Summary: The original logic seems to be we could collecting a CoroBegin
if one of the terminators could be dominated by one of coro.destroy,
which doesn't make sense.
This patch rewrites the logics to collect CoroBegin if all of
terminators are dominated by one coro.destroy. If there is no such
coro.destroy, we would call hasEscapePath to evaluate if we should
collect it.
Test Plan: check-llvm
Reviewed by: lxfind
Differential Revision: https://reviews.llvm.org/D100614
This reverts commit fa6b54c44a.
The commited patch broke mlir tests. It seems that mlir tests depend on coroutine function properties set in CoroEarly pass.
Presplit coroutines cannot be inlined. During AlwaysInliner we check if a function is a presplit coroutine, if so we skip inlining.
The presplit coroutine attributes are set in CoroEarly pass.
However in O0 pipeline, AlwaysInliner runs before CoroEarly, so the attribute isn't set yet and will still inline the coroutine.
This causes Clang to crash: https://bugs.llvm.org/show_bug.cgi?id=49920
To fix this, we set the attributes in the Clang front-end instead of in CoroEarly pass.
Reviewed By: rjmccall, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D100282
Presplit coroutines cannot be inlined. During AlwaysInliner we check if a function is a presplit coroutine, if so we skip inlining.
The presplit coroutine attributes are set in CoroEarly pass.
However in O0 pipeline, AlwaysInliner runs before CoroEarly, so the attribute isn't set yet and will still inline the coroutine.
This causes Clang to crash: https://bugs.llvm.org/show_bug.cgi?id=49920
Differential Revision: https://reviews.llvm.org/D100282
This patch updates the linkage name in the DISubprogram of coro-split
functions, which is particularly important for Swift, where the
funclets have a special name mangling. This patch does not affect C++
coroutines, since the DW_AT_specification is expected to hold the
(original) linkage name. I believe this is mostly due to limitations
in AsmPrinter, so we might be able to relax this restriction in the
future.
Differential Revision: https://reviews.llvm.org/D99693
LLVM test Transforms/Coroutine/coro-split-sink-lifetime-O2.ll tries to
check for the absence of a sequence of instructions with several
CHECK-NOT with one of those directives using a variable defined in
another. However CHECK-NOT are checked independently so that is using a
variable defined in a pattern that should not occur in the input.
This commit simplifies the CHECK-NOT block to only check for the
presence of any lifetime start marker since that is effectively what
the test was testing at the moment.
Reviewed By: junparser
Differential Revision: https://reviews.llvm.org/D99856
Summary: Try to insert dbg.declare to entry.resume basic block in resume
function. In this way, we could print alloca such as __promise in
gdb/lldb under O2, which would be beneficial to debug coroutine program.
Test Plan: check-llvm
Reviewed by: aprantl
Differential Revision: https://reviews.llvm.org/D96938
This patch updates the scope line to point to the suspend point. This
makes the first address in the function point to the first source line
in the resume function rather than the function declaration. Without
this the line table "jumps" from the beginning of the function to the
suspend point at the beginning.
rdar://73386346
Differential Revision: https://reviews.llvm.org/D97345
See pr46990(https://bugs.llvm.org/show_bug.cgi?id=46990). LICM should not sink store instructions to loop exit blocks which cross coro.suspend intrinsics. This breaks semantic of coro.suspend intrinsic which return to caller directly. Also this leads to use-after-free if the coroutine is freed before control returns to the caller in multithread environment.
This patch disable promotion by check whether loop contains coro.suspend intrinsics.
This is a resubmit of D86190.
Disabling LICM for loops with coroutine suspension is a better option not only for correctness purpose but also for performance purpose.
In most cases LICM sinks memory operations. In the case of coroutine, sinking memory operation out of the loop does not improve performance since coroutien needs to get data from the frame anyway. In fact LICM would hurt coroutine performance since it adds more entries to the frame.
Differential Revision: https://reviews.llvm.org/D96928
Before we used the same argument as the entry point. The resume partial
function might want to use a different ABI for its context argument
Differential Revision: https://reviews.llvm.org/D97333
This doesn't actually reproduce with a dbg.declare(i8* null, ...)
which produces a non-null null Value, but I have seen this show up in
crash logs. I'm suspecting that there may be another pass forcibly
setting the operand to a nullptr.
In the existing logic, we look at the lifetime.start marker of each alloca, and check all uses of the alloca, to see if any pair of the lifetime marker and an use of alloca crosses suspension point.
This approach is unfortunately incorrect. An use of alloca does not need to be a direct use, but can be an indirect use through alias.
Only checking direct uses can miss cases where indirect uses are crossing suspension point.
This can be demonstrated in the newly added test case 007.
In the test case, both x and y are only directly used prior to suspend, but they are captured into an alias, merged through a PHINode (so they couldn't be materialized), and used after CoroSuspend.
If we only check whether the lifetime starts cross suspension points with direct uses, we will put the allocas to the stack, and then capture their addresses in the frame.
Instead of fixing it in D96441 and D96566, this patch takes a different approach which I think is better.
We still checks the lifetime info in the same way as before, but with two differences:
1. The collection of liftime.start is moved into AllocaUseVisitor to make the logic more concentrated.
2. When looking at lifetime.start and use pairs, we not only checks the direct uses as before, but in this patch we check all uses collected by AllocaUseVisitor, which would include all indirect uses through alias. This will make the analysis more accurate without throwing away the lifetime optimization.
Differential Revision: https://reviews.llvm.org/D96922
The new intrinsic replaces the size in one specified AsyncFunctionPointer with
the size in another. This ability is necessary for functions which merely
forward to async functions such as those defined for partial applications.
Reviewed By: aschwaighofer
Differential Revision: https://reviews.llvm.org/D97229
As discussed in D94834, we don't really need to do complicated analysis. It's safe to just drop the tail call attribute.
Differential Revision: https://reviews.llvm.org/D96926
Also don't call function to update the call graph if there are no
clones. The function will fail.
rdar://74277860
Differential Revision: https://reviews.llvm.org/D96620
This allows for suspend point specific resume function types.
Return values from a suspend point can therefore be modelled as
arguments to the resume function. Allowing for directly passed return
types.
Differential Revision: https://reviews.llvm.org/D96136
Dynamic allocas that still exist have been verified to be only used
'locally' not accross a suspend point.
rdar://73903220
Differential Revision: https://reviews.llvm.org/D96071
and fix a few edge cases that show up in the Swift compiler but
weren't caught by the existing tests. Most notably the old code wasn't
salvaging load operations correctly. The patch also gets rid of the
LoadFromFramePtr argument and replaces it with a more generalized
mechanism.
This patch improves the availability for variables stored in the
coroutine frame by emitting an alloca to hold the pointer to the frame
object and rewriting dbg.declare intrinsics to point inside the frame
object using salvaged DIExpressions. Finally, a new alloca is created
in the funclet to hold the FramePtr pointer to ensure that it is
available throughout the entire function at -O0.
This path also effectively reverts D90772. The testcase updates
highlight nicely how every removed CHECK for a dbg.value is preceded
by a new CHECK for a dbg.declare.
Thanks to JunMa, Yifeng, and Bruno for their thoughtful reviews!
Differential Revision: https://reviews.llvm.org/D93497
rdar://71866936
A @llvm.experimental.noalias.scope.decl is only useful if there is !alias.scope and !noalias metadata that uses the declared scope.
When that is not the case for at least one of the two, the intrinsic call can as well be removed.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95141
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
Insert a llvm.experimental.noalias.scope.decl intrinsic that identifies where a noalias argument was inlined.
This patch includes some refactorings from D90104.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93040
The test wasn't sensitive to alias analysis. As you can seen from D95117 when AA is added by default this is affected.
Updating the test so that it coveres both cases for AA analysis.
Note that this patch depends on D95117 to land first.
Differential Revision: https://reviews.llvm.org/D95247
Because we were not looking for the llvm.coro.id.async intrinsic in the
early coro pass which triggers follow-up passes we relied on the
llvm.coro.end intrinsic being present. This might not be the case in
functions that end in unreachable code.
Differential Revision: https://reviews.llvm.org/D95144
We tend to assume that the AA pipeline is by default the default AA
pipeline and it's confusing when it's empty instead.
PR48779
Initially reverted due to BasicAA running analyses in an unspecified
order (multiple function calls as parameters), fixed by fetching
analyses before the call to construct BasicAA.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D95117
We tend to assume that the AA pipeline is by default the default AA
pipeline and it's confusing when it's empty instead.
PR48779
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D95117
Summary: This is to address bug48712.
The solution in this patch is that when we want to merge two variable a
into the storage frame of variable b only if the alignment of a is
multiple of b.
There may be other strategies. But now I think they are hard to handle
and benefit little. Or we can implement them in the future.
Test-plan: check-llvm
Reviewers: jmorse, lxfind, junparser
Differential Revision: https://reviews.llvm.org/D94891
This is to address https://bugs.llvm.org/show_bug.cgi?id=48626.
When there are musttail calls that use parameters aliasing the newly created coroutine frame, the existing implementation will fatal.
We simply cannot perform CoroElide in such cases. In theory a precise analysis can be done to check whether the parameters of the musttail call
actually alias the frame, but it's very hard to do it before the transformation happens. Also in most cases the existence of musttail call is
generated due to symmetric transfers, and in those cases alias analysis won't be able to tell that they don't alias anyway.
Differential Revision: https://reviews.llvm.org/D94834
promise is a header field but it is not guaranteed that it would be the third
field of the frame due to `performOptimizedStructLayout`.
Reviewed By: lxfind
Differential Revision: https://reviews.llvm.org/D94137
Apparently there can be no clones, as happens in
coro-retcon-unreachable.ll.
The alternative is to allow no split functions in
addSplitRefRecursiveFunctions(), but it seems better to have the caller
make sure it's not accidentally splitting no functions out.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D94258
Previously when trying to support CoroSplit's function splitting, we
added in a hack that simply added the new function's node into the
original function's SCC (https://reviews.llvm.org/D87798). This is
incorrect since it might be in its own SCC.
Now, more similar to the previous design, we have callers explicitly
notify the LazyCallGraph that a function has been split out from another
one.
In order to properly support CoroSplit, there are two ways functions can
be split out.
One is the normal expected "outlining" of one function into a new one.
The new function may only contain references to other functions that the
original did. The original function must reference the new function. The
new function may reference the original function, which can result in
the new function being in the same SCC as the original function. The
weird case is when the original function indirectly references the new
function, but the new function directly calls the original function,
resulting in the new SCC being a parent of the original function's SCC.
This form of function splitting works with CoroSplit's Switch ABI.
The second way of splitting is more specific to CoroSplit. CoroSplit's
Retcon and Async ABIs split the original function into multiple
functions that all reference each other and are referenced by the
original function. In order to keep the LazyCallGraph in a valid state,
all new functions must be processed together, else some nodes won't be
populated. To keep things simple, this only supports the case where all
new edges are ref edges, and every new function references every other
new function. There can be a reference back from any new function to the
original function, putting all functions in the same RefSCC.
This also adds asserts that all nodes in a (Ref)SCC can reach all other
nodes to prevent future incorrect hacks.
The original hacks in https://reviews.llvm.org/D87798 are no longer
necessary since all new functions should have been registered before
calling updateCGAndAnalysisManagerForPass.
This fixes all coroutine tests when opt's -enable-new-pm is true by
default. This also fixes PR48190, which was likely due to the previous
hack breaking SCC invariants.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D93828
The llvm.coro.end.async intrinsic allows to specify a function that is
to be called as the last action before returning. This function will be
inlined after coroutine splitting.
This function can contain a 'musttail' call to allow for guaranteed tail
calling as the last action.
Differential Revision: https://reviews.llvm.org/D93568
Following up with the comments in D92706.
- Use -passes instead of -enable-new-pm
- CoroEarly should happen before AlwaysInliner, adjust it.
- Remove some unnecessary barriers (still kept one)
- Cleanup unnecessary debug info
Differential Revision: https://reviews.llvm.org/D93342
This is a rework of D85812, which didn't land.
When callee coroutine function is inlined into caller coroutine function before coro-split pass, llvm will emits "coroutine should have exactly one defining @llvm.coro.begin". It seems that coro-early pass can not handle this quiet well.
So we believe that unsplited coroutine function should not be inlined.
This patch fix such issue by not inlining function if it has attribute "coroutine.presplit" (it means the function has not been splited) to fix this issue
test plan: check-llvm, check-clang
In D85812, there was suggestions on moving the macros to Attributes.td to avoid circular header dependency issue.
I believe it's not worth doing just to be able to use one constant string in one place.
Today, there are already 3 possible attribute values for "coroutine.presplit": c6543cc6b8/llvm/lib/Transforms/Coroutines/CoroInternal.h (L40-L42)
If we move them into Attributes.td, we would be adding 3 new attributes to EnumAttr, just to support this, which I think is an overkill.
Instead, I think the best way to do this is to add an API in Function class that checks whether this function is a coroutine, by checking the attribute by name directly.
Differential Revision: https://reviews.llvm.org/D92706
In the existing logic, for a given alloca, as long as its pointer value is stored into another location, it's considered as escaped.
This is a bit too conservative. Specifically, in non-optimized build mode, it's often to have patterns of code that first store an alloca somewhere and then load it right away.
These used should be handled without conservatively marking them escaped.
This patch tracks how the memory location where an alloca pointer is stored into is being used. As long as we only try to load from that location and nothing else, we can still
consider the original alloca not escaping and keep it on the stack instead of putting it on the frame.
Differential Revision: https://reviews.llvm.org/D91305
In the existing logic, for a given alloca, as long as its pointer value is stored into another location, it's considered as escaped.
This is a bit too conservative. Specifically, in non-optimized build mode, it's often to have patterns of code that first store an alloca somewhere and then load it right away.
These used should be handled without conservatively marking them escaped.
This patch tracks how the memory location where an alloca pointer is stored into is being used. As long as we only try to load from that location and nothing else, we can still
consider the original alloca not escaping and keep it on the stack instead of putting it on the frame.
Differential Revision: https://reviews.llvm.org/D91305
We need to be able to call function pointers. Inline the dispatch
function.
Also inline the context projection function.
Transfer debug locations from the suspend point to the inlined functions.
Use the function argument index instead of the function argument in
coro.id.async. This solves any spurious use issues.
Coerce the arguments of the tail call function at a suspend point. The LLVM
optimizer seems to drop casts leading to a vararg intrinsic.
rdar://70097093
Differential Revision: https://reviews.llvm.org/D91098
Tracking local variables across suspend points is still somewhat incomplete.
Consider this coroutine snippet:
```
resumable foo() {
int x[10] = {};
int a = 3;
co_await std::experimental::suspend_always();
a++;
x[0] = 1;
a += 2;
x[1] = 2;
a += 3;
x[2] = 3;
}
```
Can't manage to print `a` or `x` if they turn out to be allocas during
CoroSplit (which happens if you build this code with `-O0` prior to this
commit):
```
* thread #1, queue = 'com.apple.main-thread', stop reason = step over
frame #0: 0x0000000100003729 main-noprint`foo() at main-noprint.cpp:43:5
40 co_await std::experimental::suspend_always();
41 a++;
42 x[0] = 1;
-> 43 a += 2;
44 x[1] = 2;
45 a += 3;
46 x[2] = 3;
(lldb) p x
error: <user expression 21>:1:1: use of undeclared identifier 'x'
x
^
```
The generated IR contains a `llvm.dbg.declare` for `x` in it's initialization
basic block. After CoroSplit, the `llvm.dbg.declare` might not dominate all of
`x` uses and we lose debugging quality.
Add `llvm.dbg.value`s to all relevant basic blocks such that if later
transformations break the dominance the reliable debug info is already in
place. For instance, this BB:
```
await.ready:
...
%arrayidx = getelementptr inbounds [10 x i32], [10 x i32]* %x.reload.addr, i64 0, i64 0, !dbg !760
...
%arrayidx19 = getelementptr inbounds [10 x i32], [10 x i32]* %x.reload.addr, i64 0, i64 1, !dbg !763
...
%arrayidx21 = getelementptr inbounds [10 x i32], [10 x i32]* %x.reload.addr, i64 0, i64 2, !dbg !766
```
becomes:
```
await.ready:
...
call void @llvm.dbg.value(metadata [10 x i32]* %x.reload.addr, metadata !751, metadata !DIExpression()), !dbg !753
...
%arrayidx = getelementptr inbounds [10 x i32], [10 x i32]* %x.reload.addr, i64 0, i64 0, !dbg !760
...
%arrayidx19 = getelementptr inbounds [10 x i32], [10 x i32]* %x.reload.addr, i64 0, i64 1, !dbg !763
...
%arrayidx21 = getelementptr inbounds [10 x i32], [10 x i32]* %x.reload.addr, i64 0, i64 2, !dbg !766
```
Differential Revision: https://reviews.llvm.org/D90772