This patch introduces a new infrastructure that is used to select the load and
store instructions in the PPC backend.
The primary motivation is that the current implementation of selecting load/stores
is dependent on the ordering of patterns in TableGen. Given this limitation, we
are not able to easily and reliably generate the P10 prefixed load and stores
instructions (such as when the immediates that fit within 34-bits). This
refactoring is meant to provide us with more control over the patterns/different
forms to exploit, as well as eliminating dependency of pattern declaration in TableGen.
The idea of this refactoring is that it introduces a set of addressing modes that
correspond to different instruction formats of a particular load and store
instruction, along with a set of common flags that describes a load/store.
Whenever a load/store instruction is being selected, we analyze the instruction
and compute a set of flags for it. The computed flags are then used to
select the most optimal load/store addressing mode.
This patch is the first of a series of patches to be committed - it contains the
initial implementation of the refactored load/store selection infrastructure and
also updates P8/P9 patterns to adopt this infrastructure. The idea is that
incremental patches will add more implementation and support, and eventually
the old implementation will be removed.
Differential Revision: https://reviews.llvm.org/D93370
Summary:
This patch implements the backend implementation of adding global variables
directly to the table of contents (TOC), rather than adding the address of the
variable to the TOC.
Currently, this patch will look for the "toc-data" attribute on symbols in the
IR, and then add those symbols to the TOC.
ATM, this is implemented for 32 bit AIX.
Reviewers: sfertile
Differential Revision: https://reviews.llvm.org/D101178
- Add new variantKinds for the symbol's variable offset and region handle
- Print the proper relocation specifier @gd in the asm streamer when emitting
the TC Entry for the variable offset for the symbol
- Fix the switch section failure between the TC Entry of variable offset and
region handle
- Put .__tls_get_addr symbol in the ProgramCodeSects with XTY_ER property
Reviewed by: sfertile
Differential Revision: https://reviews.llvm.org/D100956
This patch enables support on SPE for constrained arithmetic and
comparison operations. This fixes bugzilla 50070.
One thing not covered is fcmp vs. fcmps on SPE. Some condition code
generates singaling comparison while some not. In this patch, all are
considered as singaling. So there might be still some issue when
compiling from C code.
Reviewed By: jhibbits
Differential Revision: https://reviews.llvm.org/D101282
This patch adds the support to restrict prefixed instruction from
crossing the 64 byte boundary:
- Add the infrastructure to register a custom XCOFF streamer
- Add a custom XCOFF streamer for PowerPC to allow us to
intercept instructions as they are being emitted and align all 8 byte
instructions to a 64 byte boundary if required by adding a 4 byte nop.
Reviewed By: stefanp
Differential Revision: https://reviews.llvm.org/D101107
These are added for compatibility with XLC. They are similar to
vec_cts and vec_ctu except that the result is a doubleword vector
regardless of the parameter type.
We currently do not utilize instructions that convert single
precision vectors to doubleword integer vectors. These conversions
come up in code occasionally and this improvement allows us to
open code some functions that need to be added to altivec.h.
Extend shuffle canonicalization and conversion of shuffles fed by vectorized
scalars to big endian subtargets. For big endian subtargets, loads and direct
moves of scalars into vector registers put the data in the correct element for
SCALAR_TO_VECTOR if the data type is 8 bytes wide. However, if the data type is
narrower, the value still ends up in the wrong place - althouth a different
wrong place than on little endian targets.
This patch extends the combine that keeps values where they are if they feed a
shuffle to big endian targets.
Differential revision: https://reviews.llvm.org/D100478
This patch exploits mtvsrdd instruction (available in ISA3.0+) to save
two callee-saved GPR registers into a single VSR, making it more
efficient.
Reviewed By: jsji, nemanjai
Differential Revision: https://reviews.llvm.org/D62565
This patch is the last one in backend to support fp128 type in
pre-POWER9 subtargets with VSX, removing temporary option and updating
remaining tests.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D92374
These constraints are machine agnostic; there's no reason to handle
these per-arch. If arches don't support these constraints, then they
will fail elsewhere during instruction selection. We don't need virtual
calls to look these up; TargetLowering::getInlineAsmMemConstraint should
only be overridden by architectures with additional unique memory
constraints.
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D100416
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
There are four new PowerPC instructions that are introduced in
Power 10. They are hashst, hashchk, hashstp, hashchkp.
These instructions will be used for ROP Protection.
This patch adds the four instructions.
Reviewed By: nemanjai, amyk, #powerpc
Differential Revision: https://reviews.llvm.org/D99375
The VSX tablegen file has some rather eggregious uses of
COPY_TO_REGCLASS even in situations where it needs to use
SUBREG_TO_REG. While this produces correct code, it often doesn't
allow the register coalescer to coalesce copies and the resulting
code ends up being suboptimal. This patch just changes over
patterns that should use SUBREG_TO_REG.
We should consider the feeder user number when we do reverse memory
operation transformation. Otherwise, we may get negative impact.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D100166
XSCMPUQP is not available for pre-P9 subtargets. This patch will lower
them into libcall for correct behavior on power7/power8.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D92083
Added cost estimation for switch instruction, updated costs of branches, fixed
phi cost.
Had to increase `-amdgpu-unroll-threshold-if` default value since conditional
branch cost (size) was corrected to higher value.
Test renamed to "control-flow.ll".
Removed redundant code in `X86TTIImpl::getCFInstrCost()` and
`PPCTTIImpl::getCFInstrCost()`.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D96805
Regiser types for xxsplti32dx for two td file patterns was incorrect.
Fixed the two types and added a test case that was reduced from a larger
failing test.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D100223
There are four new PowerPC instructions that are introduced in
Power 10. They are hashst, hashchk, hashstp, hashchkp.
These instructions will be used for ROP Protection.
This patch adds the four instructions.
Reviewed By: nemanjai, amyk, #powerpc
Differential Revision: https://reviews.llvm.org/D99375
Previously, 34-bit constants were materialized in selectI64Imm(), and we relied
on td pattern matching to instead produce a pli. This becomes problematic as
there is no guarantee that the 34-bit constant will reach the td pattern
selection for pli. It is also possible for other transformations (such as complex
bit permutations) to also produce and utilize the 34-bit constant materialized
through selectI64Imm().
This patch instead produces pli on Power10 directly whenever the constant fits
within 34-bits.
Differential Revision: https://reviews.llvm.org/D99906
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
On ppc64 linux , MachineLICM will hoist caller preserved registers, including TOC loads of the global variable address, out of loops. This is to enable this on AIX for both ppc64 and ppc32.
Differential Revision: https://reviews.llvm.org/D99076
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
This patch exploits the xxsplti32dx instruction available on Power10
in place of constant pool loads where xxspltidp would not be able to,
usually because the immediate cannot fit into 32 bits.
Differential Revision: https://reviews.llvm.org/D95458
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
Add an option to tell the compiler that it can use privileged instructions.
This patch only adds the option. Backend implementation will be added in a
future patch.
Reviewed By: lei, amyk
Differential Revision: https://reviews.llvm.org/D99193
In order to have the same option on power PC LLVM and power PC gcc
the option will be changed from -mrop-protection to -mrop-protect.
The feature will be off by default and turned on when the option is used.
Reviewed By: lei, amyk
Differential Revision: https://reviews.llvm.org/D99185
Do not try to materialize a constant using prefix instructions if the selection
using non prefix instructions was able to do it using a single non prefix
instruction.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D98791