap() query, as it is not currently used in
any meaningful way. isIntDivCheap() no longer relies on a state variable
(as all in-tree target set it to false), but the interface allows querying
based on the type optimization level.
NFC.
Differential Revision: http://reviews.llvm.org/D12082
llvm-svn: 245430
without *requiring* it.
This allows a pass indicate that it will use an analysis if available
(through getAnalysisIfAvailable). When the pass manager knows this, it
will refrain from deleting that analysis if it can. Naturally, it will
still get invalidated at the correct time. These passes are not
considered when scheduling the pass pipeline, so typically they will
require manual scheduling, but this may also allow passes with
getAnalysisIfAvailable to find the analysis more often if nothing after
them requires that analysis and it wasn't invalidated.
I don't have a particular use case with the current passes, but with my
new structure for alias analyses, this will be very useful. We want to
allow people to customize the set of AAs available by scheduling
additional passes. These's aren't ever *required* for obvious reasons.
So we need some way to mark in the legacy pass manager that they will
still be used if available.
This is essentially how analysis groups already work. But this makes the
feature generally available and more explicit. It should allow the AA
change to not impact how people trigger a custom alias analysis being
available at a certain point in compilation.
Differential Revision: http://reviews.llvm.org/D12114
llvm-svn: 245409
Fix how DependenceAnalysis calls delinearization, mirroring what is done in
Delinearization.cpp (mostly by making sure to call getSCEVAtScope before
delinearizing, and by removing the unnecessary 'Pairs == 1' check).
Patch by Vaivaswatha Nagaraj!
llvm-svn: 245408
Here we make ScalarEvolution::isKnownPredicate, indirectly, a little smarter.
Given some relational comparison operator OP, and two AddRec SCEVs, {I,+,S} OP
{J,+,T}, we can reduce this to the comparison I OP J when S == T, both AddRecs
are for the same loop, and both are known not to wrap.
As it turns out, because of the way that backedge-guard expressions can be
leveraged when computing known predicates, this allows indvars to simplify the
if-statement comparison in this loop:
void foo (int *a, int *b, int n) {
for (int i = 0; i < n; ++i) {
if (i > n)
a[i] = b[i] + 1;
}
}
which, somewhat surprisingly, we were not previously optimizing away.
llvm-svn: 245400
This commit adds support for bit mask target flag serialization to the MIR
printer and the MIR parser. It also adds support for the machine operand's
target flag serialization to the AArch64 target.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 245383
This consolidates use of isUnalignedMem32Slow() in one place.
There is a slight change in logic although I'm not sure that it would ever
come up in the real world: we were assuming that an alignment of the type
size is always fast; now, we actually check the data layout to confirm that.
llvm-svn: 245382
Remove support for Valgrind-based TSan, which hasn't been maintained for a
few years. We now use the TSan annotations only if LLVM is compiled with
-fsanitize=thread. We no longer need the weak function definitions as we
are guaranteed that our program is linked directly with the TSan runtime.
Differential Revision: http://reviews.llvm.org/D12121
llvm-svn: 245374
method.
This commit extracts the code that parses the stack object references into a
new method named 'parseStackFrameIndex', so that it can be reused when
parsing standalone stack object references.
llvm-svn: 245370
To properly handle this, define the *a instructions as separate
instruction classes by refactoring the LoadA and StoreA multiclasses.
Move the instruction tests into the sparcv9 file to test the difference.
llvm-svn: 245360
The current code normalizes select(C0, x, select(C1, x, y)) towards
select(C0|C1, x, y) if the targets prefers that form. This patch adds an
additional rule that if the select(C1, x, y) part already exists in the
function then we want to normalize into the other direction because the
effects of reusing the existing value are bigger than transforming into
the target preferred form.
This addresses regressions following r238793, see also:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20150727/290272.html
Differential Revision: http://reviews.llvm.org/D11616
llvm-svn: 245350
State numbers are calculated by performing a walk from the innermost
funclet to the outermost funclet. Rudimentary support for the new EH
constructs has been added to the assembly printer, just enough to test
the new machinery.
Differential Revision: http://reviews.llvm.org/D12098
llvm-svn: 245331
folding the code into the main Analysis library.
There already wasn't much of a distinction between Analysis and IPA.
A number of the passes in Analysis are actually IPA passes, and there
doesn't seem to be any advantage to separating them.
Moreover, it makes it hard to have interactions between analyses that
are both local and interprocedural. In trying to make the Alias Analysis
infrastructure work with the new pass manager, it becomes particularly
awkward to navigate this split.
I've tried to find all the places where we referenced this, but I may
have missed some. I have also adjusted the C API to continue to be
equivalently functional after this change.
Differential Revision: http://reviews.llvm.org/D12075
llvm-svn: 245318
Historically there seems to be some resistance regarding the change to DenseMap
(r147980). However, I couldn't find cases of iterator invalidation for
ValueCacheEntryTy, but only for ValueCache, which I left untouched.
This reduces 20s on an internal testcase. Follow up from r245309.
Differential Revision: http://reviews.llvm.org/D11651
rdar://problem/21320066
llvm-svn: 245314
Changes in LoopUnroll in the past six months exposed scalability
issues in LazyValueInfo when used from JumpThreading. One internal test
that used to take 20s under -O2 now takes 6min.
This commit change the OverDefinedCache from
DenseSet<std::pair<AssertingVH<BasicBlock>, Value*>> to
DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>>
and reduces compile time down to 1m40s.
Differential Revision: http://reviews.llvm.org/D11651
rdar://problem/21320066
llvm-svn: 245309
Summary: This is the correct way to handle JAL instructions when PIC is enabled.
Patch by Toma Tabacu
Reviewers: seanbruno, tomatabacu
Subscribers: brooks, seanbruno, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D6231
llvm-svn: 245305
Summary:
This information is needed to decide whether we do the PIC-only JAL expansions or not. It's also needed for an upcoming patch which implements the .cprestore assembler directive (which can only be used effectively in PIC mode).
By making this information available to the MipsAsmParser, we will know when to insert the instructions mandated by the .cprestore assembler directive and we will be able to give some useful warnings when we encounter a potential misuse of this directive.
Patch by Toma Tabacu
Reviewers: dsanders, seanbruno
Subscribers: brooks, seanbruno, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D5626
llvm-svn: 245291
Summary: Windows system rarely have good PostScript viewers installed, but PDF viewers are common. So for viewing graphs, generate PDF files and open with the associated PDF viewer using cmd.exe's start command.
Reviewers: Bigcheese, aaron.ballman
Subscribers: aaron.ballman, JakeVanAdrighem, dwiberg, llvm-commits
Differential Revision: http://reviews.llvm.org/D11877
llvm-svn: 245290
Summary:
When calling DisplayGraph and a PS viewer is chosen, two programs are executed: The GraphViz generator and the PostScript viewer. Always for the generator to finish to ensure that the .ps file is written before opening the viewer for that file. DisplayGraph's wait parameter refers to whether to wait until the user closes the viewer.
This happened on Windows and if none of the options to open the .dot file directly applies, also on Linux.
Reviewers: Bigcheese, chandlerc, aaron.ballman
Subscribers: dwiberg, aaron.ballman, llvm-commits
Differential Revision: http://reviews.llvm.org/D11876
llvm-svn: 245289
After hitting @llvm.assume(X) we can:
- propagate equality that X == true
- if X is icmp/fcmp (with eq operation), and one of operand
is constant we can change all variables with constants in the same BasicBlock
http://reviews.llvm.org/D11918
llvm-svn: 245265
WebAssembly doesn't yet have a specified binary format, and it may not
end up being ELF, so we don't want the Triple class defaulting to ELF
for it at this time.
llvm-svn: 245254
The arch prefix string isn't currently being used for anything on
WebAssembly, but if it were to be used, it makes sense to use the
same arch prefix string for wasm32 and wasm64.
llvm-svn: 245252
It is possible to be in a situation where more than one funclet token is
a valid SSA value. If we see a terminator which exits a funclet which
doesn't use the funclet's token, replace it with unreachable.
Differential Revision: http://reviews.llvm.org/D12074
llvm-svn: 245238
Primary purpose of this change is to reuse existing code inside findExistingExpansion. However it introduces very slight semantic change - findExistingExpansion now looks into exiting blocks instead of a loop latches. Originally heuristic was based on the fact that we want to look at the loop exit conditions. And since all exiting latches will be listed in the ExitingBlocks, heuristic stays roughly the same.
Differential Revision: http://reviews.llvm.org/D12008
llvm-svn: 245227
Summary:
Increase the estimated costs for insert/extract element operations on
AArch64. This is motivated by results from benchmarking interleaved
accesses.
Add missing costs for zext/sext/trunc instructions and some integer to
floating point conversions. These costs were previously calculated
by scalarizing these operation and were affected by the cost increase of
the insert/extract element operations.
Reviewers: rengolin
Subscribers: mcrosier, aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D11939
llvm-svn: 245226
Summary:
This change limits the minimum cost of an insert/extract
element operation to 2 in cases where this would result
in mixing of NEON and VFP code.
Reviewers: rengolin
Subscribers: mssimpso, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12030
llvm-svn: 245225
All possible ModRef behaviours can be completely represented using existing LLVM IR attributes.
Differential Revision: http://reviews.llvm.org/D12033
llvm-svn: 245224
This commit adds a virtual `peekTokens()` function to `MCAsmLexer`
which can peek forward an arbitrary number of tokens.
It also makes the `peekTok()` method call `peekTokens()` method, but
only requesting one token.
The idea is to better support targets which more more ambiguous
assembly syntaxes.
Patch by Dylan McKay!
llvm-svn: 245221
Summary:
When demoting an SSA value that has a use on a phi and one of the phi's
predecessors terminates with catchret, the edge needs to be split and the
load inserted in the new block, else we'll still have a cross-funclet SSA
value.
Add a test for this, and for the similar case where a def to be spilled is
on and invoke and a critical edge, which was already implemented but
missing a test.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12065
llvm-svn: 245218
Summary: It is the same as LA, except that it can also load 64-bit addresses and it only works on 64-bit MIPS architectures.
Reviewers: tomatabacu, seanbruno, vkalintiris
Subscribers: brooks, seanbruno, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D9524
llvm-svn: 245208
These only get generated if the target supports them. If one of the variants is not legal and the other is, and it is safe to do so, the other variant will be emitted.
For example on AArch32 (V8), we have scalar fminnm but not fmin.
Fix up a couple of tests while we're here - one now produces better code, and the other was just plain wrong to start with.
llvm-svn: 245196
PR24469 resulted because DeleteDeadInstruction in handleNonLocalStoreDeletion was
deleting the next basic block iterator. Fixed the same by resetting the basic block iterator
post call to DeleteDeadInstruction.
llvm-svn: 245195
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
This is a very minimal move support - it leaves the moved-from object in
a zombie state that is only valid for destruction and move assignment.
This seems fine to me, and leaving it in the default constructed state
would require adding more state to the object and potentially allocating
memory (!!!) and so seems like a Bad Idea.
llvm-svn: 245192
If we can ignore NaNs, fmin/fmax libcalls can become compare and select
(this is what we turn std::min / std::max into).
This IR should then be optimized in the backend to whatever is best for
any given target. Eg, x86 can use minss/maxss instructions.
This should solve PR24314:
https://llvm.org/bugs/show_bug.cgi?id=24314
Differential Revision: http://reviews.llvm.org/D11866
llvm-svn: 245187
Bitwise arithmetic can obscure a simple sign-test. If replacing the
mask with a truncate is preferable if the type is legal because it
permits us to rephrase the comparison more explicitly.
llvm-svn: 245171
analysis ...
It turns out that we *do* need the old CallGraph ported to the new pass
manager. There are times where this model of a call graph is really
superior to the one provided by the LazyCallGraph. For example,
GlobalsModRef very specifically needs the model provided by CallGraph.
While here, I've tried to make the move semantics actually work. =]
llvm-svn: 245170
We can set additional bits in a mask given that we know the other
operand of an AND already has some bits set to zero. This can be more
efficient if doing so allows us to use an instruction which implicitly
sign extends the immediate.
This fixes PR24085.
Differential Revision: http://reviews.llvm.org/D11289
llvm-svn: 245169
ByteSize and BitSize should not be size_t but unsigned, considering
1) They are at most 2^16 and 2^19, respectively.
2) BitSize is an argument to Type::getIntNTy which takes unsigned.
Also, use the correct utostr instead itostr and cache the string result.
Thanks to James Touton for reporting this!
llvm-svn: 245167
For cases where we TRUNCATE and then ZERO_EXTEND to a larger size (often from vector legalization), see if we can mask the source data and then ZERO_EXTEND (instead of after a ANY_EXTEND). This can help avoid having to generate a larger mask, and possibly applying it to several sub-vectors.
(zext (truncate x)) -> (zext (and(x, m))
Includes a minor patch to SystemZ to better recognise 8/16-bit zero extension patterns from RISBG bit-extraction code.
This is the first of a number of minor patches to help improve the conversion of byte masks to clear mask shuffles.
Differential Revision: http://reviews.llvm.org/D11764
llvm-svn: 245160
infrastructure.
This AA was never used in tree. It's infrastructure also completely
overlaps that of TargetLibraryInfo which is used heavily by BasicAA to
achieve similar goals to those stated for this analysis.
As has come up in several discussions, the use case here is still really
important, but this code isn't helping move toward that use case. Any
progress on better supporting rich AA information for runtime library
environments would likely be better off starting from scratch or
starting from TargetLibraryInfo than from this base.
Differential Revision: http://reviews.llvm.org/D12028
llvm-svn: 245155
When trying to fix SGPR live ranges, skip defs that are
killed in the same block as the def. I don't think
we need to worry about these cases as long as the
live ranges of the SGPRs in dominating blocks are
correct.
This reduces the number of elements the second
loop over the function needs to look at, and makes
it generally easier to understand. The second loop
also only considers if the live range is live
in to a block, which logically means it
must have been live out from another.
llvm-svn: 245150
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
function.
This was the same as getFrameIndexReference, but without the FrameReg
output.
Differential Revision: http://reviews.llvm.org/D12042
llvm-svn: 245148
This is just an initial checkin of an implementation of the Relooper algorithm, in preparation for WebAssembly codegen to utilize. It doesn't do anything yet by itself.
The Relooper algorithm takes an arbitrary control flow graph and generates structured control flow from that, utilizing a helper variable when necessary to handle irreducibility. The WebAssembly backend will be able to use this in order to generate an AST for its binary format.
Author: azakai
Reviewers: jfb, sunfish
Subscribers: jevinskie, arsenm, jroelofs, llvm-commits
Differential revision: http://reviews.llvm.org/D11691
llvm-svn: 245142
This patch makes the Merge Functions pass faster by calculating and comparing
a hash value which captures the essential structure of a function before
performing a full function comparison.
The hash is calculated by hashing the function signature, then walking the basic
blocks of the function in the same order as the main comparison function. The
opcode of each instruction is hashed in sequence, which means that different
functions according to the existing total order cannot have the same hash, as
the comparison requires the opcodes of the two functions to be the same order.
The hash function is a static member of the FunctionComparator class because it
is tightly coupled to the exact comparison function used. For example, functions
which are equivalent modulo a single variant callsite might be merged by a more
aggressive MergeFunctions, and the hash function would need to be insensitive to
these differences in order to exploit this.
The hashing function uses a utility class which accumulates the values into an
internal state using a standard bit-mixing function. Note that this is a different interface
than a regular hashing routine, because the values to be hashed are scattered
amongst the properties of a llvm::Function, not linear in memory. This scheme is
fast because only one word of state needs to be kept, and the mixing function is
a few instructions.
The main runOnModule function first computes the hash of each function, and only
further processes functions which do not have a unique function hash. The hash
is also used to order the sorted function set. If the hashes differ, their
values are used to order the functions, otherwise the full comparison is done.
Both of these are helpful in speeding up MergeFunctions. Together they result in
speedups of 9% for mysqld (a mostly C application with little redundancy), 46%
for libxul in Firefox, and 117% for Chromium. (These are all LTO builds.) In all
three cases, the new speed of MergeFunctions is about half that of the module
verifier, making it relatively inexpensive even for large LTO builds with
hundreds of thousands of functions. The same functions are merged, so this
change is free performance.
Author: jrkoenig
Reviewers: nlewycky, dschuff, jfb
Subscribers: llvm-commits, aemerson
Differential revision: http://reviews.llvm.org/D11923
llvm-svn: 245140
This seems to only work some of the time. In some situations,
this seems to use a nonsensical type and isn't actually aware of the
memory being accessed. e.g. if branch condition is an icmp of a pointer,
it checks the addressing mode of i1.
llvm-svn: 245137
True branch instructions do behave as expected with liveness.
Avoid the phrasing "branch decision is based on a value in an SGPR"
because this could be misleading. A VALU compare instruction's
result is still based on an SGPR, even though that condition
may be divergent.
llvm-svn: 245131
Summary:
http://reviews.llvm.org/D11212 made Scalar Evolution able to propagate NSW and NUW flags from instructions to SCEVs for add instructions. This patch expands that to sub, mul and shl instructions.
This change makes LSR able to generate pointer induction variables for loops like these, where the index is 32 bit and the pointer is 64 bit:
for (int i = 0; i < numIterations; ++i)
sum += ptr[i - offset];
for (int i = 0; i < numIterations; ++i)
sum += ptr[i * stride];
for (int i = 0; i < numIterations; ++i)
sum += ptr[3 * (i << 7)];
Reviewers: atrick, sanjoy
Subscribers: sanjoy, majnemer, hfinkel, llvm-commits, meheff, jingyue, eliben
Differential Revision: http://reviews.llvm.org/D11860
llvm-svn: 245118
Although targeting CoreCLR is similar to targeting MSVC, there are
certain important differences that the backend must be aware of
(e.g. differences in stack probes, EH, and library calls).
Differential Revision: http://reviews.llvm.org/D11012
llvm-svn: 245115
We canonicalize V64 vectors to V128 through insert_subvector: the other
FMLA/FMLS/FMUL/FMULX patterns match that already, but this one doesn't,
so we'd fail to match fmls and generate fneg+fmla instead.
The vector equivalents are already tested and functional.
llvm-svn: 245107
This patch makes the Darwin ARM backend take advantage of TargetParser. It
also teaches TargetParser about ARMV7K for the first time. This makes target
triple parsing more consistent across llvm.
Differential Revision: http://reviews.llvm.org/D11996
llvm-svn: 245081
This patch fixes the x86 implementation of allowsMisalignedMemoryAccess() to correctly
return the 'Fast' output parameter for 32-byte accesses. To test that, an existing load
merging optimization is changed to use the TLI hook. This exposes a shortcoming in the
current logic and results in the regression test update. Changing other direct users of
the isUnalignedMem32Slow() x86 CPU attribute would be a follow-on patch.
Without the fix in allowsMisalignedMemoryAccesses(), we will infinite loop when targeting
SandyBridge because LowerINSERT_SUBVECTOR() creates 32-byte loads from two 16-byte loads
while PerformLOADCombine() splits them back into 16-byte loads.
Differential Revision: http://reviews.llvm.org/D10662
llvm-svn: 245075
Summary: Similar to the change we applied to ASan. The same test case works.
Reviewers: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11961
llvm-svn: 245067
This reverts commit r245047.
It was failing on the darwin bots. The problem was that when running
./bin/llc -march=msp430
llc gets to
if (TheTriple.getTriple().empty())
TheTriple.setTriple(sys::getDefaultTargetTriple());
Which means that we go with an arch of msp430 but a triple of
x86_64-apple-darwin14.4.0 which fails badly.
That code has to be updated to select a triple based on the value of
march, but that is not a trivial fix.
llvm-svn: 245062
Other than some places that were handling unknown as ELF, this should
have no change. The test updates are because we were detecting
arm-coff or x86_64-win64-coff as ELF targets before.
It is not clear if the enum should live on the Triple. At least now it lives
in a single location and should be easier to move somewhere else.
llvm-svn: 245047
Spotted by Ahmed - in r244594 I inadvertently marked f16 min/max as legal.
I've reverted it here, and marked min/max on scalar f16's as promote. I've also added a testcase. The test just checks that the compiler doesn't fall over - it doesn't create fmin nodes for f16 yet.
llvm-svn: 245035
Code-section alignment should be at least as high as the minimum
stub alignment. If the section alignment is lower it can cause
padding to be emitted resulting in alignment errors if the section
is mapped to a higher alignment on the target.
E.g. If a text section with a 4-byte alignment gets 4-bytes of
padding to guarantee 8-byte alignment for stubs but is re-mapped to
an 8-byte alignment on the target, the 4-bytes of padding will push
the stubs to 4-byte alignment causing a crash.
No test case: There is currently no way to control host section
alignment in llvm-rtdyld. This could be made testable by adding
a custom memory manager. I'll look at that in a follow-up patch.
llvm-svn: 245031
This introduces the basic functionality to support "token types".
The motivation stems from the need to perform operations on a Value
whose provenance cannot be obscured.
There are several applications for such a type but my immediate
motivation stems from WinEH. Our personality routine enforces a
single-entry - single-exit regime for cleanups. After several rounds of
optimizations, we may be left with a terminator whose "cleanup-entry
block" is not entirely clear because control flow has merged two
cleanups together. We have experimented with using labels as operands
inside of instructions which are not terminators to indicate where we
came from but found that LLVM does not expect such exotic uses of
BasicBlocks.
Instead, we can use this new type to clearly associate the "entry point"
and "exit point" of our cleanup. This is done by having the cleanuppad
yield a Token and consuming it at the cleanupret.
The token type makes it impossible to obscure or otherwise hide the
Value, making it trivial to track the relationship between the two
points.
What is the burden to the optimizer? Well, it turns out we have already
paid down this cost by accepting that there are certain calls that we
are not permitted to duplicate, optimizations have to watch out for
such instructions anyway. There are additional places in the optimizer
that we will probably have to update but early examination has given me
the impression that this will not be heroic.
Differential Revision: http://reviews.llvm.org/D11861
llvm-svn: 245029
its creation function.
This required shifting a bunch of method definitions to be out-of-line
so that we could leave most of the implementation guts in the .cpp file.
llvm-svn: 245021
I've used forward declarations and reorderd the source code some to make
this reasonably clean and keep as much of the code as possible in the
source file, including all the stratified set details. Just the basic AA
interface and the create function are in the header file, and the header
file is now included into the relevant locations.
llvm-svn: 245009
.cpp file to make the header much less noisy.
Also makes it easy to use a static helper rather than a public method
for printing lines of stats.
llvm-svn: 245006
pattern.
Also hoist the creation routine out of the generic header and into the
pass header now that we have one.
I've worked to not make any changes, even formatting ones here. I'll
clean up the formatting and other things in a follow-up patch now that
the code is in the right place.
llvm-svn: 245004
Summary:
This patch implements my promised optimization to reunites certain sexts from
operands after we extract the constant offset. See the header comment of
reuniteExts for its motivation.
One key building block that enables this optimization is Bjarke's poison value
analysis (D11212). That helps to prove "a +nsw b" can't overflow.
Reviewers: broune
Subscribers: jholewinski, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D12016
llvm-svn: 245003
AliasAnalysis in LoopIdiomRecognize.
The previous commit to LIR, r244879, exposed some scary bug in the loop
pass pipeline with an assert failure that showed up on several bots.
This patch got reverted as part of getting that revision reverted, but
they're actually independent and unrelated. This patch has no functional
change and should be completely safe. It is also useful for my current
work on the AA infrastructure.
llvm-svn: 244993
This commit modifies the way the machine basic blocks are serialized - now the
machine basic blocks are serialized using a custom syntax instead of relying on
YAML primitives. Instead of using YAML mappings to represent the individual
machine basic blocks in a machine function's body, the new syntax uses a single
YAML block scalar which contains all of the machine basic blocks and
instructions for that function.
This is an example of a function's body that uses the old syntax:
body:
- id: 0
name: entry
instructions:
- '%eax = MOV32r0 implicit-def %eflags'
- 'RETQ %eax'
...
The same body is now written like this:
body: |
bb.0.entry:
%eax = MOV32r0 implicit-def %eflags
RETQ %eax
...
This syntax change is motivated by the fact that the bundled machine
instructions didn't map that well to the old syntax which was using a single
YAML sequence to store all of the machine instructions in a block. The bundled
machine instructions internally use flags like BundledPred and BundledSucc to
determine the bundles, and serializing them as MI flags using the old syntax
would have had a negative impact on the readability and the ease of editing
for MIR files. The new syntax allows me to serialize the bundled machine
instructions using a block construct without relying on the internal flags,
for example:
BUNDLE implicit-def dead %itstate, implicit-def %s1 ... {
t2IT 1, 24, implicit-def %itstate
%s1 = VMOVS killed %s0, 1, killed %cpsr, implicit killed %itstate
}
This commit also converts the MIR testcases to the new syntax. I developed
a script that can convert from the old syntax to the new one. I will post the
script on the llvm-commits mailing list in the thread for this commit.
llvm-svn: 244982
We used to just say "invalid type suffix for instruction", which is
misleading. This is because we fallback to the long-form matcher if the
short-form matcher failed, losing the error information on the way.
Save it, so that we can provide a little better diagnostics when the
long-form matcher thinks a suffix is the cause of the error.
llvm-svn: 244955
Follow up to D10947 - D9746 added general SMAX/SMIN/UMAX/UMIN pattern matching to SelectionDAGBuilder::visitSelect.
This patch removes the X86 implementation and improves the AVX1/AVX2 support to correctly lower 256-bit integer vectors.
Differential Revision: http://reviews.llvm.org/D12006
llvm-svn: 244949
If <src> is non-zero we can safely set the flag to true, and this
results in less code generated for, e.g. ffs(x) + 1 on FreeBSD.
Thanks to majnemer for suggesting the fix and reviewing.
Code generated before the patch was applied:
0: 0f bc c7 bsf %edi,%eax
3: b9 20 00 00 00 mov $0x20,%ecx
8: 0f 45 c8 cmovne %eax,%ecx
b: 83 c1 02 add $0x2,%ecx
e: b8 01 00 00 00 mov $0x1,%eax
13: 85 ff test %edi,%edi
15: 0f 45 c1 cmovne %ecx,%eax
18: c3 retq
Code generated after the patch was applied:
0: 0f bc cf bsf %edi,%ecx
3: 83 c1 02 add $0x2,%ecx
6: 85 ff test %edi,%edi
8: b8 01 00 00 00 mov $0x1,%eax
d: 0f 45 c1 cmovne %ecx,%eax
10: c3 retq
It seems we can still use cmove and save another 'test' instruction, but
that can be tackled separately.
Differential Revision: http://reviews.llvm.org/D11989
llvm-svn: 244947
This commit extracts the code that parses the memory operand's alignment into
a new method named 'parseAlignment' so that it can be reused when parsing the
basic block's alignment attribute.
llvm-svn: 244945
This commit renames the method 'diagFromLLVMAssemblyDiag' to
'diagFromBlockStringDiag'. This method will be used when converting diagnostics
from other YAML block strings, and not just the LLVM module block string, so
the new name should reflect that.
llvm-svn: 244943
We used to be over-conservative about preserving inbounds. Actually, the second
GEP (which applies the constant offset) can inherit the inbounds attribute of
the original GEP, because the resultant pointer is equivalent to that of the
original GEP. For example,
x = GEP inbounds a, i+5
=>
y = GEP a, i // inbounds removed
x = GEP inbounds y, 5 // inbounds preserved
llvm-svn: 244937
After r244870 flush() will only compare two null pointers and return,
doing nothing but wasting run time. The call is not required any more
as the stream and its SmallString are always in sync.
Thanks to David Blaikie for reviewing.
llvm-svn: 244928
This patch corresponds to review:
http://reviews.llvm.org/D11471
It improves the code generated for converting a scalar to a vector value. With
direct moves from GPRs to VSRs, we no longer require expensive stack operations
for this. Subsequent patches will handle the reverse case and more general
operations between vectors and their scalar elements.
llvm-svn: 244921
This was my error. We've got f32 marked as legal because they're simulated using a v2f32 instruction, but there's no equivalent for f64.
This will get test coverage imminently when D12015 lands.
llvm-svn: 244916
This overrides the default to more closely resemble the hand-crafted matching logic in ISelLowering. It makes sense, as there is no VFP equivalent of vmin or vmax, to use them when they're available even if in general VFP ops should be preferred.
This should be NFC.
llvm-svn: 244915
DeadStoreElimination does eliminate a store if it stores a value which was loaded from the same memory location.
So far this worked only if the store is in the same block as the load.
Now we can also handle stores which are in a different block than the load.
Example:
define i32 @test(i1, i32*) {
entry:
%l2 = load i32, i32* %1, align 4
br i1 %0, label %bb1, label %bb2
bb1:
br label %bb3
bb2:
; This store is redundant
store i32 %l2, i32* %1, align 4
br label %bb3
bb3:
ret i32 0
}
Differential Revision: http://reviews.llvm.org/D11854
llvm-svn: 244901
Previously, for O32 ABI we did not calculate correct addend for R_MIPS_HI16
and R_MIPS_PCHI16 relocations. This patch fixes that.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D11186
llvm-svn: 244897
Summary:
Update the demotion logic in WinEHPrepare to avoid creating new cleanups by
walking predecessors as necessary to insert stores for EH-pad PHIs.
Also avoid creating stores for EH-pad PHIs that have no uses.
The store/load placement is still pretty naive. Likely future improvements
(at least for optimized compiles) include:
- Share loads for related uses as possible
- Coalesce non-interfering use/def-related PHIs
- Store at definition point rather than each PHI pred for non-interfering
lifetimes.
Reviewers: rnk, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11955
llvm-svn: 244894
Recent mesa/llvmpipe crashes on SystemZ due to a failed assertion when
attempting to compile a routine with a return type of
{ <4 x float>, <4 x float>, <4 x float>, <4 x float> }
on a system without vector instruction support.
This is because after legalizing the vector type, we get a return value
consisting of 16 floats, which cannot all be returned in registers.
Usually, what should happen in this case is that the target's CanLowerReturn
routine rejects the return type, in which case SelectionDAG falls back to
implementing a structure return in memory via implicit reference.
However, the SystemZ target never actually implemented any CanLowerReturn
routine, and thus would accept any struct return type.
This patch fixes the crash by implementing CanLowerReturn. As a side effect,
this also handles fp128 return values, fixing a todo that was noted in
SystemZCallingConv.td.
llvm-svn: 244889
Consider this code:
BB:
%i = phi i32 [ 0, %if.then ], [ %c, %if.else ]
%add = add nsw i32 %i, %b
...
In this common case the add can be moved to the %if.else basic block, because
adding zero is an identity operation. If we go though %if.then branch it's
always a win, because add is not executed; if not, the number of instructions
stays the same.
This pattern applies also to other instructions like sub, shl, shr, ashr | 0,
mul, sdiv, div | 1.
Patch by Jakub Kuderski!
llvm-svn: 244887
Other than PC-relative loads/store the patterns that match the various
load/store addressing modes have the same complexity, so the order that they
are matched is the order that they appear in the .td file.
Rearrange the instruction definitions in ARMInstrThumb.td, and make use of
AddedComplexity for PC-relative loads, so that the instruction matching order
is the order that results in the simplest selection logic. This also makes
register-offset load/store be selected when it should, as previously it was
only selected for too-large immediate offsets.
Differential Revision: http://reviews.llvm.org/D11800
llvm-svn: 244882
simplified form to remove redundant checks and simplify the code for
popcount recognition. We don't actually need to handle all of these
cases.
I've left a FIXME for one in particular until I finish inspecting to
make sure we don't actually *rely* on the predicate in any way.
llvm-svn: 244879
Most SSE/AVX (non-constant) vector shift instructions only use the lower 64-bits of the 128-bit shift amount vector operand, this patch calls SimplifyDemandedVectorElts to optimize for this.
I had to refactor some of my recent InstCombiner work on the vector shifts to avoid quite a bit of duplicate code, it means that SimplifyX86immshift now (re)decodes the type of shift.
Differential Revision: http://reviews.llvm.org/D11938
llvm-svn: 244872
This is faster and avoids the stream and SmallString state synchronization issue.
resync() is a no-op and may be safely deleted. I'll do so in a follow-up commit.
Reviewed by Rafael Espindola.
llvm-svn: 244870
Summary: This patch moves the check of OptimizeForSize before traversing over all basic blocks in current loop. If OptimizeForSize is set to true, no non-trivial unswitch is ever allowed. Therefore, the early exit will help reduce compilation time. This patch should be NFC.
Reviewers: reames, weimingz, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11997
llvm-svn: 244868
Now that we can properly promote mismatched FCOPYSIGNs (r244858), we
can mark the FP_ROUND on the result as truncating, to expose folding.
FCOPYSIGN doesn't change anything but the sign bit, so
(fp_round (fcopysign (fpext a), b))
is equivalent to (modulo the sign bit):
(fp_round (fpext a))
which is a no-op.
llvm-svn: 244862
We can lower them using our cool tricks if we fpext/fptrunc the second
input, like we do for f32/f64.
Follow-up to r243924, r243926, and r244858.
llvm-svn: 244860
We don't care about its type, and there's even a combine that'll fold
away the FP_EXTEND if we let it run. However, until it does, we'll have
something broken like:
(f32 (fp_extend (f64 v)))
Scalar f16 follow-up to r243924.
llvm-svn: 244858
We already check that vectors have the same number of elements, we
don't need to use the scalar types explicitly: comparing the size of
the whole vector is enough.
llvm-svn: 244857
code into methods on LoopIdiomRecognize.
This simplifies the code somewhat and also makes it much easier to move
the analyses around. Ultimately, the separate class wasn't providing
significant value over methods -- it contained the precondition basic
block and the current loop. The current loop is already available and
the precondition block wasn't needed everywhere and is easy to pass
around.
In several cases I just moved things to be static functions because they
already accepted most of their inputs as arguments.
This doesn't fix the way we manage analyses yet, that will be the next
patch, but it already makes the code over 50 lines shorter.
No functionality changed.
llvm-svn: 244851
complexity.
There is only one function that was called from multiple locations, and
that was 'getBranch' which has a reasonable one-line spelling already:
dyn_cast<BranchInst>(BB->getTerminator). We could make this shorter, but
it doesn't seem to add much value. Instead, we should avoid calling it
so many times on the same basic blocks, but that will be in a subsequent
patch.
The other functions are only called in one location, so inline them
there, and take advantage of this to use direct early exit and reduce
indentation. This makes it much more clear what is being tested for, and
in fact makes it clear now to me that there are simpler ways to do this
work. However, this patch just does the mechanical inlining. I'll clean
up the functionality of the code to leverage loop simplified form more
effectively in a follow-up.
Despite lots of early line breaks due to early-exit, this is still
shorter than it was before.
llvm-svn: 244841
a significant code cleanup here.
The handling of analyses in this pass is overly complex and can be
simplified significantly, but the right way to do that is to simplify
all of the code not just the analyses, and that'll require pretty
extensive edits that would be noisy with formatting changes mixed into
them.
llvm-svn: 244828
This debugger was designed to catch places where the old update API was
failing to be used correctly. As I've removed the update API, it no
longer serves any purpose. We can introduce new debugging aid passes
around any future work w.r.t. updating AAs.
Note that I've updated the documentation here, but really I need to
rewrite the documentation to carefully spell out the ideas around
stateful AA and how things are changing in the AA world. However, I'm
hoping to do that as a follow-up to the refactoring of the AA
infrastructure to work in both old and new pass managers so that I can
write the documentation specific to that world.
Differential Revision: http://reviews.llvm.org/D11984
llvm-svn: 244825
To be clear: this is an *optimization* not a correctness change.
CodeGenPrep likes to duplicate icmps feeding branch instructions to take advantage of x86's ability to fuze many comparison/branch patterns into a single micro-op and to reduce the need for materializing i1s into general registers. PlaceSafepoints likes to place safepoint polls right at the end of basic blocks (immediately before terminators) when inserting entry and backedge safepoints. These two heuristics interact in a somewhat unfortunate way where the branch terminating the original block will be controlled by a condition driven by unrelocated pointers. This forces the register allocator to keep both the relocated and unrelocated values of the pointers feeding the icmp alive over the safepoint poll.
One simple fix would have been to just adjust PlaceSafepoints to move one back in the basic block, but you can reach similar cases as a result of LICM or other hoisting passes. As a result, doing a post insertion fixup seems to be more robust.
I considered doing this in CodeGenPrep itself, but having to update the live sets of already rewritten safepoints gets complicated fast. In particular, you can't just use def/use information because by moving the icmp, we're extending the live range of it's inputs potentially.
Instead, this patch teaches RewriteStatepointsForGC to make the required adjustments before making the relocations explicit in the IR. This change really highlights the fact that RSForGC is a CodeGenPrep-like pass which is performing target specific lowering. In the long run, we may even want to combine the two though this would require a lot more smarts to be integrated into RSForGC first. We currently rely on being able to run a set of cleanup passes post rewriting because the IR RSForGC generates is pretty damn ugly.
Differential Revision: http://reviews.llvm.org/D11819
llvm-svn: 244821
This commit moves the code that parses the frame indices for the fixed stack
objects from the method 'parseFixedStackObjectOperand' to a new method named
'parseFixedStackFrameIndex', so that it can be reused when parsing fixed stack
pseudo source values.
llvm-svn: 244814
When rewriting the IR such that base pointers are available for every live pointer, we potentially need to duplicate instructions to propagate the base. The original code had only handled PHI and Select under the belief those were the only instructions which would need duplicated. When I added support for vector instructions, I'd added a collection of hacks for ExtractElement which caught most of the common cases. Of course, I then found the one test case my hacks couldn't cover. :)
This change removes all of the early hacks for extract element. By defining extractelement as a BDV (rather than trying to look through it), we can extend the rewriting algorithm to duplicate the extract as needed. Note that a couple of peephole optimizations were left in for the moment, because while we now handle extractelement as a first class citizen, we're not yet handling insertelement. That change will follow in the near future.
llvm-svn: 244808
AliasAnalysis.
Same as the other commits, the TLI access from an alias analysis is
going away and isn't very clean -- it is better to explicitly mark the
dependencies.
llvm-svn: 244785
just depend on it directly.
This was particularly frustrating because there was a really wide
mixture of using a member variable and re-extracting it from the AA that
happened to be around. I think the result is much more clear.
I've also deleted all of the pointless null checks and used references
across the APIs where I could to make it explicit that this cannot be
null in a useful fashion.
llvm-svn: 244780
Summary:
D11924 implemented part of the floating-point comparisons, this patch implements the rest:
* Tell ISelLowering that all booleans are either 0 or 1.
* Expand the eq/ne/lt/le/gt/ge floating-point comparisons to the canonical ones (similar to what Mips32r6InstrInfo.td does).
* Add tests for ord/uno.
* Add tests for ueq/one/ult/ule/ugt/uge.
* Fix existing comparison tests to remove the (res & 1) code, which setBooleanContents stops from generating.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11970
llvm-svn: 244779
relying on sneaking it out of its AliasAnalysis.
This abuse of AA (to shuffle TLI around rather than explicitly depending
on it) is going away with my refactor of AA.
llvm-svn: 244778
r243382 changed the behavior to always require a set of memchecks to be
passed to LoopVer. This change restores the prior behavior as an
alternative to the new behavior. This allows the checks to be
implicitly taken from the LAA object.
Patch by Ashutosh Nema!
llvm-svn: 244763
r242520 was reverted in r244313 as the expected behaviour of the alias
attribute in C is that the alias has the same size as the aliasee. However
we can re-introduce adding the size on the alias when the aliasee does not,
from a source code or object perspective, exist as a discrete entity. This
happens when the aliasee is not a symbol, or when that symbol is private.
Differential Revision: http://reviews.llvm.org/D11943
llvm-svn: 244752
On Mach-O emitting aliases for the variables that make up a MergedGlobals
variable can cause problems when linking with dead stripping enabled so don't
do that, except for external variables where we must emit an alias.
llvm-svn: 244748
This abstracts away the test for "when can we fold across a MachineInstruction"
into the the MI interface, and changes call-frame optimization use the same test
the peephole optimizer users.
Differential Revision: http://reviews.llvm.org/D11945
llvm-svn: 244729
As discussed in D11886, this patch moves the SSE/AVX vector blend folding to instcombiner from PerformINTRINSIC_WO_CHAINCombine (which allows us to remove this completely).
InstCombiner already had partial support for this, I just had to add support for zero (ConstantAggregateZero) masks and also the case where both selection inputs were the same (allowing us to ignore the mask).
I also moved all the relevant combine tests into InstCombine/blend_x86.ll
Differential Revision: http://reviews.llvm.org/D11934
llvm-svn: 244723
The same value is used multiple times through the function. Hoist the condition
into a variable. This should fix a silly static analysis warning where the
conditions flip around. No functional change intended.
llvm-svn: 244713
This commit transforms the mips-specific 'MipsCallEntry' subclass of the
'PseudoSourceValue' class into two, target-independent subclasses named
'GlobalValuePseudoSourceValue' and 'ExternalSymbolPseudoSourceValue'.
This change makes it easier to serialize the pseudo source values by removing
target-specific pseudo source values.
Reviewers: Akira Hatanaka
llvm-svn: 244698
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
This commit introduces a new enumerator named 'PSVKind' in the
'PseudoSourceValue' class. This enumerator is now used to distinguish between
the various kinds of pseudo source values.
This change is done in preparation for the changes to the pseudo source value
object management and to the PseudoSourceValue's class hierarchy - the next two
PseudoSourceValue commits will get rid of the global variable that manages the
pseudo source values and the mips specific MipsCallEntry subclass.
Reviewers: Akira Hatanaka
llvm-svn: 244687
This commit updates the documentation comments in PseudoSourceValue.cpp and
PseudoSourceValue.h based on the LLVM's documentation style. It also fixes
several instances of variable names that started with a lowercase letter.
This change is done in preparation for the changes to the pseudo source value
object management and to the PseudoSourceValue's class hierarchy.
llvm-svn: 244686
This commit reformats the files lib/CodeGen/PseudoSourceValue.cpp and
include/llvm/CodeGen/PseudoSourceValue.h using clang-format. This change is
done in preparation for the changes to the pseudo source value object
management and to the PseudoSourceValue's class hierarchy.
llvm-svn: 244685
For NVPTX, try to use 32-bit division instead of 64-bit division when the dividend and divisor
fit in 32 bits. This speeds up some internal benchmarks significantly. The underlying reason
is that many index computations are carried out in 64-bits but never actually exceed the
capacity of a 32-bit word.
llvm-svn: 244684
Mangled "linkage" names can be huge, and if the debugger (or other
tools) have no use for them, the size savings can be very impressive
(on the order of 40%).
Add one test for controlling behavior, and modify a number of tests to
either stop using linkage names, or make llc emit them (so these tests
will still run when the default triple is for PS4).
Differential Revision: http://reviews.llvm.org/D11374
llvm-svn: 244678
`InstCombiner::OptimizeOverflowCheck` was asserting an
invariant (operands to binary operations are ordered by decreasing
complexity) that wasn't really an invariant. Fix this by instead having
`InstCombiner::OptimizeOverflowCheck` establish the invariant if it does
not hold.
llvm-svn: 244676
Some of the FP comparisons (ueq, one, ult, ule, ugt, uge) are currently broken, I'll fix them in a follow-up.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11924
llvm-svn: 244665
Summary: This patch adds check for dead blocks and skip them for processSwitchInst(). This will help reduce compilation time.
Reviewers: reames, hans
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11953
llvm-svn: 244656
Summary: Implementation is the same as in AArch64.
Subscribers: aemerson, jfb, llvm-commits, sunfish
Differential Revision: http://reviews.llvm.org/D11956
llvm-svn: 244655
Summary:
For example:
s6 = s0*s5;
s2 = s6*s6 + s6;
...
s4 = s6*s3;
We notice that it is possible for s2 is folded to fma (s0, s5, fmul (s6 s6)).
This only happens when Aggressive is true, otherwise hasOneUse() check
already prevents from folding the multiplication with more uses.
Test Plan: test/CodeGen/NVPTX/fma-assoc.ll
Patch by Xuetian Weng
Reviewers: hfinkel, apazos, jingyue, ohsallen, arsenm
Subscribers: arsenm, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D11855
llvm-svn: 244649
Summary: LowerSwitch crashed with the attached test case after deleting the default block. This happened because the current implementation of deleting dead blocks is wrong. After the default block being deleted, it contains no instruction or terminator, and it should no be traversed anymore. However, since the iterator is advanced before processSwitchInst() function is executed, the block advanced to could be deleted inside processSwitchInst(). The deleted block would then be visited next and crash dyn_cast<SwitchInst>(Cur->getTerminator()) because Cur->getTerminator() returns a nullptr. This patch fixes this problem by recording dead default blocks into a list, and delete them after all processSwitchInst() has been done. It still possible to visit dead default blocks and waste time process them. But it is a compile time issue, and I plan to have another patch to add support to skip dead blocks.
Reviewers: kariddi, resistor, hans, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11852
llvm-svn: 244642
Summary:
For LTO we need to enable this pass in the LTO pipeline,
as it is skipped during the "-flto -c" compile step (when PrepareForLTO is
set).
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11919
llvm-svn: 244622
Other objects can never reference the MergedGlobals symbol so external linkage
is never needed. Using private instead of internal linkage means the object is
more similar to what it looks like when global merging is not enabled, with
the only difference being that the merged variables are addressed indirectly
relative to the start of the section they are in.
Also add aliases for merged variables with internal linkage, as this also makes
the object be more like what it is when they are not merged.
Differential Revision: http://reviews.llvm.org/D11942
llvm-svn: 244615
First step in preventing immediates that occur more than once within a single
basic block from being pulled into their users, in order to prevent unnecessary
large instruction encoding .Currently enabled only when optimizing for size.
Patch by: zia.ansari@intel.com
Differential Revision: http://reviews.llvm.org/D11363
llvm-svn: 244601
Lower Intrinsic::aarch64_neon_fmin/fmax to fminnum/fmannum and match that instead. Minimal functional change:
- Extra tests added because coverage of scalar fminnm/fmaxnm instructions was nonexistant.
- f16 test updated because now we actually generate scalar fminnm/fmaxnm we no longer need to bail out to a libcall!
llvm-svn: 244595
Lower Intrinsic::arm_neon_vmins/vmaxs to fminnan/fmaxnan and match that instead. This is important because SDAG will soon be able to select FMINNAN itself, so we need a unified lowering path for intrinsics and SDAG.
NFCI.
llvm-svn: 244593
Lower the intrinsic to a FMINNUM/FMAXNUM node and select that instead. This is important because soon SDAG will be able to select FMINNUM/FMAXNUM itself, so we need an integrated lowering path between SDAG and intrinsics.
NFCI.
llvm-svn: 244592
REPE, REPZ, REPNZ, REPNE should have mnemonics for Intel syntax as well.
Currently using these instructions causes compilation errors for Intel syntax.
Differential Revision: http://reviews.llvm.org/D11794
llvm-svn: 244584
The "imul reg, imm" alias is not defined for intel syntax.
In intel syntax there is no w/l/q suffix for the imul instruction.
Differential Revision: http://reviews.llvm.org/D11887
llvm-svn: 244582
The intention of these is to be a corollary to ISD::FMINNUM/FMAXNUM,
differing only on how NaNs are treated. FMINNUM returns the non-NaN
input (when given one NaN and one non-NaN), FMINNAN returns the NaN
input instead.
This patch includes support for scalarizing, widening and splitting
vectors, but not expansion or softening. The reason is that these
should never be needed - FMINNAN nodes are only going to be created
in one place (SDAGBuilder::visitSelect) and there we'll check if the
node is legal or custom. I could preemptively add expand and soften
code, but I'm fairly opposed to adding code I can't test. It's bad
enough I can't create tests with this patch, but at least this code
will be exercised by the ARM and AArch64 backends fairly shortly.
llvm-svn: 244581
The select pattern recognition in ValueTracking (as used by InstCombine
and SelectionDAGBuilder) only knew about integer patterns. This teaches
it about minimum and maximum operations.
matchSelectPattern() has been extended to return a struct containing the
existing Flavor and a new enum defining the pattern's behavior when
given one NaN operand.
C minnum() is defined to return the non-NaN operand in this case, but
the idiomatic C "a < b ? a : b" would return the NaN operand.
ARM and AArch64 at least have different instructions for these different cases.
llvm-svn: 244580
Summary:
This patch remaps the assembly idiom 'move' to 'or' instead of 'daddu' or
'addu'. The use of addu/daddu instead of or as move was highlighted as a
performance issue during the analysis of a recent 64bit design. Originally
move was encoded as 'or' by binutils but was changed for the r10k cpu family
due to their pipeline which had 2 arithmetic units and a single logical unit,
and so could issue multiple (d)addu based moves at the same time but only 1
logical move.
This patch preserves the disassembly behaviour so that disassembling a old style
(d)addu move still appears as move, but assembling move always gives an or
Patch by Simon Dardis.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11796
llvm-svn: 244579
When optimizing for size, replace "addl $4, %esp" and "addl $8, %esp"
following a call by one or two pops, respectively. We don't try to do it in
general, but only when the stack adjustment immediately follows a call - which
is the most common case.
That allows taking a short-cut when trying to find a free register to pop into,
instead of a full-blown liveness check. If the adjustment immediately follows a
call, then every register the call clobbers but doesn't define should be dead at
that point, and can be used.
Differential Revision: http://reviews.llvm.org/D11749
llvm-svn: 244578
The condition for clearing the folding candidate list was clamped together
with the "uninteresting instruction" condition. This is too conservative,
e.g. we don't need to clear the list when encountering an IMPLICIT_DEF.
Differential Revision: http://reviews.llvm.org/D11591
llvm-svn: 244577
Summary: I somehow forgot to add these when I added the basic floating-point opcodes. Also remove ceil/floor/trunc/nearestint for now, and add them only when properly tested.
Subscribers: llvm-commits, sunfish, jfb
Differential Revision: http://reviews.llvm.org/D11927
llvm-svn: 244562
This adds somewhat basic preparation functionality including:
- Formation of funclets via coloring basic blocks.
- Cloning of polychromatic blocks to ensure that funclets have unique
program counters.
- Demotion of values used between different funclets.
- Some amount of cleanup once we have removed predecessors from basic
blocks.
- Verification that we are left with a CFG that makes some amount of
sense.
N.B. Arguments and numbering still need to be done.
Differential Revision: http://reviews.llvm.org/D11750
llvm-svn: 244558
This patch and a relatec clang patch solve the problem of having to explicitly enable analysis when specifying a loop hint pragma to get the diagnostics. Passing AlwasyPrint as the pass name (see below) causes the front-end to print the diagnostic if the user has specified '-Rpass-analysis' without an '=<target-pass>’. Users of loop hints can pass that compiler option without having to specify the pass and they will get diagnostics for only those loops with loop hints.
llvm-svn: 244555
Summary: convertToHexString doesn't represent them correctly at this point in time. This is a follow-up to sunfish's suggestion in D11914.
Subscribers: llvm-commits, sunfish, jfb
Differential Revision: http://reviews.llvm.org/D11925
llvm-svn: 244551
This commit serializes the UsedPhysRegMask register mask from the machine
register information class. The mask is serialized as an inverted
'calleeSavedRegisters' mask to keep the output minimal.
This commit also allows the MIR parser to infer this mask from the register
mask operands if the machine function doesn't specify it.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244548
This patch moves checking the threshold of runtime pointer checks to the vectorization requirements (late diagnostics) and emits a diagnostic that infroms the user the loop would be vectorized if not for exceeding the pointer-check threshold. Clang will also append the options that can be used to allow vectorization.
llvm-svn: 244523
Summary:
For now output using C99's hexadecimal floating-point representation.
This patch also cleans up how machine operands are printed: instead of special-casing per type of machine instruction, the code now handles operands generically.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11914
llvm-svn: 244520
The PATCHPOINT instructions have a single optional defined register operand,
but the machine verifier can't verify the optional defined register operands.
This commit makes sure that the machine verifier won't report an error when a
PATCHPOINT instruction doesn't have its optional defined register operand.
This change will allow us to enable the machine verifier for the code
generation tests for the patchpoint intrinsics.
Reviewers: Juergen Ributzka
llvm-svn: 244513
frame setup instruction.
This commit ensures that the stack map lowering code in FastISel adds an
appropriate number of immediate operands to the frame setup instruction.
The previous code added just one immediate operand, which was fine for a target
like AArch64, but on X86 the ADJCALLSTACKDOWN64 instruction needs two explicit
operands. This caused the machine verifier to report an error when the old code
added just one.
Reviewers: Juergen Ributzka
Differential Revision: http://reviews.llvm.org/D11853
llvm-svn: 244508
NaCl's sandbox doesn't allow PUSHF/POPF out of security concerns (priviledged emulators have forgotten to mask system bits in the past, and EFLAGS's DF bit is a constant source of hilarity). Commit r220529 fixed PR20376 by saving cmpxchg's flags result using EFLAGS, this commit now generated LAHF/SAHF instead, for all of x86 (not just NaCl) because it leads to an overall performance gain over PUSHF/POPF.
As with the previous patch this code generation is pretty bad because it occurs very later, after register allocation, and in many cases it rematerializes flags which were already available (e.g. already in a register through SETE). Fortunately it's somewhat rare that this code needs to fire.
I did [[ https://github.com/jfbastien/benchmark-x86-flags | a bit of benchmarking ]], the results on an Intel Haswell E5-2690 CPU at 2.9GHz are:
| Time per call (ms) | Runtime (ms) | Benchmark |
| 0.000012514 | 6257 | sete.i386 |
| 0.000012810 | 6405 | sete.i386-fast |
| 0.000010456 | 5228 | sete.x86-64 |
| 0.000010496 | 5248 | sete.x86-64-fast |
| 0.000012906 | 6453 | lahf-sahf.i386 |
| 0.000013236 | 6618 | lahf-sahf.i386-fast |
| 0.000010580 | 5290 | lahf-sahf.x86-64 |
| 0.000010304 | 5152 | lahf-sahf.x86-64-fast |
| 0.000028056 | 14028 | pushf-popf.i386 |
| 0.000027160 | 13580 | pushf-popf.i386-fast |
| 0.000023810 | 11905 | pushf-popf.x86-64 |
| 0.000026468 | 13234 | pushf-popf.x86-64-fast |
Clearly `PUSHF`/`POPF` are suboptimal. It doesn't really seems to be worth teaching LLVM about individual flags, at least not for this purpose.
Reviewers: rnk, jvoung, t.p.northover
Subscribers: llvm-commits
Differential revision: http://reviews.llvm.org/D6629
llvm-svn: 244503
As discussed in D11760, this patch moves the (V)PSRA(WD) arithmetic shift-by-constant folding to InstCombine to match the logical shift implementations.
Differential Revision: http://reviews.llvm.org/D11886
llvm-svn: 244495
This patch moves the verification of fast-math to just before vectorization is done. This way we can tell clang to append the command line options would that allow floating-point commutativity. Specifically those are enableing fast-math or specifying a loop hint.
llvm-svn: 244489
Sometimes interleaving is not beneficial, as determined by the cost-model and sometimes it is disabled by a loop hint (by the user). This patch modifies the diagnostic messages to make it clear why interleaving wasn't done.
llvm-svn: 244485
The LDD/STD instructions can load/store a 64bit quantity from/to
memory to/from a consecutive even/odd pair of (32-bit) registers. They
are part of SparcV8, and also present in SparcV9. (Although deprecated
there, as you can store 64bits in one register).
As recommended on llvmdev in the thread "How to enable use of 64bit
load/store for 32bit architecture" from Apr 2015, I've modeled the
64-bit load/store operations as working on a v2i32 type, rather than
making i64 a legal type, but with few legal operations. The latter
does not (currently) work, as there is much code in llvm which assumes
that if i64 is legal, operations like "add" will actually work on it.
The same assumption does not hold for v2i32 -- for vector types, it is
workable to support only load/store, and expand everything else.
This patch:
- Adds a new register class, IntPair, for even/odd pairs of registers.
- Modifies the list of reserved registers, the stack spilling code,
and register copying code to support the IntPair register class.
- Adds support in AsmParser. (note that in asm text, you write the
name of the first register of the pair only. So the parser has to
morph the single register into the equivalent paired register).
- Adds the new instructions themselves (LDD/STD/LDDA/STDA).
- Hooks up the instructions and registers as a vector type v2i32. Adds
custom legalizer to transform i64 load/stores into v2i32 load/stores
and bitcasts, so that the new instructions can actually be
generated, and marks all operations other than load/store on v2i32
as needing to be expanded.
- Copies the unfortunate SelectInlineAsm hack from ARMISelDAGToDAG.
This hack undoes the transformation of i64 operands into two
arbitrarily-allocated separate i32 registers in
SelectionDAGBuilder. and instead passes them in a single
IntPair. (Arbitrarily allocated registers are not useful, asm code
expects to be receiving a pair, which can be passed to ldd/std.)
Also adds a bunch of test cases covering all the bugs I've added along
the way.
Differential Revision: http://reviews.llvm.org/D8713
llvm-svn: 244484
This change adds the unroll metadata "llvm.loop.unroll.enable" which directs
the optimizer to unroll a loop fully if the trip count is known at compile time, and
unroll partially if the trip count is not known at compile time. This differs from
"llvm.loop.unroll.full" which explicitly does not unroll a loop if the trip count is not
known at compile time.
The "llvm.loop.unroll.enable" is intended to be added for loops annotated with
"#pragma unroll".
llvm-svn: 244466
Summary:
This adds a hook to TTI which enables us to selectively turn on by default
interleaved access vectorization for targets on which we have have performed
the required benchmarking.
Reviewers: rengolin
Subscribers: rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D11901
llvm-svn: 244449
The scalarizer can cache incorrect entries when walking up a chain of
insertelement instructions. This occurs when it encounters more than one
instruction that it is not actively searching for, as it unconditionally caches
every element it finds. The fix is to only cache the first element that it
isn't searching for so we don't overwrite correct entries.
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D11559
llvm-svn: 244448
Summary:
Analogously to Function::viewCFG(), RegionInfo::view() and RegionInfo::viewOnly() are meant to be called in debugging sessions. They open a viewer to show how RegionInfo currently understands the region hierarchy.
The functions viewRegion(Function*) and viewRegionOnly(Function*) invoke a fresh region analysis of the function in contrast to viewRegion(RegionInfo*) and viewRegionOnly(RegionInfo*) which show the current analysis result.
Reviewers: grosser
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11875
llvm-svn: 244444
This allows printing region graphs when only the RegionInfo (e.g. Region::getRegionInfo()), but no RegionInfoPass object is available.
Specifically, we will use this to print RegionInfo graphs in the debugger.
Differential version: http://reviews.llvm.org/D11874
Reviewed-by: grosser
llvm-svn: 244442
PR24139 contains an analysis of poor register allocation. One of the findings
was that when calculating the spill weight, a rematerializable interval once
split is no longer rematerializable. This is because the isRematerializable
check in CalcSpillWeights.cpp does not follow the copies introduced by live
range splitting (after splitting, the live interval register definition is a
copy which is not rematerializable).
Reviewers: qcolombet
Differential Revision: http://reviews.llvm.org/D11686
llvm-svn: 244439
The SP was always unconditionally assigned to later, but initialised early.
This delays the initialisation, and avoids the dead store. Identified by
clang static analysis. No functional change intended.
llvm-svn: 244423
We can only PHI translate instructions. In our attempt to PHI translate
a bitcast, we attempt to translate its operand; however, the operand
might be an argument or a global instead of an instruction. Benignly
bail out when this happens.
This fixes PR24397.
Differential Revision: http://reviews.llvm.org/D11879
llvm-svn: 244418
The pass adds new kernel arguments for image attributes, and
resolves calls to dummy attribute and resource id getter functions.
Patch by: Zoltan Gilian
llvm-svn: 244372
This is unused after filtering checks was moved to the clients.
As a result, we can just return the number of the checks in the
precomputed set.
llvm-svn: 244369
This is the full set of checks that clients can further filter. IOW,
it's client-agnostic. This makes LAA complete in the sense that it now
provides the two main results of its analysis precomputed:
1. memory dependences via getDepChecker().getInsterestingDependences()
2. run-time checks via getRuntimePointerCheck().getChecks()
However, as a consequence we now compute this information pro-actively.
Thus if the client decides to skip the loop based on the dependences
we've computed the checks unnecessarily. In order to see whether this
was a significant overhead I checked compile time on SPEC2k6 LTO bitcode
files. The change was in the noise.
The checks are generated in canCheckPtrAtRT, at the same place where we
used to call groupChecks to merge checks.
llvm-svn: 244368
At this point the given Opc must be valid, otherwise we should
not look for a matching pair to form paired load or store.
Thanks to Chad to point out this piece of code!
llvm-svn: 244366
Summary:
With InstAlias, we don't need to print the _e32 portion of the mnemonic
when we print the $dst operand. This change makes it possible to
include vcc in the asm string when we switch VOPC over to having
implicit vcc defs.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11813
llvm-svn: 244362
This commit extract the code that parses the 64-bit offset from the method
'parseOperandsOffset' to a new method 'parseOffset' so that we can reuse it
when parsing the offset for the machine memory operands.
llvm-svn: 244355
Summary: llvm::ConstantFoldTerminator function can convert SwitchInst with single case (and default) to a conditional BranchInst. This patch adds support to preserve make.implicit metadata on this conversion.
Reviewers: sanjoy, weimingz, chenli
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D11841
llvm-svn: 244348
This patch fixes the sse2/avx2 vector shift by constant instcombine call to correctly deal with the fact that the shift amount is formed from the entire lower 64-bit and not just the lowest element as it currently assumes.
e.g.
%1 = tail call <4 x i32> @llvm.x86.sse2.psrl.d(<4 x i32> %v, <4 x i32> <i32 15, i32 15, i32 15, i32 15>)
In this case, (V)PSRLD doesn't perform a lshr by 15 but in fact attempts to shift by 64424509455 ((15 << 32) | 15) - giving a zero result.
In addition, this review also recognizes shift-by-zero from a ConstantAggregateZero type (PR23821).
Differential Revision: http://reviews.llvm.org/D11760
llvm-svn: 244341
PrettyStackTraceHead is a LLVM_THREAD_LOCAL, which means it's just a global
in LLVM_ENABLE_THREADS=NO builds. If a CrashRecoveryContext is used with
code that uses PrettyStackEntries, and a crash happens, PrettyStackTraceHead is
currently not reset to its pre-crash value. These functions make it possible
to add a cleanup to such code that does this.
(Not reseting the value then causes the assert in ~PrettyStackTraceEntry() to
fire if the code outside of the CrashRecoveryContext also uses
PrettyStackEntries -- for example, clang when building a module.)
Part of PR11974.
llvm-svn: 244338
Summary: We were using the SI encoding for VI.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11812
llvm-svn: 244332
In tree they are only used by llvm-readobj, but it is also used by
https://github.com/mono/CppSharp.
While at it, add some missing error checking.
llvm-svn: 244320
NFC patch for current users, but llvm-dsymutil will use the new
functionality to adapt to the input linetable.
Based on a patch by Adrian Prantl.
llvm-svn: 244318
Summary:
Port the ReconstructShuffle function from AArch64 to ARM
to handle mismatched incoming types in the BUILD_VECTOR
node.
This fixes an outstanding FIXME in the ReconstructShuffle
code.
Reviewers: t.p.northover, rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11720
llvm-svn: 244314
Summary: WebAssembly's tablegen instructions have the names WebAssembly expects, but by LLVM convention they're uppercase and suffixed with their type after an underscore. Leave the C++ code that way, but print outt he names WebAssembly expects (lowercase, no type). We could teach tablegen to do this later, maybe by using `!cast<string>(node)` in the .td files.
Reviewers: sunfish
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D11776
llvm-svn: 244305
As a follow-up to r244181, resolve uniquing cycles underneath distinct
nodes on the fly. This prevents uniquing cycles in early operands from
affecting later operands. It also removes an iteration through distinct
nodes' operands.
No real functional change here, just more prompt resolution of temporary
nodes.
llvm-svn: 244302
The block address machine operands can reference IR blocks in other functions.
This commit fixes a bug where the references to unnamed IR blocks in other
functions weren't serialized correctly.
llvm-svn: 244299
This commit removes the 'StringOffset' and 'HasStringValue' fields from the
MIToken struct and simplifies the 'stringValue' method which now returns
the new 'StringValue' field.
This commit also adopts a different way of initializing the lexed tokens -
instead of constructing a new MIToken instance, the lexer resets the old token
using the new 'reset' method and sets its attributes using the new
'setStringValue', 'setOwnedStringValue', and 'setIntegerValue' methods.
Reviewers: Sean Silva
Differential Revision: http://reviews.llvm.org/D11792
llvm-svn: 244295
When we are not emitting the condition for the branch, because the condition is
in another BB or SDAG did the selection for us, then we have to mask the flag in
the register with AND.
This is required when the condition comes from a truncate, because SDAG only
truncates down to a legal size of i32.
This fixes rdar://problem/22161062.
llvm-svn: 244291
This reverts commit r243198 and 243304.
Turns out this wasn't the correct fix for this problem. It works only within
FastISel, but fails when the truncate is selected by SDAG.
llvm-svn: 244287
Summary:
This adds somewhat basic preparation functionality including:
- Formation of funclets via coloring basic blocks.
- Cloning of polychromatic blocks to ensure that funclets have unique
program counters.
- Demotion of values used between different funclets.
- Some amount of cleanup once we have removed predecessors from basic
blocks.
- Verification that we are left with a CFG that makes some amount of
sense.
N.B. Arguments and numbering still need to be done.
Reviewers: rnk, JosephTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11750
llvm-svn: 244272
After r244074, we now have a successors() method to iterate over
all the successors of a TerminatorInst. This commit changes a bunch
of eligible loops to use it.
llvm-svn: 244260
Summary: This allows us to consolidate several of the TableGen patterns.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11602
llvm-svn: 244253
libclang uses a CrashRecoveryContext, and building a module does too. If a
module gets built through libclang, nested CrashRecoveryContexts are used. They
work fine with threads as things are stored in ThreadLocal variables, but in
LLVM_ENABLE_THREADS=OFF builds the two recovery contexts would write to the
same globals.
To fix, keep active CrashRecoveryContextImpls in a list and have the global
point to the innermost one, and do something similar for
tlIsRecoveringFromCrash.
Necessary (but not sufficient) for PR11974 and PR20325
http://reviews.llvm.org/D11770
llvm-svn: 244251
points.
There is an infinite loop that can occur in Shrink Wrapping while searching
for the Save/Restore points.
Part of this search checks whether the save/restore points are located in
different loop nests and if so, uses the (post) dominator trees to find the
immediate (post) dominator blocks. However, if the current block does not have
any immediate (post) dominators then this search will result in an infinite
loop. This can occur in code containing an infinite loop.
The modification checks whether the immediate (post) dominator is different from
the current save/restore block. If it is not, then the search terminates and the
current location is not considered as a valid save/restore point for shrink wrapping.
Phabricator: http://reviews.llvm.org/D11607
llvm-svn: 244247
iisUnmovableInstruction() had a list of instructions hardcoded which are
considered unmovable. The list lacked (at least) an entry for the va_arg
and cmpxchg instructions.
Fix this by introducing a new Instruction::mayBeMemoryDependent()
instead of maintaining another instruction list.
Patch by Matthias Braun <matze@braunis.de>.
Differential Revision: http://reviews.llvm.org/D11577
rdar://problem/22118647
llvm-svn: 244244
It adds a new constructor, which takes a std::function predicate function that
is run at the beginning of shrink wrapping to determine whether the optimization
should run on the given machine function. The std::function can be overridden by
each target, allowing target-specific decisions to be made on each machine
function.
This is necessary for PowerPC, as the decision to run shrink wrapping is
partially based on the ABI. Futhermore, this operates nicely with the GCC iFunc
capability, which allows option overrides on a per-function basis.
Phabricator: http://reviews.llvm.org/D11421
llvm-svn: 244235
Summary: Divide the primitive size in bits by eight so the initial load's alignment is in bytes as expected. Tested with the included unit test.
Reviewers: rengolin, jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11804
llvm-svn: 244229
This change improves EmitLoweredSelect() so that multiple contiguous CMOV pseudo
instructions with the same (or exactly opposite) conditions get lowered using a single
new basic-block. This eliminates unnecessary extra basic-blocks (and CFG merge points)
when contiguous CMOVs are being lowered.
Patch by: kevin.b.smith@intel.com
Differential Revision: http://reviews.llvm.org/D11428
llvm-svn: 244202
This is the first mechanical step in preparation for making this and all
the other alias analysis passes available to the new pass manager. I'm
factoring out all the totally boring changes I can so I'm moving code
around here with no other changes. I've even minimized the formatting
churn.
I'll reformat and freshen comments on the interface now that its located
in the right place so that the substantive changes don't triger this.
llvm-svn: 244197
The COFFSymbolRef::isFunctionDefinition() function tests for several conditions
that are not related to whether a symbol is a function, but rather whether
the symbol meets the requirements for a function definition auxiliary record,
which excludes certain symbols such as internal functions and undefined
references. The test we need to determine the symbol type is much simpler:
we only need to compare the complex type against IMAGE_SYM_DTYPE_FUNCTION.
llvm-svn: 244195
around a DataLayout interface in favor of directly querying DataLayout.
This wrapper specifically helped handle the case where this no
DataLayout, but LLVM now requires it simplifynig all of this. I've
updated callers to directly query DataLayout. This in turn exposed
a bunch of places where we should have DataLayout readily available but
don't which I've fixed. This then in turn exposed that we were passing
DataLayout around in a bunch of arguments rather than making it readily
available so I've also fixed that.
No functionality changed.
llvm-svn: 244189
This commit implements the initial serialization of the machine operand target
flags. It extends the 'TargetInstrInfo' class to add two new methods that help
to provide text based serialization for the target flags.
This commit can serialize only the X86 target flags, and the target flags for
the other targets will be serialized in the follow-up commits.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244185
Rotate the algorithm for remapping distinct nodes in order to simplify
how uniquing cycles get resolved. This removes some of the recursion,
and, most importantly, exposes all uniquing cycles at the top-level.
Besides being a little more efficient -- temporary MDNodes won't live as
long -- the clearer logic should help protect against bugs like those
fixed in r243961 and r243976.
What are uniquing cycles? Why do they present challenges when remapping
metadata?
!0 = !{!1}
!1 = !{!0}
!0 and !1 form a simple uniquing cycle. When remapping from one
metadata graph to another, every uniquing cycle gets "duplicated"
through a dance:
!0-temp = !{!1?} ; map(!0): clone !0, VM[!0] = !0-temp
!1-temp = !{!0?} ; ..map(!1): clone !1, VM[!1] = !1-temp
!1-temp = !{!0-temp} ; ..map(!1): remap !1's operands
!2 = !{!0-temp} ; ..map(!1): uniquify: !1-temp => !2
!0-temp = !{!2} ; map(!0): remap !0's operands
!3 = !{!2} ; map(!0): uniquify: !0-temp => !3
; Result
!2 = !{!3}
!3 = !{!2}
(In the two "uniquify" steps above, the operands of !X-temp are compared
to the operands of !X. If they're the same, then !X-temp gets RAUW'ed
to !X; if they're different, then !X-temp is promoted to a new unique
node. The latter case always hits in for uniquing cycles, so we
duplicate all the nodes involved.)
Why is this a problem? Uniquable Metadata nodes that have temporary
node as transitive operands keep RAUW support until the temporary nodes
get finalized. With non-cycles, this happens automatically: when a
uniquable node's count of unresolved operands drops to zero, it
immediately sheds its own RAUW support (possibly triggering the same in
any node that references it). However, uniquing cycles create a
reference cycle, and uniqued nodes that transitively reference a
uniquing cycle are "stuck" in an unresolved state until someone calls
`MDNode::resolveCycles()` on a node in the unresolved subgraph.
Distinct nodes should help here (and mostly do): since they aren't
uniqued anywhere, they are guaranteed not to be RAUW'ed. They
effectively form a barrier between uniqued nodes, breaking some uniquing
cycles, and shielding uniqued nodes from uniquing cycles.
Unfortunately, with this barrier in place, the unresolved subgraph(s)
can be disjoint from the top-level node. The mapping algorithm needs to
find at least one representative from each disjoint subgraph. But which
nodes are *stuck*, and which will get resolved automatically? And which
nodes are in the unresolved subgraph? The old logic was conservative.
This commit rotates the logic for distinct nodes, so that we have access
to unresolved nodes at the top-level call to `llvm::MapMetadata()`.
Each time we return to the top-level, we know that all temporaries have
been RAUW'ed away. Here, it's safe (and necessary) to call
`resolveCycles()` immediately on unresolved operands.
This should also perform better than the old algorithm. The recursion
stack is shorter, temporary nodes don't live as long, and there are
fewer tracking references to unresolved nodes. As the debug info graph
introduces more 'distinct' nodes, remapping should incrementally get
cheaper and cheaper.
Aside from possible performance improvements (and reduced cruft in the
`LLVMContext`), there should be no functionality change here.
llvm-svn: 244181
Rename `remap()` to `remapOperands()`, and restrict its contract to
remapping operands. Previously, it also called `mapToMetadata()`, but
this logic is hard to reason about externally. In particular, this
refactors `mapUniquedNode()` to avoid redundant mapping calls, taking
advantage of the RAUWs that are already in place.
llvm-svn: 244168
Summary: The casts from String to PatFrag weren't needed if we instead provided an SDNode. This fix was suggested by @pete in D11382.
Subscribers: pete, llvm-commits
Differential Revision: http://reviews.llvm.org/D11788
llvm-svn: 244167
More specifically, make NVPTXISelDAGToDAG able to emit cached loads (LDG) for pointer induction variables.
Also fix latent bug where LDG was not restricted to kernel functions. I believe that this could not be triggered so far since we do not currently infer that a pointer is global outside a kernel function, and only loads of global pointers are considered for cached loads.
llvm-svn: 244166
This is intended to help support the idiom of a class that has some
other objects (or multiple arrays of different types of objects)
appended on the end, which is used quite heavily in clang.
Differential Revision: http://reviews.llvm.org/D11272
llvm-svn: 244164
Summary:
Emit both DWARF and CodeView if "CodeView" and "Dwarf Version" module
flags are set.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11756
llvm-svn: 244158
This commit serializes the offset for the following operands: target index,
global address, external symbol, constant pool index, and block address.
llvm-svn: 244157
1. Create a utility function normalizeEdgeWeights() in MachineBranchProbabilityInfo that normalizes a list of edge weights so that the sum of then can fit in uint32_t.
2. Provide an interface in MachineBasicBlock to normalize its successors' weights.
3. Add a flag in MachineBasicBlock that tracks whether its successors' weights are normalized.
4. Provide an overload of getSumForBlock that accepts a non-const pointer to a MBB so that it can force normalizing this MBB's successors' weights.
5. Update several uses of getSumForBlock() by eliminating the once needed weight scale.
Differential Revision: http://reviews.llvm.org/D11442
llvm-svn: 244154
Summary: PR24191 finds that the expected memory-register operations aren't generated when relaxed { load ; modify ; store } is used. This is similar to PR17281 which was addressed in D4796, but only for memory-immediate operations (and for memory orderings up to acquire and release). This patch also handles some floating-point operations.
Reviewers: reames, kcc, dvyukov, nadav, morisset, chandlerc, t.p.northover, pete
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11382
llvm-svn: 244128
pass manager.
This never worked, and won't ever work. It was actually why I ended up
building the LazyCallGraph set of code which is more more effectively
wired up to the new pass manager. This accidentally got committed when
I was trying to land a cleanup of the code organization in the other
parts of this file. =[ My bad, but fortunately Dave was keen eyed enough
to spot that this code couldn't possibly work. =]
llvm-svn: 244127
The only place that tries to return a CallGraph by value
(CallGraphAnalysis::run) doesn't seem to be used right now, but it's a
reasonable bit of cleanup anyway.
llvm-svn: 244122
LoadedObjectInfo was depending on the implicit copy ctor in the presence
of a user-declared dtor. Default (and protect) it in the base class and
make the devired classes final to avoid any risk of a public API that
would enable slicing.
llvm-svn: 244112
This commit extracts the code that parses the IR constant values into a new
method named 'parseIRConstant' in the 'MIParser' class. The new method will
be reused by the code that parses the typed integer immediate machine operands.
llvm-svn: 244093
rather than 'unsigned' for their costs.
For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).
All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.
This passes all tests, and is also UBSan clean.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D11741
llvm-svn: 244080
In PR24288 it was pointed out that the easy case of a non-escaping
global and something that *obviously* required an escape sometimes is
hidden behind PHIs (or selects in theory). Because we have this binary
test, we can easily just check that all possible input values satisfy
the requirement. This is done with a (very small) recursion through PHIs
and selects. With this, the specific example from the PR is correctly
folded by GVN.
Differential Revision: http://reviews.llvm.org/D11707
llvm-svn: 244078
To get the successors of a BB we currently do successors(BB) which
ultimately walks the successors of the BB's terminator.
This moves the iterator to TerminatorInst as thats what we're actually
using to do the iteration, and adds a member function to TerminatorInst
to allow us to iterate directly over successors given an instruction.
For example, we can now do
for (auto *Succ : BI->successors())
instead of
for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
Reviewed by Tobias Grosser.
llvm-svn: 244074
On Darwin, it is required to stamp the object file with VERSION_MIN load
command. This commit will provide a VERSRION_MIN load command to the
MachO file that doesn't specify the version itself by inferring from
Target Triple.
llvm-svn: 244059
Summary: Among other things, this allows -print-after-all/-print-before-all to
dump IR around this pass.
IIRC, this pass is off by default, but it's still helpful when debugging.
llvm-svn: 244056
We can't propagate FMF partially without breaking DAG-level CSE. We either need to
relax CSE to account for mismatched FMF as a temporary work-around or fully propagate
FMF throughout the DAG.
Surprisingly, there are no existing regression tests for this, but here's an example:
define float @fmf(float %a, float %b) {
%mul1 = fmul fast float %a, %b
%nega = fsub fast float 0.0, %a
%mul2 = fmul fast float %nega, %b
%abx2 = fsub fast float %mul1, %mul2
ret float %abx2
}
$ llc -o - badflags.ll -march=x86-64 -mattr=fma -enable-unsafe-fp-math -enable-fmf-dag=0
...
vmulss %xmm1, %xmm0, %xmm0
vaddss %xmm0, %xmm0, %xmm0
retq
$ llc -o - badflags.ll -march=x86-64 -mattr=fma -enable-unsafe-fp-math -enable-fmf-dag=1
...
vmulss %xmm1, %xmm0, %xmm2
vfmadd213ss %xmm2, %xmm1, %xmm0 <--- failed to recognize that (a * b) was already calculated
retq
llvm-svn: 244053
Summary: Among other things, this allows -print-after-all/-print-before-all to
dump IR around this pass.
This is the AArch64 version of r243052.
llvm-svn: 244041
return StringSwitch<int>(Flags)
.Case("g", 0x1)
.Case("nzcvq", 0x2)
.Case("nzcvqg", 0x3)
.Default(-1);
...
// The _g and _nzcvqg versions are only valid if the DSP extension is
// available.
if (!Subtarget->hasThumb2DSP() && (Mask & 0x2))
return -1;
ARMARM confirms that the comment is right, and the code was wrong.
llvm-svn: 244029
In r242277, I updated the MachineCombiner to work with itineraries, but I
missed a call that is scheduling-model-only (the opcode-only form of
computeInstrLatency). Using the form that takes an MI* allows this to work with
itineraries (and should be NFC for subtargets with scheduling models).
llvm-svn: 244020
As documented in the LLVM Coding Standards, indeed MSVC incorrectly asserts
on this in Debug mode. This happens when building clang with Visual C++ and
-triple i686-pc-windows-gnu on these clang regression tests:
clang/test/CodeGen/2011-03-08-ZeroFieldUnionInitializer.c
clang/test/CodeGen/empty-union-init.c
llvm-svn: 243996
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
In the commentary for D11660, I wasn't sure if it was alright to create new
integer machine instructions without also creating the implicit EFLAGS operand.
From what I can see, the implicit operand is always created by the MachineInstrBuilder
based on the instruction type, so we don't have to do that explicitly. However, in
reviewing the debug output, I noticed that the operand was not marked as 'dead'.
The machine combiner should do that to preserve future optimization opportunities
that may be checking for that dead EFLAGS operand themselves.
Differential Revision: http://reviews.llvm.org/D11696
llvm-svn: 243990
Summary:
Previously, we would check whether the target is supported or not, only in
fastSelectInstruction(). This means that 64-bit targets could use FastISel too.
We fix this by checking every overridden method of the FastISel class and
by falling back to SelectionDAG if the target isn't supported. This change
should have been committed along with r243638, but somehow I missed it.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11755
llvm-svn: 243986
It introduced two regressions on 64-bit big-endian targets running under N32
(MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4, and
MultiSource/Applications/kimwitu++/kc) The issue is that on 64-bit targets
comparisons such as BEQ compare the whole GPR64 but incorrectly tell the
instruction selector that they operate on GPR32's. This leads to the
elimination of i32->i64 extensions that are actually required by
comparisons to work correctly.
There's currently a patch under review that fixes this problem.
llvm-svn: 243984
r243883 and r243961 made a use-after-free far more likely:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/6041/steps/check-llvm%20asan/logs/stdio
Unresolved nodes get inserted into the `Cycles` array. If they later
get resolved through RAUW, we need to update the reference. It's
interesting that this never hit before (maybe an asan-ified clang
bootstrap with `-flto -g` would have hit it, but I admit I haven't tried
anything quite that crazy).
llvm-svn: 243976
This change was done as an audit and is by inspection. The new EH
system is still very much a work in progress. NFC for the landingpad
case.
llvm-svn: 243965
r243883 started moving 'distinct' nodes instead of duplicated them in
lib/Linker. This had the side-effect of sometimes not cloning uniqued
nodes that reference them. I missed a corner case:
!named = !{!0}
!0 = !{!1}
!1 = distinct !{!0}
!0 is the entry point for "remapping", and a temporary clone (say,
!0-temp) is created and mapped in case we need to model a uniquing
cycle.
Recursive descent into !1. !1 is distinct, so we leave it alone,
but update its operand to !0-temp.
Pop back out to !0. Its only operand, !1, hasn't changed, so we don't
need to use !0-temp. !0-temp goes out of scope, and we're finished
remapping, but we're left with:
!named = !{!0}
!0 = !{!1}
!1 = distinct !{null} ; uh oh...
Previously, if !0 and !0-temp ended up with identical operands, then
!0-temp couldn't have been referenced at all. Now that distinct nodes
don't get duplicated, that assumption is invalid. We need to
!0-temp->replaceAllUsesWith(!0) before freeing !0-temp.
I found this while running an internal `-flto -g` bootstrap. Strangely,
there was no case of this in the open source bootstrap I'd done before
commit...
llvm-svn: 243961
If we don't have sys/wait.h and we're on a unix system there's no way
that several of the llvm tools work at all. This includes clang.
Just remove the configure and cmake checks entirely - we'll get a
build error instead of building something broken now.
llvm-svn: 243957
On the code path in ExpandUnalignedLoad which expands an unaligned vector/fp
value in terms of a legal integer load of the same size, the ChainResult needs
to be the chain result of the integer load.
No in-tree test case is currently available.
Patch by Jan Hranac!
llvm-svn: 243956
Summary: This patch adds enum value for an existing metadata type -- make.implicit. Using preassigned enum will be helpful to get compile time type checking and avoid string construction and comparison. The patch also changes uses of make.implicit from string metadata to enum metadata. There is no functionality change.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11698
llvm-svn: 243954
This adds the software division routines for the Windows RTABI. These are not
expected to be used often though as most modern Windows ARM capable targets
support hardware division. In the case that the target CPU doesnt support
hardware division, this will be the fallback.
llvm-svn: 243952
contained types into the space when we have no contained types. This
fixes the UB stemming from a call to memcpy with a null pointer. This
also reduces the calls to allocate because this actually happens in
a notable client - Clang.
Found by UBSan.
llvm-svn: 243944
Some are named "FP", others "SD", others still "FP*SD".
Rename all this to just use "FP", which, except for conversions
(which don't use this format naming scheme), implies "SD" anyway.
llvm-svn: 243936
It's already in SysRegMappings, no need to also have it in MSRMappings:
the latter is only used if we didn't find a match in the former.
llvm-svn: 243933
There's a bunch of code in LowerFCOPYSIGN that does smart lowering, and
is actually already vector-aware; let's use it instead of scalarizing!
The only interesting change is that for v2f32, we previously always used
use v4i32 as the integer vector type.
Use v2i32 instead, and mark FCOPYSIGN as Custom.
llvm-svn: 243926
We used to legalize it like it's any other binary operations. It's not,
because it accepts mismatched operand types. Because of that, we used
to hit various asserts and miscompiles.
Specialize vector legalizations to, in the worst case, unroll, or, when
possible, to just legalize the operand that needs legalization.
Scalarization isn't covered, because I can't think of a target where
some but not all of the 1-element vector types are to be scalarized.
llvm-svn: 243924
Various value handles needed to be copy constructible and copy
assignable (mostly for their use in DenseMap). But to avoid an API that
might allow accidental slicing, make these members protected in the base
class and make derived classes final (the special members become
implicitly public there - but disallowing further derived classes that
might be sliced to the intermediate type).
Might be worth having a warning a bit like -Wnon-virtual-dtor that
catches public move/copy assign/ctors in classes with virtual functions.
(suppressable in the same way - by making them protected in the base,
and making the derived classes final) Could be fancier and only diagnose
them when they're actually called, potentially.
Also allow a few default implementations where custom implementations
(especially with non-standard return types) were implemented.
llvm-svn: 243909
through PHI nodes across iterations.
This patch teaches the new advanced loop unrolling heuristics to propagate
constants into the loop from the preheader and around the backedge after
simulating each iteration. This lets us brute force solve simple recurrances
that aren't modeled effectively by SCEV. It also makes it more clear why we
need to process the loop in-order rather than bottom-up which might otherwise
make much more sense (for example, for DCE).
This came out of an attempt I'm making to develop a principled way to account
for dead code in the unroll estimation. When I implemented
a forward-propagating version of that it produced incorrect results due to
failing to propagate *cost* between loop iterations through the PHI nodes, and
it occured to me we really should at least propagate simplifications across
those edges, and it is quite easy thanks to the loop being in canonical and
LCSSA form.
Differential Revision: http://reviews.llvm.org/D11706
llvm-svn: 243900
Some functions return concrete ByteStreamers by value - explicitly
support that in the base class. (dtor can be virtual, no one seems to be
polymorphically owning/destroying them)
llvm-svn: 243897
This reverts commit r243888, recommitting r243824.
This broke the Windows build due to a difference in the C++ standard
library implementation. Using emplace/forward_as_tuple should ensure
there's no need to copy ValIDs.
llvm-svn: 243896
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
This is necessary for WatchOS support, where the compact unwind format assumes
this kind of layout. For now we only want this on Swift-like CPUs though, where
it's been the Xcode behaviour for ages. Also, since it can expand the prologue
we don't want it at -Oz.
llvm-svn: 243884
Instead of cloning distinct `MDNode`s when linking in a module, just
move them over. The module linker destroys the source module, so the
old node would otherwise just be leaked on the context. Create the new
node in place. This also reduces the number of cloned uniqued nodes
(since it's less likely their operands have changed).
This mapping strategy is only correct when we're discarding the source,
so the linker turns it on via a ValueMapper flag, `RF_MoveDistinctMDs`.
There's nothing observable in terms of `llvm-link` output here: the
linked module should be semantically identical.
I'll be adding more 'distinct' nodes to the debug info metadata graph in
order to break uniquing cycles, so the benefits of this will partly come
in future commits. However, we should get some gains immediately, since
we have a fair number of 'distinct' `DILocation`s being linked in.
llvm-svn: 243883
Summary:
This is useful for PNaCl's `RewriteAtomics` pass. NaCl intrinsics don't exist for some of the more exotic RMW instructions, so by refactoring this function into its own, `RewriteAtomics` can share code rewriting those atomics with `AtomicExpand` while additionally saving a few cycles by generating the `cmpxchg` NaCl-specific intrinsic with the callback. Without this patch, `RewriteAtomics` would require two extra passes over functions, by first requiring use of the full `AtomicExpand` pass to just expand the leftover exotic RMWs and then running itself again to expand resulting `cmpxchg`s.
NFC
Reviewers: jfb
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D11422
llvm-svn: 243880
* generate function with string attribute using API,
* dump it in LL format,
* try to parse.
Add parser support for string attributes to fix the issue.
Reviewed By: reames, hfinkel
Differential Revision: http://reviews.llvm.org/D11058
llvm-svn: 243877
Enabling merging of extern globals appears to be generally either beneficial or
harmless. On some benchmarks suites (on Cortex-M4F, Cortex-A9, and Cortex-A57)
it gives improvements in the 1-5% range, but in the rest the overall effect is
zero.
Differential Revision: http://reviews.llvm.org/D10966
llvm-svn: 243874
Adjust the GlobalMergeOnExternal option so that the default behaviour is to
do whatever the Target thinks is best. Explicitly enabled or disabling the
option will override this default.
Differential Revision: http://reviews.llvm.org/D10965
llvm-svn: 243873
In http://reviews.llvm.org/rL215382, IT forming was made more conservative under
the belief that a flag-setting instruction was unpredictable inside an IT block on ARMv6M.
But actually, ARMv6M doesn't even support IT blocks so that's impossible. In the ARMARM for
v7M, v7AR and v8AR it states that the semantics of such an instruction changes inside an
IT block - it doesn't set the flags. So actually it is fine to use one inside an IT block
as long as the flags register is dead afterwards.
This gives significant performance improvements in a variety of MPEG based workloads.
Differential revision: http://reviews.llvm.org/D11680
llvm-svn: 243869
This is a minor optimization to only check for unresolved operands
inside `mapDistinctNode()` if the operands have actually changed. This
shouldn't really cause any change in behaviour. I didn't actually see a
slowdown in a profile, I was just poking around nearby and saw the
opportunity.
llvm-svn: 243866
Summary: This currently sets the shift amount RHS to the same type as the LHS, and assumes that the LHS is a simple type. This isn't currently the case e.g. with weird integers sizes, but will eventually be true and will assert if not. That's what you get for having an experimental backend: break it and you get to keep both pieces. Most backends either set the RHS to MVT::i32 or MVT::i64, but WebAssembly is a virtual ISA and tries to have regular-looking binary operations where both operands are the same type (even if a 64-bit RHS shifter is slightly silly, hey it's free!).
Subscribers: llvm-commits, sunfish, jfb
Differential Revision: http://reviews.llvm.org/D11715
llvm-svn: 243860
Split out a helper `printValues()` for printing `DIEBlock` and `DIELoc`,
instead of relying on `DIE::print()`. The shared code was actually
fairly small there. No functionality change intended.
llvm-svn: 243856
Rewrite `DIEValueList` as a subclass of `DIE`, renaming its API to match
`DIE`'s. This is preparation for changing `DIEBlock` and `DIELoc` to
stop inheriting from `DIE` and inherit directly from `DIEValueList`.
I thought about leaving this as a has-a relationship (and changing
`DIELoc` and `DIEBlock` to also have-a `DIEValueList`), but that seemed
to require a fair bit more boilerplate and I think it needed more
changes to the `DwarfUnit` API than this will.
No functionality change intended here.
llvm-svn: 243854
The XformToShuffleWithZero method currently checks AND masks at the per-lane level for all-one and all-zero constants and attempts to convert them to legal shuffle clear masks.
This patch generalises XformToShuffleWithZero, splitting and checking the sub-lanes of the constants down to the byte level to see if any legal shuffle clear masks are possible. This allows a lot of masks (often from legalization or truncation) to be folded into existing shuffle patterns and removes a lot of constant mask loading.
There are a few examples of poor shuffle lowering that are exposed by this patch that will be cleaned up in future patches (e.g. merging shuffles that are separated by bitcasts, x86 legalized v8i8 zero extension uses PMOVZX+AND+AND instead of AND+PMOVZX, etc.)
Differential Revision: http://reviews.llvm.org/D11518
llvm-svn: 243831
Remove some unnecessary explicit special members in Hexagon that, once
removed, allow the other implicit special members to be used without
depending on deprecated features.
llvm-svn: 243825
Summary: Also test 64-bit integers, except shifts for now which are broken because isel dislikes the 32-bit truncate that precedes them.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11699
llvm-svn: 243822
Various targets use std::swap on specific MCAsmOperands (ARM and
possibly Hexagon as well). It might be helpful to mark those subclasses
as final, to ensure that the availability of move/copy operations can't
lead to slicing. (same sort of requirements as the non-vitual dtor -
protected or a final class)
llvm-svn: 243820
This commit fixes a bug in the class 'SIInstrInfo' where the implicit register
machine operands were added to a machine instruction in an incorrect order -
the implicit uses were added before the implicit defs.
I found this bug while working on moving the implicit register operand
verification code from the MIR parser to the machine verifier.
This commit also makes the method 'addImplicitDefUseOperands' in the machine
instruction class public so that it can be reused in the 'SIInstrInfo' class.
Reviewers: Matt Arsenault
Differential Revision: http://reviews.llvm.org/D11689
llvm-svn: 243799
Summary:
For example, in
struct S {
int *x;
int *y;
};
__global__ void foo(S s) {
int *b = s.y;
// use b
}
"b" is guaranteed to point to global. NVPTX should emit ld.global/st.global for
accessing "b".
Reviewers: jholewinski
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11505
llvm-svn: 243790
Summary:
Use -1 as numoperands for the return SDTypeProfile, denoting that return is variadic. Note that the patterns in InstrControl.td still need to match the inputs, so this ins't an "anything goes" variadic on ret!
The next step will be to handle other local types (not just int32).
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11692
llvm-svn: 243783
When encountering a scattered relocation, the code would assert trying to
access an unexisting section. I couldn't find a way to expose the result
of the processing of a scattered reloc, and I'm really unsure what the
right thing to do is. This patch just skips them during the processing in
DwarfContext and adds a mach-o file to the tests that exposed the asserting
behavior.
(This is a new failure that is being exposed by Rafael's recent work on
the libObject interfaces. I think the wrong behavior has always happened,
but now it's asserting)
llvm-svn: 243778
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
Replace the general `createLocalVariable()` with two more specific
functions: `createParameterVariable()` and `createAutoVariable()`, and
rewrite the documentation.
Besides cleaning up the API, this avoids exposing the fake DWARF tags
`DW_TAG_arg_variable` and `DW_TAG_auto_variable` to frontends, and is
preparation for removing them completely.
llvm-svn: 243764
Summary:
This prints assembly for int32 integer operations defined in WebAssemblyInstrInteger.td only, with major caveats:
- The operation names are currently incorrect.
- Other integer and floating-point types will be added later.
- The printer isn't factored out to handle recursive AST code yet, since it can't even handle control flow anyways.
- The assembly format isn't full s-expressions yet either, this will be added later.
- This currently disables PrologEpilogCodeInserter as well as MachineCopyPropagation becasue they don't like virtual registers, which WebAssembly likes quite a bit. This will be fixed by factoring out NVPTX's change (currently a fork of PrologEpilogCodeInserter).
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11671
llvm-svn: 243763
Add i16, i32, i64 imul machine instructions to the list of reassociation
candidates.
A new bit of logic is needed to handle integer instructions: they have an
implicit EFLAGS operand, so we have to make sure it's dead in order to do
any reassociation with integer ops.
Differential Revision: http://reviews.llvm.org/D11660
llvm-svn: 243756
This makes llvm-nm consistent with binutils nm on executables and DLLs.
For a vanilla hello world executable, the address of main should include
the default image base of 0x400000.
llvm-svn: 243755
Summary:
Favor the extended reg patterns over the shifted reg patterns that match
only the operand shift and not the full sign/zero extend and shift.
Reviewers: jmolloy, t.p.northover
Subscribers: mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11569
llvm-svn: 243753
This patch is a follow up from r240560 and is a step further into
mitigating the compile time performance issues in CaptureTracker.
By providing the CaptureTracker with a "cached ordered basic block"
instead of computing it every time, MemDepAnalysis can use this cache
throughout its calls to AA->callCapturesBefore, avoiding to recompute it
for every scanned instruction. In the same testcase used in r240560,
compile time is reduced from 2min to 30s.
This also fixes PR22348.
rdar://problem/19230319
Differential Revision: http://reviews.llvm.org/D11364
llvm-svn: 243750
Summary:
This prevents vreg260 and D7 from being merged in:
%vreg260<def> = LDC1 ...
JAL <ga:@sin>, <regmask ... list not containing D7 ...>
%D7<def> = COPY %vreg260; ...
Doing so is not valid because the JAL clobbers the D7.
This fixes the almabench regression in the LLVM 3.7.0 release branch.
Reviewers: MatzeB
Subscribers: MatzeB, qcolombet, hans, llvm-commits
Differential Revision: http://reviews.llvm.org/D11649
llvm-svn: 243745
This is to fix an incorrect error when trying to initialize
DwarfNumbers with a !cast<int> of a bits initializer.
getValuesAsListOfInts("DwarfNumbers") would not see an IntInit
and instead the cast, so would give up.
It seems likely that this could be generalized to attempt
the convertInitializerTo for any type. I'm not really sure
why the existing code seems to special case the string cast cases
when convertInitializerTo seems like it should generally handle this
sort of thing.
llvm-svn: 243722
For a modulo (reminder) operation,
clang -target armv7-none-linux-gnueabi generates "__modsi3"
clang -target armv7-none-eabi generates "__aeabi_idivmod"
clang -target armv7-linux-androideabi generates "__modsi3"
Android bionic libc doesn't provide a __modsi3, instead it provides a
"__aeabi_idivmod". This patch fixes the LLVM ARMISelLowering to generate
the correct call when ever there is a modulo operation.
Differential Revision: http://reviews.llvm.org/D11661
llvm-svn: 243717
Fixing MinSize attribute handling was discussed in D11363.
This is a prerequisite patch to doing that.
The handling of OptSize when lowering mem* functions was broken
on Darwin because it wants to ignore -Os for these cases, but the
existing logic also made it ignore -Oz (MinSize).
The Linux change demonstrates a widespread problem. The backend
doesn't usually recognize the MinSize attribute by itself; it
assumes that if the MinSize attribute exists, then the OptSize
attribute must also exist.
Fixing this more generally will be a follow-on patch or two.
Differential Revision: http://reviews.llvm.org/D11568
llvm-svn: 243693
This uncovered latent bugs previously:
http://reviews.llvm.org/D10403
...but it's time to try again because internal tests aren't finding more.
If time passes and no other bugs are reported, we can remove this cl::opt.
llvm-svn: 243687
Summary: Also provide the associated assertion when CodeGen starts.
Reviewers: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11654
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243682
The patch changes the SLPVectorizer::vectorizeStores to choose the immediate
succeeding or preceding candidate for a store instruction when it has multiple
consecutive candidates. In this way it has better chance to find more slp
vectorization opportunities.
Differential Revision: http://reviews.llvm.org/D10445
llvm-svn: 243666
I'm not sure what reasons the comment here could have
had for not setting these. Without these set, there is
an assertion hit during DWARF emission.
llvm-svn: 243661
Copy implementation of applyFixup from AArch64 with AArch64 bits
ripped out.
Tests will be included with a later commit. Several other
problems must be fixed before binary debug info emission
will work.
llvm-svn: 243660
Summary:
Replace the switch on instruction opcode with a switch on register size.
This way we don't need to update the switch statement when we add new
SMRD variants.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11601
llvm-svn: 243652
Summary:
This function is never called. isReallyTriviallyReMaterializable() is
the function that should be implemented instead.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11620
llvm-svn: 243651
Summary:
This hidden option would disable code generation through FastISel by
default. It was removed from the available options and from the
Fast-ISel tests that required it in order to run the tests.
Reviewers: dsanders
Subscribers: qcolombet, llvm-commits
Differential Revision: http://reviews.llvm.org/D11610
llvm-svn: 243638
Summary:
Previously, we would sign-extend non-boolean negative constants and
zero-extend otherwise. This was problematic for PHI instructions with
negative values that had a type with bitwidth less than that of the
register used for materialization.
More specifically, ComputePHILiveOutRegInfo() assumes the constants
present in a PHI node are zero extended in their container and
afterwards deduces the known bits.
For example, previously we would materialize an i16 -4 with the
following instruction:
addiu $r, $zero, -4
The register would end-up with the 32-bit 2's complement representation
of -4. However, ComputePHILiveOutRegInfo() would generate a constant
with the upper 16-bits set to zero. The SelectionDAG builder would use
that information to generate an AssertZero node that would remove any
subsequent trunc & zero_extend nodes.
In theory, we should modify ComputePHILiveOutRegInfo() to consult
target-specific hooks about the way they prefer to materialize the
given constants. However, git-blame reports that this specific code
has not been touched since 2011 and it seems to be working well for every
target so far.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11592
llvm-svn: 243636
The reason I was passing this vector by value in the constructor so that
I wouldn't have to copy when initializing the corresponding member but
then I forgot the std::move.
The use-case is LoopDistribution which filters the checks then
std::moves it to LoopVersioning's constructor. With this interface we
can avoid any copies.
llvm-svn: 243616
Before, we were passing the pointer partitions to LAA. Now, we get all
the checks from LAA and filter out the checks within partitions in
LoopDistribution.
This effectively concludes the steps to move filtering memchecks from
LAA into its clients. There is still some cleanup left to remove the
unused interfaces in LAA that still take PtrPartition.
(Moving this functionality to LoopDistribution also requires
needsChecking on pointers to be made public.)
llvm-svn: 243613
Bonus change to remove emacs major mode marker from SystemZMachineFunctionInfo.cpp because emacs already knows it's C++ from the extension. Also fix typo "appeary" in AMDGPUMCAsmInfo.h.
llvm-svn: 243585
This reverts commit r243567, which ultimately reapplies r243563.
The fix here was to use std::enable_if for overload resolution. Thanks to David
Blaikie for lots of help on this, and for the extra tests!
Original commit message follows:
For cases where we needed a foreach loop in reverse over a container,
we had to do something like
for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
TypeInfos.rend())) {
This provides a convenience method which shortens this to
for (const GlobalValue *GV : reverse(TypeInfos)) {
There are 2 versions of this, with a preference to the rbegin() version.
The first uses rbegin() and rend() to construct an iterator_range.
The second constructs an iterator_range from the begin() and end() methods
wrapped in std::reverse_iterator's.
Reviewed by David Blaikie.
llvm-svn: 243581
This patch improves the 32-bit target i64 constant matching to detect the shuffle vector splats that are introduced by i64 vector shift vectorization (D8416).
Differential Revision: http://reviews.llvm.org/D11327
llvm-svn: 243577
It's potentially more efficient on Cyclone, and from the optimization guides &
schedulers looks like it has no effect on Cortex-A53 or A57. In general you'd
expect a MOV to be about the most efficient instruction with its semantics,
even though the official "UXTW" alias is really a UBFX.
llvm-svn: 243576
This commit extracts the code that's used by the class 'MIRParserImpl' to parse
the machine basic block references into a new method named 'parseMBBReference'.
llvm-svn: 243572
This patch vectorizes the v2i64/v4i64 ASHR shift operations - the last remaining integer vector shifts that are still being transferred to/from the scalar unit to be completed.
Differential Revision: http://reviews.llvm.org/D11439
llvm-svn: 243569
This reverts commit r243563.
The GCC buildbots were extremely unhappy about this. Reverting while
we discuss a better way of doing overload resolution.
llvm-svn: 243567
For cases where we needed a foreach loop in reverse over a container,
we had to do something like
for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
TypeInfos.rend())) {
This provides a convenience method which shortens this to
for (const GlobalValue *GV : reverse(TypeInfos)) {
There are 2 versions of this, with a preference to the rbegin() version.
The first uses rbegin() and rend() to construct an iterator_range.
The second constructs an iterator_range from the begin() and end() methods
wrapped in std::reverse_iterator's.
Reviewed by David Blaikie.
llvm-svn: 243563
Summary:
returns_twice (most importantly, setjmp) functions are
optimization-hostile: if local variable is promoted to register, and is
changed between setjmp() and longjmp() calls, this update will be
undone. This is the reason why "man setjmp" advises to mark all these
locals as "volatile".
This can not be enough for ASan, though: when it replaces static alloca
with dynamic one, optionally called if UAR mode is enabled, it adds a
whole lot of SSA values, and computations of local variable addresses,
that can involve virtual registers, and cause unexpected behavior, when
these registers are restored from buffer saved in setjmp.
To fix this, just disable dynamic alloca and UAR tricks whenever we see
a returns_twice call in the function.
Reviewers: rnk
Subscribers: llvm-commits, kcc
Differential Revision: http://reviews.llvm.org/D11495
llvm-svn: 243561
Making allowableAlignment() more accessible was suggested as a predecessor patch
for D10662, so I've pulled it into TargetLowering. This let's us remove 4 instances
of duplicate logic in LegalizeDAG.
There's a subtle functional change in the implementation: the existing
allowableAlignment() code was using getPrefTypeAlignment() when checking
alignment with the DataLayout and assumed that was fast. In this implementation,
we use getABITypeAlignment() and assume that is fast. See the TODO comment or the
discussion in the Phab review for future improvements in this implementation
(don't use the data layout at all).
There are no regression test changes from this difference, and I'm not sure how to
expose it via a test. I think we actually do want to provide the 'Fast' param when
checking this from DAGCombiner::MergeConsecutiveStores(). Ie, we shouldn't merge
stores if the new stores are not going to be fast. But that change will require
fixing allowsMisalignedMemoryAccess() overrides as noted in D10662.
Differential Revision: http://reviews.llvm.org/D10905
llvm-svn: 243549
ASan shadow on Android starts at address 0 for both historic and
performance reasons. This is possible because the platform mandates
-pie, which makes lower memory region always available.
This is not such a good idea on 64-bit platforms because of MAP_32BIT
incompatibility.
This patch changes Android/AArch64 mapping to be the same as that of
Linux/AAarch64.
llvm-svn: 243548
No functional change because "lsl #12" is actually encoded as 12, but one less
bug if someone ever decides to change that for the giggles.
llvm-svn: 243536
Given certain shuffle-vector masks, LLVM emits splat instructions
which splat the wrong bytes from the source register. The issue is
that the function PPC::isSplatShuffleMask() in PPCISelLowering.cpp
does not ensure that the splat pattern found is requesting bytes that
are aligned on an EltSize boundary. This patch detects this situation
as not a valid splat mask, resulting in a permute being generated
instead of a splat.
Patch and test case by Tyler Kenney, cleaned up a bit by me.
This is a simple bug fix that would be good to incorporate into 3.7.
llvm-svn: 243519
This commit defines subtarget feature strict-align and uses it instead of
cl::opt -aarch64-strict-align to decide whether strict alignment should be
forced.
rdar://problem/21529937
llvm-svn: 243516
Summary:
As added initially, statepoints required their call targets to be a
constant pointer null if ``numPatchBytes`` was non-zero. This turns out
to be a problem ergonomically, since there is no way to mark patchable
statepoints as calling a (readable) symbolic value.
This change remove the restriction of requiring ``null`` call targets
for patchable statepoints, and changes PlaceSafepoints to maintain the
symbolic call target through its transformation.
Reviewers: reames, swaroop.sridhar
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11550
llvm-svn: 243502
PR24141: https://llvm.org/bugs/show_bug.cgi?id=24141
contains a test case where we have duplicate entries in a node's uses() list.
After r241826, we use CombineTo() to delete dead nodes when combining the uses into
reciprocal multiplies, but this fails if we encounter the just-deleted node again in
the list.
The solution in this patch is to not add duplicate entries to the list of users that
we will subsequently iterate over. For the test case, this avoids triggering the
combine divisors logic entirely because there really is only one user of the divisor.
Differential Revision: http://reviews.llvm.org/D11345
llvm-svn: 243500
This fix was suggested as part of D11345 and is part of fixing PR24141.
With this change, we can avoid walking the uses of a divisor node if the target
doesn't want the combineRepeatedFPDivisors transform in the first place.
There is no NFC-intended other than that.
Differential Revision: http://reviews.llvm.org/D11531
llvm-svn: 243498
This commit defines subtarget feature strict-align and uses it instead of
cl::opt -arm-strict-align to decide whether strict alignment should be
forced. Also, remove the logic that was checking the OS and architecture
as clang is now responsible for setting strict-align based on the command
line options specified and the target architecute and OS.
rdar://problem/21529937
http://reviews.llvm.org/D11470
llvm-svn: 243493
Reapply 243271 with more fixes; although we are not handling multiple
sources with coalescable copies, we were not properly skipping this
case.
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 243486
Summary:
Currently, we support only the MIPS O32 ABI calling convention for call
lowering. With this change we avoid using the O32 calling convetion for
lowering calls marked as using the fast calling convention.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11515
llvm-svn: 243485
Summary:
Generate correct code for the select instruction by zero-extending
it's boolean/condition operand to GPR-width. This is necessary because
the conditional-move instructions operate on the whole register.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11506
llvm-svn: 243469
If the pointer is the store's value operand, this would produce
a broken module. Make sure the use is actually for the pointer operand.
llvm-svn: 243462
Summary:
Make Scalar Evolution able to propagate NSW and NUW flags from instructions to SCEVs in some cases. This is based on reasoning about when poison from instructions with these flags would trigger undefined behavior. This gives a 13% speed-up on some Eigen3-based Google-internal microbenchmarks for NVPTX.
There does not seem to be clear agreement about when poison should be considered to propagate through instructions. In this analysis, poison propagates only in cases where that should be uncontroversial.
This change makes LSR able to create induction variables for expressions like &ptr[i + offset] for loops like this:
for (int i = 0; i < limit; ++i) {
sum += ptr[i + offset];
}
Here ptr is a 64 bit pointer and offset is a 32 bit integer. For NVPTX, LSR currently creates an induction variable for i + offset instead, which is not as fast. Improving this situation is what brings the 13% speed-up on some Eigen3-based Google-internal microbenchmarks for NVPTX.
There are more details in this discussion on llvmdev.
June: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-June/thread.html#87234
July: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-July/thread.html#87392
Patch by Bjarke Roune
Reviewers: eliben, atrick, sanjoy
Subscribers: majnemer, hfinkel, jingyue, meheff, llvm-commits
Differential Revision: http://reviews.llvm.org/D11212
llvm-svn: 243460
Summary: MCAsmInfo is set up with the default AssemblerDialect, which is zero.
Subscribers: llvm-commits, sunfish, jfb
Differential Revision: http://reviews.llvm.org/D11567
llvm-svn: 243452
This commit extracts the code that parses a global value from the method
'parseGlobalAddressOperand' into a new method 'parseGlobalValue', so that this
code can be reused by the method which will parse the block address machine
operands.
llvm-svn: 243450
This commit moves the function 'lexName' to the start of the file so it can
be reused by the function which will lex the named LLVM IR block references.
llvm-svn: 243449
This commit removes an outdated TODO comment and a corresponding assertion
which asserts that the mir printer can't the print machine basic blocks that
aren't sequentially numbered.
This comment and assertion were correct when I was working on the patch which
serialized the machine basic blocks, but then I decided to add an 'ID'
attribute to the machine basic block's YAML mapping based on the patch review.
This comment and assertion then became invalid as with the 'ID' attribute we
can serialize the non sequential machine basic blocks and their references
without any problems.
llvm-svn: 243447
This commit removes the redundant parameters from the two methods
'initializeRegisterInfo' and 'initializeFrameInfo'. The removed parameters are
redundant as we are already passing in the 'MachineFunction' to those methods,
and those parameters can be derived from the machine function parameter.
llvm-svn: 243445
The 'common' section TLS is not implemented.
Current C/C++ TLS variables are not placed in common section.
DWARF debug info to get the address of TLS variables is not generated yet.
clang and driver changes in http://reviews.llvm.org/D10524
Added -femulated-tls flag to select the emulated TLS model,
which will be used for old targets like Android that do not
support ELF TLS models.
Added TargetLowering::LowerToTLSEmulatedModel as a target-independent
function to convert a SDNode of TLS variable address to a function call
to __emutls_get_address.
Added into lib/Target/*/*ISelLowering.cpp to call LowerToTLSEmulatedModel
for TLSModel::Emulated. Although all targets supporting ELF TLS models are
enhanced, emulated TLS model has been tested only for Android ELF targets.
Modified AsmPrinter.cpp to print the emutls_v.* and emutls_t.* variables for
emulated TLS variables.
Modified DwarfCompileUnit.cpp to skip some DIE for emulated TLS variabls.
TODO: Add proper DIE for emulated TLS variables.
Added new unit tests with emulated TLS.
Differential Revision: http://reviews.llvm.org/D10522
llvm-svn: 243438
Object: add IMAGE_FILE_MACHINE_ARM64
The official specifications state that the value of IMAGE_FILE_MACHINE_ARM64
is 0xAA64 (as per the Microsoft Portable Executable and Common Object Format
Specification v8.3).
Reviewers: rnk
Subscribers: llvm-commits, compnerd, ruiu
Differential Revision: http://reviews.llvm.org/D11511
llvm-svn: 243434
Summary:
Add patterns for doing floating point round with various rounding modes
followed by conversion to int as a single FCVT* instruction.
Reviewers: t.p.northover, jmolloy
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D11424
llvm-svn: 243422
This path add the aarch64 lowering of __builtin_thread_pointer. It uses
the already implemented AArch64ISD::THREAD_POINTER used in TLS generation.
llvm-svn: 243412
no-alias with non-addr-taken globals: they cannot alias a captured
pointer.
If the non-global underlying object would have been a capture were it to
alias the global, we can firmly conclude no-alias. It isn't reasonable
for a transformation to introduce a capture in a way observable by an
alias analysis. Consider, even if it were to temporarily capture one
globals address into another global and then restore the other global
afterward, there would be no way for the load in the alias query to
observe that capture event correctly. If it observes it then the
temporary capturing would have changed the meaning of the program,
making it an invalid transformation. Even instrumentation passes or
a pass which is synthesizing stores to global variables to expose race
conditions in programs could not trigger this unless it queried the
alias analysis infrastructure mid-transform, in which case it seems
reasonable to return results from before the transform started.
See the comments in the change for a more detailed outlining of the
theory here.
This should address the primary performance regression found when the
non-conservatively-correct path of the alias query was disabled.
Differential Revision: http://reviews.llvm.org/D11410
llvm-svn: 243405
X86FrameLowering has both a mergeSPUpdates() that accepts a direction, and an
mergeSPUpdatesUp(), which seem to do the same thing, except for a slightly
different interface. Removed the less general function.
NFC.
Differential Revision: http://reviews.llvm.org/D11510
llvm-svn: 243396
VPAND is a lot faster than VPSHUFB and VPBLENDVB - this patch ensures we attempt to lower to a basic bitmask before lowering to the slower byte shuffle/blend instructions.
Split off from D11518.
Differential Revision: http://reviews.llvm.org/D11541
llvm-svn: 243395
Summary:
The previous way of overriding it was relying on calling "setDefault"
on the global registry, which implies global mutable state.
Reviewers: echristo, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11538
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243388
out the per-function modref data structures when functions were deleted
or when globals were deleted.
I don't actually know how the global deletion side of this bug hasn't
been hit before, but for the other it just-so-happens that functions
aren't likely to be deleted in the particular part of the LTO pipeline
where we currently enable GMR, so we got lucky.
With this patch, I can self-host with GMR enabled in the normal pass
pipeline!
I was a bit concerned about the compile-time impact of this chang, which
is part of what motivated my prior string of patches to make the
per-function datastructure very dense and fast to walk. With those
changes in place, I can't measure a significant compile time difference
(the difference is around 0.1% which is *way* below the noise) before
and after this patch when building a linked bitcode for all of Clang.
Differential Revision: http://reviews.llvm.org/D11453
llvm-svn: 243385
Before the patch, the checks were generated internally in
addRuntimeCheck. Now, we use the new overloaded version of
addRuntimeCheck that takes the ready-made set of checks as a parameter.
The checks are now generated by the client (LoopDistribution) with the
new RuntimePointerChecking::generateChecks API.
Also the new printChecks API is used to print out the checks for
debugging.
This is to continue the transition over to the new model whereby clients
will get the full set of checks from LAA, filter it and then pass it to
LoopVersioning and in turn to addRuntimeCheck.
llvm-svn: 243382
Swift has a custom calling convention that also requires some new flags
on arguments and one new attribute on alloca instructions. This patch
does not include the implementation of that calling convention - that
will be provided as part of the open-source release of Swift; this only
reserves the bitcode constant values so that they are not used for
other purposes.
llvm-svn: 243379
This is a follow-up to the FIXME that was added with D7474 ( http://reviews.llvm.org/rL229531 ).
I thought this load folding bug had been made hard-to-hit, but it turns out to be very easy
when targeting 32-bit x86 and causes a miscompile/crash in Wine:
https://bugs.winehq.org/show_bug.cgi?id=38826https://llvm.org/bugs/show_bug.cgi?id=22371#c25
The quick fix is to simply remove the scalar FP logical instructions from the load folding table
in X86InstrInfo, but that causes us to miss load folds that should be possible when lowering fabs,
fneg, fcopysign. So the majority of this patch is altering those lowerings to use *vector* FP
logical instructions (because that's all x86 gives us anyway). That lets us do the load folding
legally.
Differential Revision: http://reviews.llvm.org/D11477
llvm-svn: 243361
As a stop-gap, retrieving the InlineAsm's function type was done via the
pointee type of its (pointer) Value type.
Instead, pass down and store the FunctionType in the InlineAsm object.
The only wrinkle with this is the ConstantUniqueMap, which then needs to
ferry the FunctionType down through the InlineAsmKeyType. This could be
done a bit differently if the ConstantInfo trait were broadened a bit to
provide an extension point for access to the TypeClass object from the
ValType objects, so that the ConstantUniqueMap<InlineAsm> would then be
keyed on FunctionTypes instead of PointerTypes that point to
FunctionTypes.
This drops the number of IR tests that don't roundtrip through bitcode*
without calling PointerType::getElementType from 416 to 8 (out of
10733). 3 of those crash when roundtripping at ToT anyway.
* modulo various unavoidable uses of pointer types when validating IR
(for now) and in the way globals are parsed, unfortunately. These
cases will either go away (because such validation will no longer be
necessary or possible when pointee types are opaque), or have to be
made simultaneously with the removal of pointee types.
llvm-svn: 243356
This is effectively an NFC but we can no longer print the index of the
pointer group so instead I print its address. This still lets us
cross-check the section that list the checks against the section that
list the groups (see how I modified the test).
E.g. before we printed this:
Run-time memory checks:
Check 0:
Comparing group 0:
%arrayidxC = getelementptr inbounds i16, i16* %c, i64 %store_ind
%arrayidxC1 = getelementptr inbounds i16, i16* %c, i64 %store_ind_inc
Against group 1:
%arrayidxA = getelementptr i16, i16* %a, i64 %ind
%arrayidxA1 = getelementptr i16, i16* %a, i64 %add
...
Grouped accesses:
Group 0:
(Low: %c High: (78 + %c))
Member: {%c,+,4}<%for.body>
Member: {(2 + %c),+,4}<%for.body>
Now we print this (changes are underlined):
Run-time memory checks:
Check 0:
Comparing group (0x7f9c6040c320):
~~~~~~~~~~~~~~
%arrayidxC1 = getelementptr inbounds i16, i16* %c, i64 %store_ind_inc
%arrayidxC = getelementptr inbounds i16, i16* %c, i64 %store_ind
Against group (0x7f9c6040c358):
~~~~~~~~~~~~~~
%arrayidxA1 = getelementptr i16, i16* %a, i64 %add
%arrayidxA = getelementptr i16, i16* %a, i64 %ind
...
Grouped accesses:
Group 0x7f9c6040c320:
~~~~~~~~~~~~~~
(Low: %c High: (78 + %c))
Member: {(2 + %c),+,4}<%for.body>
Member: {%c,+,4}<%for.body>
llvm-svn: 243354
When parsing calls to inline asm the pointee type (of the pointer type
representing the value type of the InlineAsm value) was used. To avoid
using it, use the ValID structure to ferry the FunctionType directly
through to the InlineAsm construction.
This is a bit of a workaround - alternatively the inline asm could
explicitly describe the type but that'd be verbose/redundant in the IR
and so long as the inline asm calls directly in the context of a call or
invoke, this should suffice.
llvm-svn: 243349
Summary:
If a scale or a base register can be rewritten as "Zext({A,+,1})" then
LSR will now consider a formula of that form in its normal cost
computation.
Depends on D9180
Reviewers: qcolombet, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9181
llvm-svn: 243348
Summary:
This function is not used in this change but will be used in a
subsequent change.
Reviewers: mcrosier, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9180
llvm-svn: 243347
Summary: WebAssemblySubtarget.cpp expects a default 'generic' CPU to exist, and this seems to be prevalent with other targets. It makes sense to have something between MVP and bleeding-edge, even though for now it's the same as MVP. This removes a warning that's currently generated.
Subscribers: jfb, llvm-commits, sunfish
Differential Revision: http://reviews.llvm.org/D11546
llvm-svn: 243345
This commit serializes the references from the machine basic blocks to the
unnamed basic blocks.
This commit adds a new attribute to the machine basic block's YAML mapping
called 'ir-block'. This attribute contains the actual reference to the
basic block.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 243340
This commit publicly exposes the method 'getLocalSlot' in the
'ModuleSlotTracker' class.
This change is useful for MIR serialization, to serialize the unnamed basic
block and unnamed alloca references.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 243336
Summary:
Was D9784: "Remove loop variant range check when induction variable is
strictly increasing"
This change re-implements D9784 with the two differences:
1. It does not use SCEVExpander and does not generate new
instructions. Instead, it does a quick local search for existing
`llvm::Value`s that it needs when modifying the `icmp`
instruction.
2. It is more general -- it deals with both increasing and decreasing
induction variables.
I've added all of the tests included with D9784, and two more.
As an example on what this change does (copied from D9784):
Given C code:
```
for (int i = M; i < N; i++) // i is known not to overflow
if (i < 0) break;
a[i] = 0;
}
```
This transformation produces:
```
for (int i = M; i < N; i++)
if (M < 0) break;
a[i] = 0;
}
```
Which can be unswitched into:
```
if (!(M < 0))
for (int i = M; i < N; i++)
a[i] = 0;
}
```
I went back and forth on whether the top level logic should live in
`SimplifyIndvar::eliminateIVComparison` or be put into its own
routine. Right now I've put it under `eliminateIVComparison` because
even though the `icmp` is not *eliminated*, it no longer is an IV
comparison. I'm open to putting it in its own helper routine if you
think that is better.
Reviewers: reames, nicholas, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11278
llvm-svn: 243331
This commit renames the methods 'parseMBB' and 'parseNamedRegister' to
'parseStandaloneMBB' and 'parseStandaloneNamedRegister' in order for their
names to be consistent with the method 'parseStandaloneVirtualRegister'.
llvm-svn: 243319
be reserved.
The decision to reserve x18 is going to be made solely by the front-end,
so it isn't necessary to check if the OS is Darwin in the backend.
llvm-svn: 243308
Now that we are generating sane codegen for vector sext/zext nodes on SSE targets, this patch uses instcombine to replace the SSE41/AVX2 pmovsx and pmovzx intrinsics with the equivalent native IR code.
Differential Revision: http://reviews.llvm.org/D11503
llvm-svn: 243303
This reverts commit r243167.
Duncan pointed out that dyn_cast can return null in these cases, so this
was an unsafe commit to make. Sorry for the noise.
Worryingly there were no tests which fail...
llvm-svn: 243302
The pointer size of the addrspacecasted pointer might not have matched,
so this would have hit an assert in accumulateConstantOffset.
I think this was here to allow constant folding of a load of an
addrspacecasted constant. Accumulating the offset through the
addrspacecast doesn't make much sense, so something else is necessary
to allow folding the load through this cast.
llvm-svn: 243300
There is an ODR conflict between lib/ExecutionEngine/ExecutionEngineBindings.cpp
and lib/Target/TargetMachineC.cpp. The inline definitions should simply
be marked static (thanks dblaikie for the hint).
llvm-svn: 243298
Author: Dave Airlie <airlied@redhat.com>
In order to implement indirect sampler loads, we don't
want to match on a VGPR load but an SGPR one for constants,
as we cannot feed VGPRs to the sampler only SGPRs.
this should be applicable for llvm 3.7 as well.
llvm-svn: 243294
This commit zeroes out the virtual register references in the machine
function's liveins in the class 'MachineRegisterInfo' when the virtual
register definitions are cleared.
Reviewers: Matthias Braun
llvm-svn: 243290
This reverts commit r243135.
Feedback from Craig Topper and David Blaikie was that we don't put const on Type as it has no mutable state.
llvm-svn: 243283
This reverts commit r243146.
Feedback from Craig Topper and David Blaikie was that we don't put const on Type as it has no mutable state.
llvm-svn: 243282
Reapply r242295 with fixes in the implementation.
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 243271
Summary:
Fix the cost of interleaved accesses for ARM/AArch64.
We were calling getTypeAllocSize and using it to check
the number of bits, when we should have called
getTypeAllocSizeInBits instead.
This would pottentially cause the vectorizer to
generate loads/stores and shuffles which cannot
be matched with an interleaved access instruction.
No performance changes are expected for now since
matching/generating interleaved accesses is still
disabled by default.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11524
llvm-svn: 243270
r243250 appeared to break clang/test/Analysis/dead-store.c on one of the build
slaves, but I couldn't reproduce this failure locally. Probably a false
positive as I saw this test was broken by r243246 or r243247 too but passed
later without people fixing anything.
llvm-svn: 243253
Summary:
This patch updates TargetTransformInfoImplCRTPBase::getGEPCost to consider
addressing modes. It now returns TCC_Free when the GEP can be completely folded
to an addresing mode.
I started this patch as I refactored SLSR. Function isGEPFoldable looks common
and is indeed used by some WIP of mine. So I extracted that logic to getGEPCost.
Furthermore, I noticed getGEPCost wasn't directly tested anywhere. The best
testing bed seems CostModel, but its getInstructionCost method invokes
getAddressComputationCost for GEPs which provides very coarse estimation. So
this patch also makes getInstructionCost call the updated getGEPCost for GEPs.
This change inevitably breaks some tests because the cost model changes, but
nothing looks seriously wrong -- if we believe the new cost model is the right
way to go, these tests should be updated.
This patch is not perfect yet -- the comments in some tests need to be updated.
I want to know whether this is a right approach before fixing those details.
Reviewers: chandlerc, hfinkel
Subscribers: aschwaighofer, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D9819
llvm-svn: 243250
Summary:
The goal is to start moving us closer to the model where
RuntimePointerChecking will compute and store the checks. Then a client
can filter the check according to its requirements and then use the
filtered list of checks with addRuntimeCheck.
Before the patch, this is all done in addRuntimeCheck. So the patch
starts to split up addRuntimeCheck while providing the old API under
what's more or less a wrapper now.
The new underlying addRuntimeCheck takes a collection of checks now,
expands the code for the bounds then generates the code for the checks.
I am not completely happy with making expandBounds static because now it
needs so many explicit arguments but I don't want to make the type
PointerBounds part of LAI. This should get fixed when addRuntimeCheck
is moved to LoopVersioning where it really belongs, IMO.
Audited the assembly diff of the testsuite (including externals). There
is a tiny bit of assembly churn that is due to the different order the
code for the bounds is expanded now
(MultiSource/Benchmarks/Prolangs-C/bison/conflicts.s and with LoopDist
on 456.hmmer/fast_algorithms.s).
Reviewers: hfinkel
Subscribers: klimek, llvm-commits
Differential Revision: http://reviews.llvm.org/D11205
llvm-svn: 243239
Summary:
This patch improves trivial loop unswitch.
The current trivial loop unswitch only checks if loop header's terminator contains a trivial unswitch condition. But if the loop header only has one reachable successor (due to intentionally or unintentionally missed code simplification), we should consider the successor as part of the loop header. Therefore, instead of stopping at loop header's terminator, we should keep traversing its successors within loop until reach a *real* conditional branch or switch (whose condition can not be constant folded). This change will enable a single -loop-unswitch pass to unswitch multiple trivial conditions (unswitch one trivial condition could open opportunity to unswitch another one in the same loop), while the old implementation can unswitch only one per pass.
Reviewers: reames, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11481
llvm-svn: 243203
When truncating to non-legal types (such as i16, i8 and i1) always use an AND
instruction to mask out the upper bits. This was only done when the source type
was an i64, but not when the source type was an i32.
This commit fixes this and adds the missing i32 truncate tests.
This fixes rdar://problem/21990703.
llvm-svn: 243198
extension property we're requesting - zero or sign extended.
This fixes cases where we want to return a zero extended 32-bit -1
and not be sign extended for the entire register. Also updated the
already out of date comment with the current behavior.
llvm-svn: 243192
whether register x18 should be reserved.
This change is needed because we cannot use a backend option to set
cl::opt "aarch64-reserve-x18" when doing LTO.
Out-of-tree projects currently using cl::opt option "-aarch64-reserve-x18"
to reserve x18 should make changes to add subtarget feature "reserve-x18"
to the IR.
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D11463
llvm-svn: 243186
Add a verifier check that `DILocalVariable`s of tag
`DW_TAG_arg_variable` always have a non-zero 'arg:' field, and those of
tag `DW_TAG_auto_variable` always have a zero 'arg:' field. These are
the only configurations that are properly understood by the backend.
(Also, fix the bad examples in LangRef and test/Assembler, and fix the
bug in Kaleidoscope Ch8.)
A large number of testcases seem to have bitrotted their way forward
from some ancient version of the debug info hierarchy that didn't have
`arg:` parameters. If you have out-of-tree testcases that start failing
in the verifier and you don't care enough to get the `arg:` right, you
may have some luck just calling:
sed -e 's/, arg: 0/, arg: 1/'
or some such, but I hand-updated the ones in tree.
llvm-svn: 243183
This commit serializes the callee saved information from the class
'MachineFrameInfo'. This commit extends the YAML mappings for the fixed and
the ordinary stack objects and adds an optional 'callee-saved-register'
attribute. This attribute is used to serialize the callee save information.
llvm-svn: 243173
This patch extend LoopReroll pass to hand the loops which
is similar to the following:
while (len > 1) {
sum4 += buf[len];
sum4 += buf[len-1];
len -= 2;
}
llvm-svn: 243171
Since both places which set this variable do so with dyn_cast, and not
dyn_cast_or_null, its impossible to get a nullptr here, so we can remove
the check.
llvm-svn: 243167
Instead of the pattern
for (auto I = x.rbegin(), E = x.end(); I != E; ++I)
we can use make_range to construct the reverse range and iterate using
that instead.
llvm-svn: 243163
Remove unnecessary and confusing common base class for `DICompositeType`
and `DISubroutineType`.
While at a high-level `DISubroutineType` is a sort of composite of other
types, it has no shared code paths, and its fields are completely
disjoint. This relationship was left over from the old debug info
hierarchy.
llvm-svn: 243160
Handle `DISubroutineType` up-front rather than as part of a branch for
`DICompositeTypeBase`. The only shared code path was looking through
the base type, but `DISubroutineType` can never have a base type.
This also removes the last use of `DICompositeTypeBase`, since we can
strengthen the cast to `DICompositeType`.
llvm-svn: 243159
`DISubroutineType` is impossible at this `dyn_cast` site, since we're
only dealing with named types and `DISubroutineType` cannot be named.
Strengthen the `dyn_cast` to `DICompositeType`.
llvm-svn: 243157
This commit serializes the virtual register allocations hints of type 0.
These hints specify the preferred physical registers for allocations.
llvm-svn: 243156
Remove an unnecessary (and confusing) common subclass for
`DIDerivedType` and `DICompositeType`. These classes aren't really
related, and even in the old debug info hierarchy, there was a
long-standing FIXME to separate them.
llvm-svn: 243152
We really only want to check this for unions and classes (all the other
tags have been ruled out), so simplify the check and move it to the
right place.
llvm-svn: 243150
Remove unnecessary references to `DW_TAG_subroutine_type` in
`visitDICompositeType()` and `visitDIDerivedTypeBase()`, since
`visitDISubroutineType()` doesn't call either of those (and shouldn't,
since subroutine types are really quite special).
llvm-svn: 243149
Refactor `isUnsignedDIType()` to deal with `DICompositeType` explicitly.
Since `DW_TAG_subroutine_type` isn't handled here (the assertions about
tags rule it out), this allows strengthening the `dyn_cast` to
`DIDerivedType`.
Besides making the code clearer, this it removes a use of
`DIDerivedTypeBase`.
llvm-svn: 243148
The surrounding code proves in both cases that these must be
`DIDerivedType` if they're `DIDerivedTypeBase`, so strengthen the
`dyn_cast`s to the more specific type.
llvm-svn: 243143
Summary:
This threshold limited FunctionAttrs ability to prove arguments to be read-only.
In NVPTX, a specialized instruction ld.global.nc can be used to load memory
with non-coherent texture cache. We notice that in SHOC [1] benchmark, some
function arguments are not marked with readonly because FunctionAttrs reaches
a hardcoded threshold when analysis uses.
Removing this threshold won't cause significant regression in compilation time, because the worst-case time complexity of the algorithm is still O(# of instructions) for each parameter.
Patched by Xuetian Weng.
[1] https://github.com/vetter/shoc
Reviewers: nlewycky, jingyue, nicholas
Subscribers: nicholas, test, llvm-commits
Differential Revision: http://reviews.llvm.org/D11311
llvm-svn: 243141
The names for instructions inserted were previous dependent on iteration order. By deriving the names from the original instructions, we can avoid instability in tests without resorting to ordered traversals. It also makes the IR mildly easier to read at large scale.
llvm-svn: 243140
We had a few places where we did
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
but those could instead do
for (auto *EltTy : STy->elements()) {
llvm-svn: 243136
Almost all methods in DataLayout took mutable pointers but didn't need to.
These were only accessing constant methods of the types, or using the Type*
to key a map. Neither of these needs a mutable pointer.
llvm-svn: 243135
There is an assertion inside `DICompositeTypeBase::getElements()` that
`this` is not a `DISubroutineType`, leaving only `DICompositeType`.
Make that clear at the call sites.
llvm-svn: 243134
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243114
Some shufflevectors are currently being incorrectly lowered in the AArch32
backend as the existing checks for detecting the NEON operations from the
shufflevector instruction expects the shuffle mask and the vector operands to be
of the same length.
This is not always the case as the mask may be twice as long as the operand;
here only the lower half of the shufflemask gets checked, so provided the lower
half of the shufflemask looks like a vector transpose (or even is just all -1
for undef) then the intrinsics may get incorrectly lowered into a vector
transpose (VTRN) instruction.
This patch fixes this by accommodating for both cases and adds regression tests.
Differential Revision: http://reviews.llvm.org/D11407
llvm-svn: 243103
is an immediate, in this check the value is negated and stored in and int64_t.
The value can be -2^63 yet the result cannot be stored in an int64_t and this
gives some undefined behaviour causing failures. The negation is only necessary
when the values is within a certain range and so it should not need to negate
-2^63, this patch introduces this and also a regression test.
Differential Revision: http://reviews.llvm.org/D11408
llvm-svn: 243100
This reverts commit 0f720d984f419c747709462f7476dff962c0bc41.
It breaks clang too badly, I need to prepare a proper patch for clang
first.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243089
Summary:
Resolving a branch allows us to ignore blocks that won't be executed, and thus make our estimate more accurate.
This patch is intended to be applied after D10205 (though it could be applied independently).
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10206
llvm-svn: 243084
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243083
The new code should hopefully be equivalent to the old code; it just uses a worklist to track instructions which need to visited rather than iterating over all instructions visited each time. This should be faster, but the primary benefit is that the purpose should be more clear and the diff of adding another instruction type (forthcoming) much more obvious.
Differential Revision: http://reviews.llvm.org/D11480
llvm-svn: 243071
The test in PR24199 ( https://llvm.org/bugs/show_bug.cgi?id=24199 ) crashes because machine
trace metrics was not ignoring dbg_value instructions when calculating data dependencies.
The machine-combiner pass asks machine trace metrics to calculate an instruction trace,
does some reassociations, and calls MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval()
along with MachineTraceMetrics::invalidate(). The dbg_value instructions have their operands
invalidated, but the instructions are not expected to be deleted.
On a subsequent loop iteration of the machine-combiner pass, machine trace metrics would be
called again and die while accessing the invalid debug instructions.
Differential Revision: http://reviews.llvm.org/D11423
llvm-svn: 243057
Deleting much of the code using trace-rewrite-statepoints and use idiomatic DEBUG statements instead. This includes adding operator<< to a helper class.
llvm-svn: 243054
Summary: Among other things, this allows -print-after-all/-print-before-all to dump IR around this pass.
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11373
llvm-svn: 243052
We don't need to pass in the map from BDV to PhiStates; we can instead handle that externally and let the MeetPhiStates helper class just meet PhiStates.
llvm-svn: 243045
Summary:
Scalarizer has two data structures that hold information about changes
to the function, Gathered and Scattered. These are cleared in finish()
at the end of runOnFunction() if finish() detects any changes to the
function.
However, finish() was checking for changes by only checking if
Gathered was non-empty. The function visitStore() only modifies
Scattered without touching Gathered. As a result, Scattered could have
ended up having stale data if Scalarizer only scalarized store
instructions. Since the data in Scattered is used during the execution
of the pass, this introduced dangling pointer errors.
The fix is to check whether both Scattered and Gathered are empty
before deciding what to do in finish(). This also fixes a problem
where the Function can be modified although the pass returns false.
Reviewers: rnk
Subscribers: rnk, srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D10459
llvm-svn: 243040
Adds pushes to the folding tables.
This also required a fix to the TD definition, since the memory forms of
the push instructions did not have the right mayLoad/mayStore flags.
Differential Revision: http://reviews.llvm.org/D11340
llvm-svn: 243010
We currently version `__asan_init` and when the ABI version doesn't match, the linker gives a `undefined reference to '__asan_init_v5'` message. From this, it might not be obvious that it's actually a version mismatch error. This patch makes the error message much clearer by changing the name of the undefined symbol to be `__asan_version_mismatch_check_xxx` (followed by the version string). We obviously don't want the initializer to be named like that, so it's a separate symbol that is used only for the purpose of version checking.
Reviewed at http://reviews.llvm.org/D11004
llvm-svn: 243003
the general GMR-in-non-LTO flag.
Without this, we have the global information during the CGSCC pipeline
for GVN and such, but don't have it available during the late loop
optimizations such as the vectorizer. Moreover, after the CGSCC pipeline
has finished we have substantially more accurate and refined call graph
information, function annotations, etc, which will make GMR even more
powerful than it is early in the pipelien.
Note that we have to play silly games with preserving AliasAnalysis
(which is now trivially preserved) in order to let a module analysis
magically be preserved into the entire function pass pipeline.
Simultaneously we have to not make GMR an immutable pass in order to be
able to re-run it and collect fresh data on the final call graph.
llvm-svn: 242999
The DAG Node "SCALAR_TO_VECTOR" may be created if the type of the scalar element is legal.
Added a check for the scalar type before creating this node.
Added a test that fails with assertion on the current version.
Differential Revision: http://reviews.llvm.org/D11413
llvm-svn: 242994
This commit broke the build. Numerous build bots broken, and it was
blocking my progress so reverting.
It should be trivial to reproduce -- enable the BPF backend and it
should fail when running llvm-tblgen.
llvm-svn: 242992
more dense datastructure. We actually only have 3 bits of information
and an often-null pointer here. This fits very nicely into a
pointer-size value in the DenseMap from Function -> Info. Then we take
one more pointer hop to get to a secondary DenseMap from GlobalValue ->
ModRefInfo when we actually have precise info for particular globals.
This is more code than I would really like to do this packing, but it
ended up reasonably cleanly laid out. It should ensure we don't hit
scaling limitations with more widespread use of GMR.
llvm-svn: 242991
While theoratically required in pre-C++11 to avoid re-allocation upon call,
C++11 guarantees that c_str() returns a pointer to the internal array so
pre-calling c_str() is no longer required.
llvm-svn: 242983
This takes the operation of merging a callee's information into the
current information and embeds it into the FunctionInfo type itself.
This is much cleaner as now we don't need to expose iteration of the
globals, etc.
Also, switched all the uses of a raw integer two maintain the mod/ref
info during the SCC walk into just directly manipulating it in the
FunctionInfo object.
llvm-svn: 242976
typed interface as a precursor to rewriting how it is stored.
This way we know that the access paths are controlled and it should be
easy to store these bits in a different way.
No functionality changed.
llvm-svn: 242974
preparation for de-coupling the AA implementations.
In order to do this, they had to become fake-scoped using the
traditional LLVM pattern of a leading initialism. These can't be actual
scoped enumerations because they're bitfields and thus inherently we use
them as integers.
I've also renamed the behavior enums that are specific to reasoning
about the mod/ref behavior of functions when called. This makes it more
clear that they have a very narrow domain of applicability.
I think there is a significantly cleaner API for all of this, but
I don't want to try to do really substantive changes for now, I just
want to refactor the things away from analysis groups so I'm preserving
the exact original design and just cleaning up the names, style, and
lifting out of the class.
Differential Revision: http://reviews.llvm.org/D10564
llvm-svn: 242963
This replaces the next-to-last std::map with a DenseMap. While DenseMap
doesn't yet make tons of sense (there are 32 bytes or so in the value
type), my next change will reduce the value type to a single pointer --
we only need a pointer and 3 bits, and that is exactly what we can have.
llvm-svn: 242956
The MSVC ABI requires that we generate an alias for the vtable which
means looking through a GlobalAlias which cannot be overridden improves
our ability to devirtualize.
Found while investigating PR20801.
Patch by Andrew Zhogin!
Differential Revision: http://reviews.llvm.org/D11306
llvm-svn: 242955
efficient, NFC.
Previously, we built up vectors of function pointers to track readers
and writers. The primary problem here is that we would add the same
function to this vector every time we found an instruction that reads or
writes to the pointer. This could be a *lot* of redudant function
pointers. Instead of doing that, we can use a SmallPtrSet.
This does more than just reduce the size of the list of readers or
writers. We walk the entire lists of each and do a map lookup for each
one. By having sets, we will only do one map lookup per reader or writer
function.
But only one user of the pointer analyzer actually needs this
information, so we can also skip accumulating it (and doing a lot of
heap allocations) for all the other pointer analysis. This is
particularly useful because there are very many more pointers in some of
the other cases.
llvm-svn: 242950
Reapply r242294.
- Create a new CopyRewriter for Uncoalescable copy-like instructions
- Change the ValueTracker to return a ValueTrackerResult
This makes optimizeUncoalescable looks more like optimizeCoalescable and
use the CopyRewritter infrastructure.
This is also the preparation for looking up into PHI nodes in the
ValueTracker.
rdar://problem/20404526
Differential Revision: http://reviews.llvm.org/D11195
llvm-svn: 242940
Summary:
Add a basic CodeGen bitcode test which (for now) only prints out the function name and nothing else. The current code merely implements the basic needed for the test run to not crash / assert. Getting to that point required:
- Basic InstPrinter.
- Basic AsmPrinter.
- DiagnosticInfoUnsupported (not strictly required, but nice to have, duplicated from AMDGPU/BPF's ISelLowering).
- Some SP and register setup in WebAssemblyTargetLowering.
- Basic LowerFormalArguments.
- GenInstrInfo.
- Placeholder LowerFormalArguments.
- Placeholder CanLowerReturn and LowerReturn.
- Basic DAGToDAGISel::Select, which requiresGenDAGISel.inc as well as GET_INSTRINFO_ENUM with GenInstrInfo.inc.
- Remove WebAssemblyFrameLowering::determineCalleeSaves and rely on default.
- Implement WebAssemblyFrameLowering::hasFP, same as AArch64's implementation.
Follow-up patches will implement a real AsmPrinter, which will require adding MI opcodes specific to WebAssembly.
Reviewers: sunfish
Subscribers: aemerson, jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D11369
llvm-svn: 242939
And expose it in Signals.h, allowing clients to call it directly,
possibly LLVMErrorHandler which currently calls RunInterruptHandlers
but not RunSignalHandlers, thus for example not printing the stack
backtrace on Unixish OSes. On Windows it does happen because
RunInterruptHandlers ends up calling the callbacks as well via
Cleanup(). This difference in behaviour and code structures in
*/Signals.inc should be patched in the future.
llvm-svn: 242936
Summary:
While working on a project I wound up generating a fairly large lookup table (10k entries) of callbacks inside of a static constructor. Clang was taking upwards of ~10 minutes to compile the lookup table. I generated a smaller test case (http://www.inolen.com/static_initializer_test.ll) that, after running with -ftime-report, pointed fingers at GlobalOpt and MemCpyOptimizer.
Running globalopt took around ~9 minutes. The slowdown came from how GlobalOpt merged stores from static constructors individually into the global initializer in EvaluateStaticConstructor. For each store it discovered and wanted to commit, it would copy the existing global initializer and then merge in the individual store. I changed this so that stores are now grouped by global, and sorted from most significant to least significant by their GEP indexes (e.g. a store to GEP 0, 0 comes before GEP 0, 0, 1). With this representation, the existing initializer can be copied and all new stores merged into it in a single pass.
With this patch and http://reviews.llvm.org/D11198, the lookup table that was taking ~10 minutes to compile now compiles in around 5 seconds. I've ran 'make check' and the test-suite, which all passed.
I'm not really sure who to tag as a reviewer, Lang mentioned that Chandler may be appropriate.
Reviewers: chandlerc, nlewycky
Subscribers: nlewycky, llvm-commits
Differential Revision: http://reviews.llvm.org/D11200
llvm-svn: 242935
This change would allow the machine instruction parser to reuse this method when
parsing the metadata node for the machine instruction's debug location property.
llvm-svn: 242934
Move CallBacksToRun into the common Signals.cpp, create RunCallBacksToRun()
and use these in both Unix/Signals.inc and Windows/Signals.inc.
Lots of potential code to be merged here.
llvm-svn: 242925
pipeline.
Even before I started improving its runtime, it was already crazy fast
once the call graph exists, and if we can get it to be conservatively
correct, will still likely catch a lot of interesting and useful cases.
So it may well be useful to enable by default.
But more importantly for me, this should make it easier for me to test
that changes aren't breaking it in fundamental ways by enabling it for
normal builds.
llvm-svn: 242895
This almost certainly doesn't matter in some deep sense, but std::set is
essentially always going to be slower here. Now the alias query should
be essentially constant time instead of having to chase the set tree
each time.
llvm-svn: 242893
it wasn't one of the indirect globals (which clearly cannot be an
allocation function call). Also only do a single lookup into this map
instead of two. NFC.
llvm-svn: 242892
Since we have to iterate this map not that infrequently, we should use
a map that is efficient for iteration. It is also almost certainly much
faster for lookups as well. There is more to do in terms of reducing the
wasted overhead of GMR's runtime though. Not sure how much is worthwhile
though.
The loop improvements should hopefully address the code review that
Duncan gave when he saw this code as I moved it around.
llvm-svn: 242891
Currently, a load from an alloca that is used in as single block and is not preceded
by a store is replaced by undef. This is not always correct if the single block is
inside a loop.
Fix the logic so that:
1) If there are no stores in the block, replace the load with an undef, as before.
2) If there is a store (regardless of where it is in the block w.r.t the load), bail
out, and let the rest of mem2reg handle this alloca.
Patch by: gil.rapaport@intel.com
Differential Revision: http://reviews.llvm.org/D11355
llvm-svn: 242884
In r242510, non-instrumented allocas are now moved into the first basic block. This patch limits that to only move allocas that are present *after* the first instrumented one (i.e. only move allocas up). A testcase was updated to show behavior in these two cases. Without the patch, an alloca could be moved down, and could cause an invalid IR.
Differential Revision: http://reviews.llvm.org/D11339
llvm-svn: 242883
through APIs that are no longer necessary now that the update API has
been removed.
This will make changes to the AA interfaces significantly less
disruptive (I hope). Either way, it seems like a really nice cleanup.
llvm-svn: 242882
part of simplifying its interface and usage in preparation for porting
to work with the new pass manager.
Note that this will likely expose that we have dead arguments, members,
and maybe even pass requirements for AA. I'll be cleaning those up in
seperate patches. This just zaps the actual update API.
Differential Revision: http://reviews.llvm.org/D11325
llvm-svn: 242881
change because the diff is *useless*. I assure you, I just switched to
early-return in this function.
Cleanup in preparation for my next commit, as requested in code review!
llvm-svn: 242880
GlobalsModRef) with CallbackVHs that trigger the same behavior.
This is technically more expensive, but in benchmarking some LTO runs,
it seems unlikely to even be above the noise floor. The only way I was
able to measure the performance of GMR at all was to run nothing else
but this one analysis on a linked clang bitcode file. The call graph
analysis still took 5x more time than GMR, and this change at most made
GMR 2% slower (this is well within the noise, so its hard for me to be
sure that this is an actual change). However, in a real LTO run over the
same bitcode, the GMR run takes so little time that the pass timers
don't measure it.
With this, I can remove the last update API from the AliasAnalysis
interface, but I'll actually remove the interface hook point in
a follow-up commit.
Differential Revision: http://reviews.llvm.org/D11324
llvm-svn: 242878