First, we don't need vector-ness for the predecessor lists.
Secondly, like elsewhere, do insertions before deletions.
Lastly, the check that we actually need to insert an edge,
that it doesn't exist already, is backwards. Instead of
looking at successors of every single 'PredOfBB',
just always look at predecessors of the 'Succ'.
The result is always the same, but we avoid *really* inefficient code.
The default is likely wrong.
Out of all the callees, only a single one needs to pass-in false (JumpThread),
everything else either already passes true, or should pass true.
Until the default is flipped, at least make it harder to unintentionally
add new callees with UseBlockValue=false.
"Does the predicate hold between two ranges?"
Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
"Does the predicate hold between two ranges?"
Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
This patch updates the linkage name in the DISubprogram of coro-split
functions, which is particularly important for Swift, where the
funclets have a special name mangling. This patch does not affect C++
coroutines, since the DW_AT_specification is expected to hold the
(original) linkage name. I believe this is mostly due to limitations
in AsmPrinter, so we might be able to relax this restriction in the
future.
Differential Revision: https://reviews.llvm.org/D99693
As suggested in the review thread for 5094e12 and seen in the
motivating example from https://llvm.org/PR49885, it's not
clear if we have a way to create the optimal code without
this heuristic.
Add an ability to store `Offset` between partially aliased location. Use this
storage within returned `ResultAlias` instead of caching it in `AAQueryInfo`.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98718
Main reason is preparation to transform AliasResult to class that contains
offset for PartialAlias case.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98027
Previously loading the vtable used in calling a virtual method in a loop
was not hoisted out of the loop. This fixes that.
canSinkOrHoistInst() itself doesn't check that the load operands are
loop invariant, callers also check that separately.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99784
meetBDVState looks pretty difficult to read and follow.
This is purely NFC but doing several things:
1) Combine meet and meetBDVState
2) Move the function to be a member of BDVState
3) Make BDVState be a mutable object
4) Convert switch to sequence of ifs
5) Adds comments.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D99064
Pretty straightforward use of existing infrastructure and port of the attributor inference rules for nosync.
A couple points of interest:
* I deliberately switched from "monotonic or better" to "unordered or better". This is simply me being conservative and is better in line with the rest of the optimizer. We treat monotonic conservatively pretty much everywhere.
* The operand bundle test change is suspicious. It looks like we might have missed something here, but if so, it's an issue with the existing nofree inference as well. I'm going to take a closer look at that separately.
* I needed to keep the previous inference from readnone. This surprised me, but made sense once I realized readonly inference goes to lengths to reason about local vs non-local memory and that writes to local memory are okay. This is fine for the purpose of nosync, but would e.g. prevent us from inferring nofree from readnone - which is slightly surprising.
Differential Revision: https://reviews.llvm.org/D99769
This fixes a "Cached first special instruction is wrong!" assert.
The assert fires because replacing a value with another can cause an
instruction to no longer be "special" to ICF. In this case,
devirtualization happened, turning an indirect call to a
call to a willreturn function which is no longer special.
Reviewed By: nikic, rnk
Differential Revision: https://reviews.llvm.org/D99977
After D99249 we use three different loop pass managers for LICM,
LoopRotate and LICM+LoopUnswitch. This happens because LazyBFI
and LazyBPI are not preserved by LoopRotate (note that D74640
is no longer needed). Avoid this by marking them as preserved.
My understanding of D86156 is that it is okay to simply preserve
them (which LoopUnswitch already does for the same reason) and
rely on callbacks to deal with deleted blocks.
Differential Revision: https://reviews.llvm.org/D99843
After loop interchange, the (old) outer loop header should not jump to
the `LoopExit`. Note that the old outer loop becomes the new inner loop
after interchange. If we branched to `LoopExit` then after interchange
we would jump directly from the (new) inner loop header to `LoopExit`
without executing the rest of outer loop.
This patch modifies adjustLoopBranches() such that the old outer
loop header (which becomes the new inner loop header) jumps to the
old inner loop latch which becomes the new outer loop latch after
interchange.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D98475
Instead of passing the start value and the defined value to
widenPHIInstruction, pass the VPWidenPHIRecipe directly, which can be
used to get both (and more in future patches).
During LoopStrengthReduce, some of the SSA values that are used by debug values
may be lost and/or salvaged. After LSR we attempt to recover any undef debug
values, including any that were salvaged but then lost their values afterwards,
by replacing the lost values with any live equal values (plus a possible
constant offset) that have been gathered prior to running LSR. When we do this
we restore the debug value's original DIExpression, to undo any salvaging (as we
have gone back to using the original debug value).
This process can currently produce invalid debug info if the number of operands
has changed by salvaging during LSR. Replacing old values during the
applyEqualValues step does not change the number of location operands, which
means that when we restore the old DIExpression we may have a mismatch between
the number of operands used by the debug value and the number of operands
referenced by the DIExpression. This patch fixes this by restoring the full
original location metadata at the start of the applyEqualValues step, so that
there is no mismatch in operand count between the debug value and its
DIExpression.
Differential Revision: https://reviews.llvm.org/D98644
D99674 stopped the folding of certain select operations into and/or, due
to incorrect folding in the presence of poison. D97360 added some costs
to attempt to account for the change, but only worked at the getUserCost
level, not the getCmpSelInstrCost that the vectorizer will use directly.
This adds similar logic into the vectorizer to handle these logical
and/or selects, treating them like and/or directly.
This fixes 60% performance regressions from code like the attached test
case.
Differential Revision: https://reviews.llvm.org/D99884
After loop interchange, the (old) outer loop header should not jump to
`LoopExit`. Note that the old outer loop becomes the new inner loop
after interchange. If we branched to `LoopExit` then after interchange
we would jump directly from the (new) inner loop header to `LoopExit`
without executing the rest of (new) outer loop.
This patch modifies adjustLoopBranches() such that the old outer
loop header (which becomes the new inner loop header) jumps to the
old inner loop latch which becomes the new outer loop latch after
interchange.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D98475
-Make sure of the CreateShl/LShr/AShr methods that take a uint64_t
instead of creating a ConstantInt for 1 ourselves.
-Use Builder.getInt1 or ConstantInt::getBool instead of a conditional.
-Pull out repeated calls to getType.
All of the code that handles general constant here (other than the more
restrictive APInt-dealing code) expects that it is an immediate,
because otherwise we won't actually fold the constants, and increase
instruction count. And it isn't obvious why we'd be okay with
increasing the number of constant expressions,
those still will have to be run..
But after 2829094a8e
this could also cause endless combine loops.
So actually properly restrict this code to immediates.
This fixes the examples from
D99674 and
https://llvm.org/PR49878
The matchers succeed on partial undef/poison vector constants,
but the transform creates a full 'not' (-1) constant, so it
would undo a demanded vector elements change triggered by the
extractelement.
Differential Revision: https://reviews.llvm.org/D100044
We see a regression related to low probe factor(0.01) which prevents some callsites being promoted in ICPPass and later cause the missing inline in CGSCC inliner. The root cause is due to redundant(the second) multiplication of the probe factor and this change try to fix it.
`Sum` does multiply a factor right after findCallSamples but later when using as the parameter in setProbeDistributionFactor, it multiplies one again.
This change could get ~2% perf back on mcf benchmark. In mcf, previously the corresponding factor is 1 and it's the recent feature introducing the <1 factor then trigger this bug.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D99787
No need to lookup through and/or try to vectorize operands of the
CmpInst instructions during attempts to find/vectorize min/max
reductions. Compiler implements postanalysis of the CmpInsts so we can
skip extra attempts in tryToVectorizeHorReductionOrInstOperands and save
compile time.
Differential Revision: https://reviews.llvm.org/D99950
The swap of the operands can affect later transforms that
are expecting a constant as operand 1. I don't think we
can trigger a bug with the current code, but I hit that
problem while drafting a new transform for min/max intrinsics.
This reverts commit a547b4e26b,
relanding commit 31d219d299,
which was reverted because there was a conflicting inverse transform,
which was causing an endless combine loop, which has now been adjusted.
Original commit message:
https://alive2.llvm.org/ce/z/67w-wQ
We prefer `add`s over `sub`, and this particular xform
allows further folds to happen:
Fixes https://bugs.llvm.org/show_bug.cgi?id=49858
I.e., if any/all of the consants is an expression, don't do it.
Since those constants won't reduce into an immediate,
but would be left as an constant expression, they could cause
endless combine loops after 31d219d299
added an inverse transformation.
Summary:
The function SplitCriticalEdge (called by SplitEdge) can return a nullptr in
cases where the edge is a critical. SplitEdge uses SplitCriticalEdge assuming it
can always split all critical edges, which is an incorrect assumption.
The three cases where the function SplitCriticalEdge will return a nullptr is:
1. DestBB is an exception block
2. Options.IgnoreUnreachableDests is set to true and
isa(DestBB->getFirstNonPHIOrDbgOrLifetime()) is not equal to a nullptr
3. LoopSimplify form must be preserved (Options.PreserveLoopSimplify is true)
and it cannot be maintained for a loop due to indirect branches
For each of these situations they are handled in the following way:
1. Modified the function ehAwareSplitEdge originally from
llvm/lib/Transforms/Coroutines/CoroFrame.cpp to handle the cases when the DestBB
is an exception block. This function is called directly in SplitEdge.
SplitEdge does not call SplitCriticalEdge in this case
2. Options.IgnoreUnreachableDests is set to false by default, so this situation
does not apply.
3. Return a nullptr in this situation since the SplitCriticalEdge also returned
nullptr. Nothing we can do in this case.
Reviewed By: asbirlea
Differential Revision:https://reviews.llvm.org/D94619
Follow up to a6d2a8d6f5. These were found by simply grepping for "::assume", and are the subset of that result which looked cleaner to me using the isa/dyn_cast patterns.
Follow up to a6d2a8d6f5. This covers all the public interfaces of the bundle related code. I tried to cleanup the internals where the changes were obvious, but there's definitely more room for improvement.
Fixes the ASan RISC-V memory mapping (originally introduced by D87580 and
D87581). This should be an improvement both in terms of first principles
soundness and observed test failures --- test failures would occur
non-deterministically depending on the ASLR random offset.
On RISC-V Linux (64-bit), `TASK_UNMAPPED_BASE` is currently defined as
`PAGE_ALIGN(TASK_SIZE / 3)`. The non-power-of-two divisor makes the result
be the not very round number 0x1555556000. That address had to be further
rounded to ensure page alignment after the shadow scale shifting is applied.
Still, that value explains why the mapping table may look less regular than
expected.
Further cleanups:
- Moved the mapping table comment, to ensure that the two Linux/AArch64
tables stayed together;
- Removed mention of Sv48. Neither the original mapping nor this one are
compatible with an actual Linux Sv48 address space (mainline Linux still
operates Sv48 in Sv39 mode). A future patch can improve this;
- Removed the additional comments, for consistency.
Differential Revision: https://reviews.llvm.org/D97646
Add the subclass, update a few places which check for the intrinsic to use idiomatic dyn_cast, and update the public interface of AssumptionCache to use the new class. A follow up change will do the same for the newer assumption query/bundle mechanisms.
performScalarPREInsertion() inserts instructions into blocks that we
need to tell ImplicitControlFlowTracking about, otherwise the ICF cache
may be invalid.
Fixes PR49193.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99909
The key change (4f5e92c) to switch gc.result and gc.relocate to being readnone landed nearly two weeks ago, and we haven't seen any fallout. Time to remove the code added to make reverting easy.
Previously we could only vectorize FP reductions if fast math was enabled, as this allows us to
reorder FP operations. However, it may still be beneficial to vectorize the loop by moving
the reduction inside the vectorized loop and making sure that the scalar reduction value
be an input to the horizontal reduction, e.g:
%phi = phi float [ 0.0, %entry ], [ %reduction, %vector_body ]
%load = load <8 x float>
%reduction = call float @llvm.vector.reduce.fadd.v8f32(float %phi, <8 x float> %load)
This patch adds a new flag (IsOrdered) to RecurrenceDescriptor and makes use of the changes added
by D75069 as much as possible, which already teaches the vectorizer about in-loop reductions.
For now in-order reduction support is off by default and controlled with the `-enable-strict-reductions` flag.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D98435
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
Changes getRecurrenceIdentity to always return a neutral value of -0.0 for FAdd.
Reviewed By: dmgreen, spatel
Differential Revision: https://reviews.llvm.org/D98963
For VPWidenPHIRecipes that model all incoming values as VPValue
operands, print those operands instead of printing the original PHI.
D99294 updates recipes of reduction PHIs to use the VPValue for the
incoming value from the loop backedge, making use of this new printing.
This patch enhances hasAddressTaken() to ignore bitcasts as a
callee in callbase instruction. Such bitcast usage doesn't really take
the address in a useful meaningful way.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D98884
When we are able to SROA an alloca, we know all uses of it, meaning we
don't have to preserve the invariant group intrinsics and metadata.
It's possible that we could lose information regarding redundant
loads/stores, but that's unlikely to have any real impact since right
now the only user is Clang and vtables.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99760
As shown in the example based on:
https://llvm.org/PR49832
...and the existing test, we can't substitute
a vector value because the equality compare
replacement that we are attempting requires
that the comparison is true for the entire
value. Vector select can be partly true/false.
During vectorization better to postpone the vectorization of the CmpInst
instructions till the end of the basic block. Otherwise we may vectorize
it too early and may miss some vectorization patterns, like reductions.
Reworked part of D57059
Differential Revision: https://reviews.llvm.org/D99796
This is identical to 781d077afb,
but for the other function.
For certain shift amount bit widths, we must first ensure that adding
shift amounts is safe, that the sum won't have an unsigned overflow.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49778
This is discussed in https://llvm.org/PR48999 ,
but it does not solve that request.
The difference in the vector test shows that some
other logic transform is limited to scalar types.
When converting a switch with two cases and a default into a
select, also handle the denegerate case where two cases have the
same value.
Generate this case directly as
%or = or i1 %cmp1, %cmp2
%res = select i1 %or, i32 %val, i32 %default
rather than
%sel1 = select i1 %cmp1, i32 %val, i32 %default
%res = select i1 %cmp2, i32 %val, i32 %sel1
as InstCombine is going to canonicalize to the former anyway.
This patch fixes llvm.org/pr49688 by conditionally folding select i1 into and/or:
```
select cond, cond2, false
->
and cond, cond2
```
This is not safe if cond2 is poison whereas cond isn’t.
Unconditionally disabling this transformation affects later pipelines that depend on and/or i1s.
To minimize its impact, this patch conservatively checks whether cond2 is an instruction that
creates a poison or its operand creates a poison.
This approach is similar to what InstSimplify's SimplifyWithOpReplaced is doing.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99674
When run under valgrind, or with a malloc that poisons freed memory,
this can lead to segfaults or other problems.
To avoid modifying the AdditionalUsers DenseMap while still iterating,
save the instructions to be notified in a separate SmallPtrSet, and use
this to later call OperandChangedState on each instruction.
Fixes PR49582.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D98602
This patch moves mapping of IR operands to VPValues out of
tryToCreateWidenRecipe. This allows using existing VPValue operands when
widening recipes directly, which will be introduced in future patches.
The safepoints being inserted exists to free memory, or coordinate with another thread to do so. Thus, we must strip any inferred attributes and reinfer them after the lowering.
I'm not aware of any active miscompiles caused by this, but since I'm working on strengthening inference of both and leveraging them in the optimization decisions, I figured a bit of future proofing was warranted.
The ultimate reduction node may have multiple uses, but if the ultimate
reduction is min/max reduction and based on SelectInstruction, the
condition of this select instruction must have only single use.
Differential Revision: https://reviews.llvm.org/D99753
The motivation for this patch is to better estimate the cost of
extracelement instructions in cases were they are going to be free,
because the source vector can be used directly.
A simple example is
%v1.lane.0 = extractelement <2 x double> %v.1, i32 0
%v1.lane.1 = extractelement <2 x double> %v.1, i32 1
%a.lane.0 = fmul double %v1.lane.0, %x
%a.lane.1 = fmul double %v1.lane.1, %y
Currently we only consider the extracts free, if there are no other
users.
In this particular case, on AArch64 which can fit <2 x double> in a
vector register, the extracts should be free, independently of other
users, because the source vector of the extracts will be in a vector
register directly, so it should be free to use the vector directly.
The SLP vectorized version of noop_extracts_9_lanes is 30%-50% faster on
certain AArch64 CPUs.
It looks like this does not impact any code in
SPEC2000/SPEC2006/MultiSource both on X86 and AArch64 with -O3 -flto.
This originally regressed after D80773, so if there's a better
alternative to explore, I'd be more than happy to do that.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D99719
Support reassociation for min/max. With that we should be able to transform min(min(a, b), c) -> min(min(a, c), b) if min(a, c) is already available.
Reviewed By: mkazantsev, lebedev.ri
Differential Revision: https://reviews.llvm.org/D88287
This is a patch to fix the bug in alignment calculation (see https://reviews.llvm.org/D90529#2619492).
Consider this code:
```
call void @llvm.assume(i1 true) ["align"(i32* %a, i32 32, i32 28)]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 -1
; aligment of %arrayidx?
```
The llvm.assume guarantees that `%a - 28` is 32-bytes aligned, meaning that `%a` is 32k + 28 for some k.
Therefore `a - 4` cannot be 32-bytes aligned but the existing code was calculating the pointer as 32-bytes aligned.
The reason why this happened is as follows.
`DiffSCEV` stores `%arrayidx - %a` which is -4.
`OffSCEV` stores the offset value of “align”, which is 28.
`DiffSCEV` + `OffSCEV` = 24 should be used for `a - 4`'s offset from 32k, but `DiffSCEV` - `OffSCEV` = 32 was being used instead.
Reviewed By: Tyker
Differential Revision: https://reviews.llvm.org/D98759
The code is assuming that having an exact exit count for the loop implies that exit counts for every exit are known. This used to be true, but when we added handling for dead exits we broke this invariant. The new invariant is that an exact loop count implies that any exits non trivially dead have exit counts.
We could have fixed this by either a) explicitly checking for a dead exit, or b) just testing for SCEVCouldNotCompute. I chose the second as it was simpler.
(Debugging this took longer than it should have since I'd mistyped the original assert and it wasn't checking what it was meant to...)
p.s. Sorry for the lack of test case. Getting things into a state to actually hit this is difficult and fragile. The original repro involves loop-deletion leaving SCEV in a slightly inprecise state which lets us bypass other transforms in IndVarSimplify on the way to this one. All of my attempts to separate it into a standalone test failed.
This implements the most basic possible nosync inference. The choice of inference rule is taken from the comments in attributor and the discussion on the review of the change which introduced the nosync attribute (0626367202).
This is deliberately minimal. As noted in code comments, I do plan to add a more robust inference which actually scans the function IR directly, but a) I need to do some refactoring of the attributor code to use common interfaces, and b) I wanted to get something in. I also wanted to minimize the "interesting" analysis discussion since that's time intensive.
Context: This combines with existing nofree attribute inference to help prove dereferenceability in the ongoing deref-at-point semantics work.
Differential Revision: https://reviews.llvm.org/D99749
We have this logic duplicated in several cases, none of which were exhaustive. Consolidate it in one place.
I don't believe this actually impacts behavior of the callers. I think they all filter their inputs such that their partial implementations were correct. If not, this might be fixing a cornercase bug.
1. Need to cleanup InstrElementSize map for each new tree, otherwise might
use sizes from the previous run of the vectorization attempt.
2. No need to include into analysis the instructions from the different basic
blocks to save compile time.
Differential Revision: https://reviews.llvm.org/D99677
Removes CFGAnalyses from the preserved analyses set
returned by LoopFlattenPass::run().
Reviewed By: Dave Green, Ta-Wei Tu
Differential Revision: https://reviews.llvm.org/D99700
Name GVN uses name 'LI' for two different unrelated things:
LoadInst and LoopInfo. This patch relates the variables with
former meaning into 'Load' to disambiguate the code.
Before this change, the `llvm.access.group` metadata was dropped
when moving a load instruction in GVN. This prevents vectorizing
a C/C++ loop with `#pragma clang loop vectorize(assume_safety)`.
This change propagates the metadata as well as other metadata if
it is safe (the move-destination basic block and source basic
block belong to the same loop).
Differential Revision: https://reviews.llvm.org/D93503
This commit adjusts the order of two swappable if statements to
make code cleaner.
Reviewed By: lattner, nikic
Differential Revision: https://reviews.llvm.org/D99648
Use SetVector instead of SmallPtrSet to track values with uniform use. Doing this
can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM test consecutive-ptr-uniforms.ll .
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99549
This marks FSIN and other operations to EXPAND for scalable
vectors, so that they are not assumed to be legal by the cost-model.
Depends on D97470
Reviewed By: dmgreen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D97471
Summary: Try to insert dbg.declare to entry.resume basic block in resume
function. In this way, we could print alloca such as __promise in
gdb/lldb under O2, which would be beneficial to debug coroutine program.
Test Plan: check-llvm
Reviewed by: aprantl
Differential Revision: https://reviews.llvm.org/D96938
Use SetVector instead of SmallPtrSet for external definitions created for VPlan.
Doing this can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM-Unit test VPRecipeTest.dump.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99544
Currently prof metadata with branch counts is added only for BranchInst and SwitchInst, but not for IndirectBrInst. As a result, BPI/BFI make incorrect inferences for indirect branches, which can be very hot.
This diff adds metadata for IndirectBrInst, in addition to BranchInst and SwitchInst.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D99550
Use profiled call edges to augment the top-down order. There are cases that the top-down order computed based on the static call graph doesn't reflect real execution order. For example:
1. Incomplete static call graph due to unknown indirect call targets. Adjusting the order by considering indirect call edges from the profile can enable the inlining of indirect call targets by allowing the caller processed before them.
2. Mutual call edges in an SCC. The static processing order computed for an SCC may not reflect the call contexts in the context-sensitive profile, thus may cause potential inlining to be overlooked. The function order in one SCC is being adjusted to a top-down order based on the profile to favor more inlining.
3. Transitive indirect call edges due to inlining. When a callee function is inlined into into a caller function in LTO prelink, every call edge originated from the callee will be transferred to the caller. If any of the transferred edges is indirect, the original profiled indirect edge, even if considered, would not enforce a top-down order from the caller to the potential indirect call target in LTO postlink since the inlined callee is gone from the static call graph.
4. #3 can happen even for direct call targets, due to functions defined in header files. Header functions, when included into source files, are defined multiple times but only one definition survives due to ODR. Therefore, the LTO prelink inlining done on those dropped definitions can be useless based on a local file scope. More importantly, the inlinee, once fully inlined to a to-be-dropped inliner, will have no profile to consume when its outlined version is compiled. This can lead to a profile-less prelink compilation for the outlined version of the inlinee function which may be called from external modules. while this isn't easy to fix, we rely on the postlink AutoFDO pipeline to optimize the inlinee. Since the survived copy of the inliner (defined in headers) can be inlined in its local scope in prelink, it may not exist in the merged IR in postlink, and we'll need the profiled call edges to enforce a top-down order for the rest of the functions.
Considering those cases, a profiled call graph completely independent of the static call graph is constructed based on profile data, where function objects are not even needed to handle case #3 and case 4.
I'm seeing an average 0.4% perf win out of SPEC2017. For certain benchmark such as Xalanbmk and GCC, the win is bigger, above 2%.
The change is an enhancement to https://reviews.llvm.org/D95988.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D99351
This fixes the miscompilation reported in https://reviews.llvm.org/rG5bb38e84d3d0#986154 .
`select _, true, false` matches both m_LogicalAnd and m_LogicalOr, making later
transformations confused.
Simplify the branch condition to not have the form.
This patch adds support for the vectorization of induction variables when
using scalable vectors, which required the following changes:
1. Removed assert from InnerLoopVectorizer::getStepVector.
2. Modified InnerLoopVectorizer::createVectorIntOrFpInductionPHI to use
a runtime determined value for VF and removed an assert.
3. Modified InnerLoopVectorizer::buildScalarSteps to work for scalable
vectors. I did this by calculating the full vector value for each Part
of the unroll factor (UF) and caching this in the VP state. This means
that we are always able to extract an arbitrary element from the vector
if necessary. In addition to this, I also permitted the caching of the
individual lane values themselves for the known minimum number of elements
in the same way we do for fixed width vectors. This is a further
optimisation that improves the code quality since it avoids unnecessary
extractelement operations when extracting the first lane.
4. Added an assert to InnerLoopVectorizer::widenPHIInstruction, since while
testing some code paths I noticed this is currently broken for scalable
vectors.
Various tests to support different cases have been added here:
Transforms/LoopVectorize/AArch64/sve-inductions.ll
Differential Revision: https://reviews.llvm.org/D98715
Use SmallVector instead of SmallSet to track the context profiles mapped. Doing this
can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM test profile-context-tracker-debug.ll .
Reviewed By: MaskRay, wenlei
Differential Revision: https://reviews.llvm.org/D99547
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
This change sets up a framework in llvm-profgen to estimate inline decision and adjust context-sensitive profile based on that. We call it a global pre-inliner in llvm-profgen.
It will serve two purposes:
1) Since context profile for not inlined context will be merged into base profile, if we estimate a context will not be inlined, we can merge the context profile in the output to save profile size.
2) For thinLTO, when a context involving functions from different modules is not inined, we can't merge functions profiles across modules, leading to suboptimal post-inline count quality. By estimating some inline decisions, we would be able to adjust/merge context profiles beforehand as a mitigation.
Compiler inline heuristic uses inline cost which is not available in llvm-profgen. But since inline cost is closely related to size, we could get an estimate through function size from debug info. Because the size we have in llvm-profgen is the final size, it could also be more accurate than the inline cost estimation in the compiler.
This change only has the framework, with a few TODOs left for follow up patches for a complete implementation:
1) We need to retrieve size for funciton//inlinee from debug info for inlining estimation. Currently we use number of samples in a profile as place holder for size estimation.
2) Currently the thresholds are using the values used by sample loader inliner. But they need to be tuned since the size here is fully optimized machine code size, instead of inline cost based on not yet fully optimized IR.
Differential Revision: https://reviews.llvm.org/D99146
Re-apply 25fbe803d4, with a small update to emit the right remark
class.
Original message:
[LV] Move runtime pointer size check to LVP::plan().
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.
A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.
Reviewed By: lebedev.ri
This is a 2nd try of:
3c8473ba53
which was reverted at:
a26312f9d4
because of crashing.
This version includes extra code and tests to avoid the known
crashing examples as discussed in PR49730.
Original commit message:
As noted in D98152, we need to patch SLP to avoid regressions when
we start canonicalizing to integer min/max intrinsics.
Most of the real work to make this possible was in:
7202f47508
Differential Revision: https://reviews.llvm.org/D98981
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.
A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98634
Using $ breaks demangling of the symbols. For example,
$ c++filt _Z3foov\$123
_Z3foov$123
This causes problems for developers who would like to see nice stack traces
etc., but also for automatic crash tracking systems which try to organize
crashes based on the stack traces.
Instead, use the period as suffix separator, since Itanium demanglers normally
ignore such suffixes:
$ c++filt _Z3foov.123
foo() [clone .123]
This is already done in some places; try to do it everywhere.
Differential revision: https://reviews.llvm.org/D97484
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
This is a small patch to make FoldBranchToCommonDest poison-safe by default.
After fc3f0c9c, only two syntactic changes are needed to fix unit tests.
This does not cause any assembly difference in testsuite as well (-O3, X86-64 Manjaro).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99452
During context promotion, intermediate nodes that are on a call path but do not come with a profile can be promoted together with their parent nodes. Do not print sample context string for such nodes since they do not have profile.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D99441
This reverts commit 3c8473ba53 and includes test diffs to
maintain testing status.
There's at least 1 place that was not updated with 7202f47508 ,
so we can crash mismatching select and intrinsics as shown in
PR49730.
This patch simplifies the calculation of certain costs in
getInstructionCost when isScalarAfterVectorization() returns a true value.
There are a few places where we multiply a cost by a number N, i.e.
unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
return N * TTI.getArithmeticInstrCost(...
After some investigation it seems that there are only these cases that occur
in practice:
1. VF is a scalar, in which case N = 1.
2. VF is a vector. We can only get here if: a) the instruction is a
GEP/bitcast with scalar uses, or b) this is an update to an induction variable
that remains scalar.
I have changed the code so that N is assumed to always be 1. For GEPs
the cost is always 0, since this is calculated later on as part of the
load/store cost. For all other cases I have added an assert that none of the
users needs scalarising, which didn't fire in any unit tests.
Only one test required fixing and I believe the original cost for the scalar
add instruction to have been wrong, since only one copy remains after
vectorisation.
Differential Revision: https://reviews.llvm.org/D98512
When prioritize call site to consider for inlining in sample loader, use number of samples as a first tier breaker before using name/guid comparison. This would favor smaller functions when hotness is the same (from the same block). We could try to retrieve accurate function size if this turns out to be more important.
Differential Revision: https://reviews.llvm.org/D99370
In DeadArgumentElimination pass, if a function's argument is never used, corresponding caller's parameter can be changed to undef. If the param/arg has attribute noundef or other related attributes, LLVM LangRef(https://llvm.org/docs/LangRef.html#parameter-attributes) says its behavior is undefined. SimplifyCFG(D97244) takes advantage of this behavior and does bad transformation on valid code.
To avoid this undefined behavior when change caller's parameter to undef, this patch removes noundef attribute and other attributes imply noundef on param/arg.
Differential Revision: https://reviews.llvm.org/D98899
This *only* changes the cases where we *really* don't care
about the iteration order of the underlying contained,
namely when we will use the values from it to form DTU updates.
The SCEV commit b46c085d2b [NFCI] SCEVExpander:
emit intrinsics for integral {u,s}{min,max} SCEV expressions
seems to reveal a new crash in SLPVectorizer.
SLP crashes expecting a SelectInst as an externally used value
but umin() call is found.
The patch relaxes the assumption to make the IR flag propagation safe.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D99328
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
We do not need to scan further if the upper end or lower end of the
basic block is reached already and the instruction is not found. It
means that the instruction is definitely in the lower part of basic
block or in the upper block relatively.
This should improve compile time for the very big basic blocks.
Differential Revision: https://reviews.llvm.org/D99266
Unswitching a loop on a non-trivial divergent branch is expensive
since it serializes the execution of both version of the
loop. But identifying a divergent branch needs divergence analysis,
which is a function level analysis.
The legacy pass manager handles this dependency by isolating such a
loop transform and rerunning the required function analyses. This
functionality is currently missing in the new pass manager, and there
is no safe way for the SimpleLoopUnswitch pass to depend on
DivergenceAnalysis. So we conservatively assume that all non-trivial
branches are divergent if the target has divergence.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D98958
This is yet another attempt to fix tightlyNested().
Add checks in tightlyNested() for the inner loop exit block,
such that 1) if there is control-flow divergence in between the inner
loop exit block and the outer loop latch, or 2) if the inner loop exit
block contains unsafe instructions, tightlyNested() returns false.
The reasoning behind is that after interchange, the original inner loop
exit block, which was part of the outer loop, would be put into the new
inner loop, and will be executed different number of times before and
after interchange. Thus it should be dealt with appropriately.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D98263
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
LICM can sink instructions that have uses inside the loop, as
long as these uses are considered "free". However, if there were
only free uses inside the loop, and no uses outside the loop at
all, the instruction would still count towards the NumSunk
statistic. This resulted in a wild inflation of the NumSunk metric.
After this patch it drops down from 1141787 to 5852 on test-suite O3.
FindAvailableLoadedValue() relies on FindAvailablePtrLoadStore() to run
the alias analysis when searching for an equivalent value. However,
FindAvailablePtrLoadStore() calls the alias analysis framework with a
memory location for the load constructed from an address and a size,
which thus lacks TBAA metadata info. This commit modifies
FindAvailablePtrLoadStore() to accept an optional memory location as
parameter to allow FindAvailableLoadedValue() to create it based on the
load instruction, which would then have TBAA metadata info attached.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99206
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
We know if the loop contains FP instructions preventing vectorization
after we are done with legality checks. This patch updates the code the
check for un-vectorizable FP operations earlier, to avoid unnecessarily
running the cost model and picking a vectorization factor. It also makes
the code more direct and moves the check to a position where similar
checks are done.
I might be missing something, but I don't see any reason to handle this
check differently to other, similar checks.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98633
The `InductionPHI` is not necessarily the increment instruction, as
demonstrated in pr49571.ll.
This patch removes the assertion and instead bails out from the
`LoopFlatten` pass if that happens.
This fixes https://bugs.llvm.org/show_bug.cgi?id=49571
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D99252
Added getPointersDiff function to LoopAccessAnalysis and used it instead
direct calculatoin of the distance between pointers and/or
isConsecutiveAccess function in SLP vectorizer to improve compile time
and detection of stores consecutive chains.
Part of D57059
Differential Revision: https://reviews.llvm.org/D98967
Added getPointersDiff function to LoopAccessAnalysis and used it instead
direct calculatoin of the distance between pointers and/or
isConsecutiveAccess function in SLP vectorizer to improve compile time
and detection of stores consecutive chains.
Part of D57059
Differential Revision: https://reviews.llvm.org/D98967
`FoldBranchToCommonDest()` has a certain budget (`-bonus-inst-threshold=`)
for bonus instruction duplication. And currently it calculates the cost
as-if it will actually duplicate into each predecessor.
But ignoring the budget, it won't always duplicate into each predecessor,
there are some correctness and profitability checks.
So when calculating the cost, we should first check into which blocks
will we *actually* duplicate, and only then use that block count
to do budgeting.
We clone bonus instructions to the end of the predecessor block,
and then use `SSAUpdater::RewriteUseAfterInsertions()`.
But that only deals with the cases where the use-to-be-rewritten
are either in different block from the def, or come after the def.
But in some loop cases, the external use may be in the beginning of
predecessor block, before the newly cloned bonus instruction.
`SSAUpdater::RewriteUseAfterInsertions()` does not deal with that.
Notably, the external use can't happen to be both in the same block
and *after* the newly-cloned instruction, because of the fold preconditions.
To properly handle these cases, when the use is in the same block,
we should instead use `SSAUpdater::RewriteUse()`.
TBN, they do the same thing for PHI users.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49510
Likely Fixes https://bugs.llvm.org/show_bug.cgi?id=49689
2nd try (original: 27ae17a6b0) with fix/test for crash. We must make
sure that TTI is available before trying to use it because it is not
required (might be another bug).
Original commit message:
This is one step towards solving:
https://llvm.org/PR49336
In that example, we disregard the recommended usage of builtin_expect,
so an expensive (unpredictable) branch is folded into another branch
that is guarding it.
Here, we read the profile metadata to see if the 1st (predecessor)
condition is likely to cause execution to bypass the 2nd (successor)
condition before merging conditions by using logic ops.
Differential Revision: https://reviews.llvm.org/D98898
As noted in D98152, we need to patch SLP to avoid regressions when
we start canonicalizing to integer min/max intrinsics.
Most of the real work to make this possible was in:
7202f47508
Differential Revision: https://reviews.llvm.org/D98981
- Give unwieldy repeated expression a name
- Use a ranged `for` basic block iterator
Reviewed by: nikic, dexonsmith
Differential Revisision: https://reviews.llvm.org/D98957
Hoist early return for decl-only clones to before DIFinder
calculation.
Also fix an out of date assert message after invariants changed in
22a52dfddc.
Reviewed by: nikic, dexonsmith
Differential Revisision: https://reviews.llvm.org/D98957
A bug was found within InstCombineCasts where a function call
is only implemented to work with FixedVectors. This caused a
crash when a ScalableVector was passed to this function.
This commit introduces a regression test which recreates the
failure and a bug fix.
Differential Revision: https://reviews.llvm.org/D98351
The summary remarks are generated on a per-function basis. Using the
first instruction's location is sub-optimal for 2 reasons:
1. Sometimes the first instruction is missing !dbg
2. The location of the first instruction may be mis-leading.
Instead, just use the location of the function directly.
In places where we create a ConstantVector whose elements are a
linear sequence of the form <start, start + 1, start + 2, ...>
I've changed the code to make use of CreateStepVector, which creates
a vector with the sequence <0, 1, 2, ...>, and a vector addition
operation. This patch is a non-functional change, since the output
from the vectoriser remains unchanged for fixed length vectors and
there are existing asserts that still fire when attempting to use
scalable vectors for vectorising induction variables.
In a later patch we will enable support for scalable vectors
in InnerLoopVectorizer::getStepVector(), which relies upon the new
stepvector intrinsic in IRBuilder::CreateStepVector.
Differential Revision: https://reviews.llvm.org/D97861
The name is included when printing in DOT mode. Also print it in non-DOT
mode after 93a9d2de8f.
This will become more important to distinguish different plans once
VPlans are gradually refined.
meetBDVState utility may sets the base pointer for the conflict state.
At this moment the base for conflict state does not have any meaning but
is used in comparison of BDV states. This comparison is used as an indicator
of progress done on iteration and RS4GC pass uses infinite loop to reach
fixed point.
As a result for added test on each iteration state for some phi nodes is updated
with other base value for conflict state and it indicates as a progress while
for conflict state there is no any progress more possible.
In reality the base value is transferred from one state to another and pass
detects the progress on these states.
The test is very fragile. The traversal order of states and operands of phi nodes
plays important role.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D99058
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Sometimes you want to get a type with same vector element count
as the current type, but different element type,
but there's no QOL wrapper to do that. Add one.
This reverts commit 27ae17a6b0.
There are bot failures that end with:
#4 0x00007fff7ae3c9b8 CrashRecoverySignalHandler(int) CrashRecoveryContext.cpp:0:0
#5 0x00007fff84e504d8 (linux-vdso64.so.1+0x4d8)
#6 0x00007fff7c419a5c llvm::TargetTransformInfo::getPredictableBranchThreshold() const (/home/buildbots/ppc64le-clang-multistage-test/clang-ppc64le-multistage/stage1.install/bin/../lib/libLLVMAnalysis.so.13git+0x479a5c)
...but not sure how to trigger that yet.
This is one step towards solving:
https://llvm.org/PR49336
In that example, we disregard the recommended usage of builtin_expect,
so an expensive (unpredictable) branch is folded into another branch
that is guarding it.
Here, we read the profile metadata to see if the 1st (predecessor)
condition is likely to cause execution to bypass the 2nd (successor)
condition before merging conditions by using logic ops.
Differential Revision: https://reviews.llvm.org/D98898
This is no-functional-change intended (NFC), but needed to allow
optimizer passes to use the API. See D98898 for a proposed usage
by SimplifyCFG.
I'm simplifying the code by removing the cl::opt. That was added
back with the original commit in D19488, but I don't see any
evidence in regression tests that it was used. Target-specific
overrides can use the usual patterns to adjust as necessary.
We could also restore that cl::opt, but it was not clear to me
exactly how to do it in the convoluted TTI class structure.
Make sure we use PowerOf2Floor instead of PowerOf2Ceil when
calculating max number of elements that fits inside a vector
register (otherwise we could end up creating vectors larger
than the maximum vector register size).
Also make sure we honor the min/max VF (as given by TTI or
cmd line parameters) when doing vectorizeStores.
Reviewed By: anton-afanasyev
Differential Revision: https://reviews.llvm.org/D97691
Subsequent patches will implement page-aliasing mode for x86_64, which
will initially only work for the primary heap allocator. We force
callback instrumentation to simplify the initial aliasing
implementation.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98069
This attribute represents the minimum and maximum values vscale can
take. For now this attribute is not hooked up to anything during
codegen, this will be added in the future when such codegen is
considered stable.
Additionally hook up the -msve-vector-bits=<x> clang option to emit this
attribute.
Differential Revision: https://reviews.llvm.org/D98030
When eliminating comparisons, we can use common dominator of
all its users as context. This gives better results when ICMP is not
computed right before the branch that uses it.
Differential Revision: https://reviews.llvm.org/D98924
Reviewed By: lebedev.ri
08196e0b2e exposed LowerExpectIntrinsic's
internal implementation detail in the form of
LikelyBranchWeight/UnlikelyBranchWeight options to the outside.
While this isn't incorrect from the results viewpoint,
this is suboptimal from the layering viewpoint,
and causes confusion - should transforms also use those weights,
or should they use something else, D98898?
So go back to status quo by making LikelyBranchWeight/UnlikelyBranchWeight
internal again, and fixing all the code that used it directly,
which currently is only clang codegen, thankfully,
to emit proper @llvm.expect intrinsics instead.
Upon reviewing D98898 i've come to realization that these are
implementation detail of LowerExpectIntrinsicPass,
and they should not be exposed to outside of it.
This reverts commit ee8b53815d.
This makes the settings available for use in other passes by housing
them within the Support lib, but NFC otherwise.
See D98898 for the proposed usage in SimplifyCFG
(where this change was originally included).
Differential Revision: https://reviews.llvm.org/D98945
Now that intrinsic name mangling can cope with unnamed types, the custom name mangling in PredicateInfo (introduced by D49126) can be removed.
(See D91250, D48541)
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D91661
All loop passes should preserve all analyses in LoopAnalysisResults. Add
checks for those when the checks are enabled (which is by default with
expensive checks on).
Note that due to PR44815, we don't check LAR's ScalarEvolution.
Apparently calling SE.verify() can change its results.
This is a reland of https://reviews.llvm.org/D98820 which was reverted
due to unacceptably large compile time regressions in normal debug
builds.
All loop passes should preserve all analyses in LoopAnalysisResults. Add
checks for those.
Note that due to PR44815, we don't check LAR's ScalarEvolution.
Apparently calling SE.verify() can change its results.
Only verify MSSA when VerifyMemorySSA, normally it's very expensive.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98820
This patch is plumbing to support work towards the goal outlined in the recent llvm-dev post "[llvm-dev] RFC: Decomposing deref(N) into deref(N) + nofree".
The point of this change is purely to simplify iteration on other pieces on way to making the switch. Rebuilding with a change to Value.h is slow and painful, so I want to get the API change landed. Once that's done, I plan to more closely audit each caller, add the inference rules in their own patch, then post a patch with the langref changes and test diffs. The value of the command line flag is that we can exercise the inference logic in standalone patches without needing the whole switch ready to go just yet.
Differential Revision: https://reviews.llvm.org/D98908
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
We can prove more predicates when we have a context when eliminating ICmp.
As first (and very obvious) approximation we can use the ICmp instruction itself,
though in the future we are going to use a common dominator of all its users.
Need some refactoring before that.
Observed ~0.5% negative compile time impact.
Differential Revision: https://reviews.llvm.org/D98697
Reviewed By: lebedev.ri
On ELF, we place the metadata sections (`__sancov_guards`, `__sancov_cntrs`,
`__sancov_bools`, `__sancov_pcs` in section groups (either `comdat any` or
`comdat noduplicates`).
With `--gc-sections`, LLD since D96753 and GNU ld `-z start-stop-gc` may garbage
collect such sections. If all `__sancov_bools` are discarded, LLD will error
`error: undefined hidden symbol: __start___sancov_cntrs` (other sections are similar).
```
% cat a.c
void discarded() {}
% clang -fsanitize-coverage=func,trace-pc-guard -fpic -fvisibility=hidden a.c -shared -fuse-ld=lld -Wl,--gc-sections
...
ld.lld: error: undefined hidden symbol: __start___sancov_guards
>>> referenced by a.c
>>> /tmp/a-456662.o:(sancov.module_ctor_trace_pc_guard)
```
Use the `extern_weak` linkage (lowered to undefined weak symbols) to avoid the
undefined error.
Differential Revision: https://reviews.llvm.org/D98903
This is only adding support to the dfsan instrumentation pass but not
to the runtime.
Added more RUN lines for testing: for each instrumentation test that
had a -dfsan-fast-16-labels invocation, a new invocation was added
using fast8.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D98734
This reverts commit 6b053c9867.
The build is broken:
ld.lld: error: undefined symbol: llvm::VPlan::printDOT(llvm::raw_ostream&) const
>>> referenced by LoopVectorize.cpp
>>> LoopVectorize.cpp.o:(llvm::LoopVectorizationPlanner::printPlans(llvm::raw_ostream&)) in archive lib/libLLVMVectorize.a
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
value profile annotated after inlining.
In https://reviews.llvm.org/D96806 and https://reviews.llvm.org/D97350, we
use the magic number -1 in the value profile to avoid repeated indirect call
promotion to the same target for an indirect call. Function updateIDTMetaData
is used to mark an target as being promoted in the value profile with the
magic number. updateIDTMetaData is also used to update the value profile
when an indirect call is inlined and new inline instance profile should be
applied. For the second case, currently updateIDTMetaData mixes up the
existing value profile of the indirect call with the new profile, leading
to the problematic senario that a target count is larger than the total count
in the value profile.
The patch fixes the problem. When updateIDTMetaData is used to update the
value profile after inlining, all the values in the existing value profile
will be dropped except the values with the magic number counts.
Differential Revision: https://reviews.llvm.org/D98835
Not doing it here can lead to subtle bugs - the analysis results are
associated by the Function object's address. Nothing stops the memory
allocator from allocating new functions at the same address.
If SLP vectorizer tries to extend the scheduling region and runs out of
the budget too early, but still extends the region to the new ending
instructions (i.e., it was able to extend the region for the first
instruction in the bundle, but not for the second), the compiler need to
recalculate dependecies in full, just like if the extending was
successfull. Without it, the schedule data chunks may end up with the
wrong number of (unscheduled) dependecies and it may end up with the
incorrect function, where the vectorized instruction does not dominate
on the extractelement instruction.
Differential Revision: https://reviews.llvm.org/D98531
All loop passes should preserve all analyses in LoopAnalysisResults. Add
checks for those.
Note that due to PR44815, we don't check LAR's ScalarEvolution.
Apparently calling SE.verify() can change its results.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98805
It is not legal to form a phi node with token type. The generic LCSSA construction code handles this correctly - by not forming LCSSA for such cases - but the adhoc fixup implementation in LICM did not.
This was noticed in the context of PR49607, but can be demonstrated on ToT with the tweaked test case. This is not specific to gc.relocate btw, it also applies to usage of the preallocated family of intrinsics as well.
Differential Revision: https://reviews.llvm.org/D98728
This adds an Mask ArrayRef to getShuffleCost, so that if an exact mask
can be provided a more accurate cost can be provided by the backend.
For example VREV costs could be returned by the ARM backend. This should
be an NFC until then, laying the groundwork for that to be added.
Differential Revision: https://reviews.llvm.org/D98206
Fixed section of code that iterated through a SmallDenseMap and added
instructions in each iteration, causing non-deterministic code; replaced
SmallDenseMap with MapVector to prevent non-determinism.
This reverts commit 01ac6d1587.
The `hasIrregularType` predicate checks whether an array of N values of type Ty is "bitcast-compatible" with a <N x Ty> vector.
The previous check returned invalid results in some cases where there's some padding between the array elements: eg. a 4-element array of u7 values is considered as compatible with <4 x u7>, even though the vector is only loading/storing 28 bits instead of 32.
The problem causes LLVM to generate incorrect code for some targets: for AArch64 the vector loads/stores are lowered in terms of ubfx/bfi, effectively losing the top (N * padding bits).
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D97465
This caused non-deterministic compiler output; see comment on the
code review.
> This patch updates the various IR passes to correctly handle dbg.values with a
> DIArgList location. This patch does not actually allow DIArgLists to be produced
> by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
> Other than that, it should cover every IR pass.
>
> Most of the changes simply extend code that operated on a single debug value to
> operate on the list of debug values in the style of any_of, all_of, for_each,
> etc. Instances of setOperand(0, ...) have been replaced with with
> replaceVariableLocationOp, which takes the value that is being replaced as an
> additional argument. In places where this value isn't readily available, we have
> to track the old value through to the point where it gets replaced.
>
> Differential Revision: https://reviews.llvm.org/D88232
This reverts commit df69c69427.
This adds the cost of an i1 extract and a branch to the cost in
getMemInstScalarizationCost when the instruction is predicated. These
predicated loads/store would generate blocks of something like:
%c1 = extractelement <4 x i1> %C, i32 1
br i1 %c1, label %if, label %else
if:
%sa = extractelement <4 x i32> %a, i32 1
%sb = getelementptr inbounds float, float* %pg, i32 %sa
%sv = extractelement <4 x float> %x, i32 1
store float %sa, float* %sb, align 4
else:
So this increases the cost by the extract and branch. This is probably
still too low in many cases due to the cost of all that branching, but
there is already an existing hack increasing the cost using
useEmulatedMaskMemRefHack. It will increase the cost of a memop if it is
a load or there are more than one store. This patch improves the cost
for when there is only a single store, and hopefully at some point in
the future the hack can be removed.
Differential Revision: https://reviews.llvm.org/D98243
Current SLP pass has this piece of code that inserts a trunc instruction
after the vectorized instruction. In the case that the vectorized instruction
is a phi node and not the last phi node in the BB, the trunc instruction
will be inserted between two phi nodes, which will trigger verify problem
in debug version or unpredictable error in another pass.
This patch changes the algorithm to 'if the last vectorized instruction
is a phi, insert it after the last phi node in current BB' to fix this problem.
The motivation is to handle integer min/max reductions independently
of whether they are in the current cmp+sel form or the planned intrinsic
form.
We assumed that min/max included a select instruction, but we can
decouple that implementation detail by checking the instructions
themselves rather than relying on the recurrence (reduction) type.
Previously we created a new node, then filled in the pieces. Now, we clone the existing node, then change the respective fields. The only change in handling is with phis since we have to handle multiple incoming edges from the same block a bit differently.
Differential Revision: https://reviews.llvm.org/D98316
A broadcast is a shufflevector where only one input is used. Because of the way we handle constants (undef is a constant), the canonical shuffle sees a meet of (some value) and (nullptr). Given this, every broadcast gets treated as a conflict and a new base pointer computation is added.
The other way to tackle this would be to change constant handling specifically for undefs, but this seems easier.
Differential Revision: https://reviews.llvm.org/D98315
RS4GC needs to rewrite the IR to ensure that every relocated pointer has an associated base pointer. The existing code isn't particularly smart about avoiding duplication of existing IR when it turns out the original pointer we were asked to materialize a base pointer for is itself a base pointer.
This patch adds a stage to the algorithm which prunes nodes proven (with a simple forward dataflow fixed point) to be base pointers from the list of nodes considered for duplication. This does require changing some of the later invariants slightly, that's probably the riskiest part of the change.
Differential Revision: D98122
Add MemorySSAWrapperPass as a dependency to MemCpyOptLegacyPass,
since MemCpyOpt now uses MemorySSA by default.
Differential Revision: https://reviews.llvm.org/D98484
This was (partially) reverted in cfe8f8e0 because the conversion from readonly to readnone in Intrinsics.td exposed a couple of problems. This change has been reworked to not need that change (via some explicit checks in client code). This is being done to address the original optimization issue and simplify the testing of the readonly changes. I'm working on that piece under 49607.
Original commit message follows:
The last two operands to a gc.relocate represent indices into the associated gc.statepoint's gc bundle list. (Effectively, gc.relocates are projections from the gc.statepoints multiple return values.)
We can use this to recognize when two gc.relocates are equivalent (and can be CSEd), even when the indices are non-equal. This is particular useful when considering a chain of multiple statepoints as it lets us eliminate all duplicate gc.relocates in a single pass.
Differential Revision: https://reviews.llvm.org/D97974
Instead of maintaining a separate map from predicated instructions to
recipes, we can instead directly look at the VP operands. If the operand
comes from a predicated instruction, the operand will be a
VPPredInstPHIRecipe with a VPReplicateRecipe as its operand.
This patch adds support for reverse loop vectorization.
It is possible to vectorize the following loop:
```
for (int i = n-1; i >= 0; --i)
a[i] = b[i] + 1.0;
```
with fixed or scalable vector.
The loop-vectorizer will use 'reverse' on the loads/stores to make
sure the lanes themselves are also handled in the right order.
This patch adds support for scalable vector on IRBuilder interface to
create a reverse vector. The IR function
CreateVectorReverse lowers to experimental.vector.reverse for scalable vector
and keedp the original behavior for fixed vector using shuffle reverse.
Differential Revision: https://reviews.llvm.org/D95363
For ThinLTO's prelink compilation, we need to put external inline candidates into an import list attached to function's entry count metadata. This enables ThinLink to treat such cross module callee as hot in summary index, and later helps postlink to import them for profile guided cross module inlining.
For AutoFDO, the import list is retrieved by traversing the nested inlinee functions. For CSSPGO, since profile is flatterned, a few things need to happen for it to work:
- When loading input profile in extended binary format, we need to load all child context profile whose parent is in current module, so context trie for current module includes potential cross module inlinee.
- In order to make the above happen, we need to know whether input profile is CSSPGO profile before start reading function profile, hence a flag for profile summary section is added.
- When searching for cross module inline candidate, we need to walk through the context trie instead of nested inlinee profile (callsite sample of AutoFDO profile).
- Now that we have more accurate counts with CSSPGO, we swtiched to use entry count instead of total count to decided if an external callee is potentially beneficial to inline. This make it consistent with how we determine whether call tagert is potential inline candidate.
Differential Revision: https://reviews.llvm.org/D98590
This is a patch to add nonnull and align to assume's operand bundle
only if noundef exists.
Since nonnull and align in fn attr have poison semantics, they should be
paired with noundef or noundef-implying attributes to be immediate UB.
Reviewed By: jdoerfert, Tyker
Differential Revision: https://reviews.llvm.org/D98228
This is an alternative to D98120. Herein, instead of deleting the transformation entirely, we check
that the underlying objects are both the same and therefore this transformation wouldn't incur a
provenance change, if applied.
https://alive2.llvm.org/ce/z/SYF_yv
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98588
The load/store instruction will be transformed to amx intrinsics
in the pass of AMX type lowering. Prohibiting the pointer cast
make that pass happy.
Differential Revision: https://reviews.llvm.org/D98247
This fixes a regression from the MemDep-based implementation:
MemDep completely ignores lifetime.start intrinsics that aren't
MustAlias -- this is probably unsound, but it does mean that the
MemDep based implementation successfully eliminated memcpy's from
lifetime.start if the memcpy happens at an offset, rather than
the base address of the alloca.
Add a special case for the case where the lifetime.start spans the
whole alloca (which is pretty much the only kind of lifetime.start
that frontends ever emit), as we don't need to figure out our exact
aliasing relationship in that case, the whole alloca is dead prior
to the call.
If this doesn't cover all practically relevant cases, then it
would be possible to make use of the recently added PartialAlias
clobber offsets to make this more precise.
The structure of this fold is suspect vs. most of instcombine
because it creates instructions and tries to delete them
immediately after.
If we don't have the operand types for the icmps, then we are
not behaving as assumed. And as shown in PR49475, we can inf-loop.