NVPTX target.
When generating the wrapper function for the offloading region, we need
to call the outlined function and cast the arguments correctly to follow
the ABI. Usually, variables captured by value are casted to `uintptr_t`
type. But this should not performed for the variables with pointer type.
llvm-svn: 330620
Added NUW flags for all the add|mul|sub operations + replaced sdiv by udiv
as we operate on unsigned values only (addresses, converted to integers)
llvm-svn: 329411
variables.
Added emission of the offloading data sections for the variables within
declare target regions + fixes emission of the declare target variables
marked as declare target not within the declare target region.
llvm-svn: 328888
Summary: The workers also need to initialize the global stack. The call to the initialization function needs to happen after the kernel_init() function is called by the master. This ensures that the per-team data structures of the runtime have been initialized.
Reviewers: ABataev, grokos, carlo.bertolli, caomhin
Reviewed By: ABataev
Subscribers: jholewinski, guansong, cfe-commits
Differential Revision: https://reviews.llvm.org/D44749
llvm-svn: 328219
constructs in generic mode.
Fixed codegen for distribute parallel combined constructs. We have to
pass and read the shared lower and upper bound from the distribute
region in the inner parallel region. Patch is for generic mode.
llvm-svn: 327990
If the generic codegen is enabled and private copy of the original
variable escapes the declaration context, this private copy should be
globalized just like it was the original variable.
llvm-svn: 327985
The compiler complained about
../tools/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp:184:15: error: unused variable 'CSI' [-Werror,-Wunused-variable]
if (auto *CSI = CGF.CapturedStmtInfo) {
^
1 error generated.
I don't know this code but it seems like an easy fix so I push it anyway
to get rid of the warning.
llvm-svn: 327694
If the variable is captured by value and the corresponding parameter in
the outlined function escapes its declaration context, this parameter
must be globalized. To globalize it we need to get the address of the
original parameter, load the value, store it to the global address and
use this global address instead of the original.
Patch improves globalization for parallel|teams regions + functions in
declare target regions.
llvm-svn: 327654
Summary: Remove this scheme for now since it will be covered by another more generic scheme using global memory. This code will be worked into an optimization for the generic data sharing scheme. Removing this completely and then adding it via future patches will make all future data sharing patches cleaner.
Reviewers: ABataev, carlo.bertolli, caomhin
Reviewed By: ABataev
Subscribers: jholewinski, guansong, cfe-commits
Differential Revision: https://reviews.llvm.org/D43625
llvm-svn: 326948
Differential Revision: https://reviews.llvm.org/D43852
This patch extends the SPMD implementation to all target constructs and guards this implementation under a new flag.
llvm-svn: 326368
Summary:
This patch enables debugging of C99 VLA types by generating more precise
LLVM Debug metadata, using the extended DISubrange 'count' field that
takes a DIVariable.
This should implement:
Bug 30553: Debug info generated for arrays is not what GDB expects (not as good as GCC's)
https://bugs.llvm.org/show_bug.cgi?id=30553
Reviewers: echristo, aprantl, dexonsmith, clayborg, pcc, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: jholewinski, schweitz, davide, fhahn, JDevlieghere, cfe-commits
Differential Revision: https://reviews.llvm.org/D41698
llvm-svn: 323952
getAssociatedStmt() returns the outermost captured statement for the
OpenMP directive. It may return incorrect region in case of combined
constructs. Reworked the code to reduce the number of calls of
getAssociatedStmt() and used getInnermostCapturedStmt() and
getCapturedStmt() functions instead.
In case of firstprivate variables it may lead to an extra allocas
generation for private copies even if the variable is passed by value
into outlined function and could be used directly as private copy.
llvm-svn: 322393
If the reduction required shuffle in the NVPTX codegen, we may need to
cast the reduced value to the integer type. This casting was implemented
incorrectly and may cause compiler crash. Patch fixes this problem.
llvm-svn: 321818
Summary:
The backend should only emit data sharing code for the cases where it is needed.
A new function attribute is used by Clang to enable data sharing only for the cases where OpenMP semantics require it and there are variables that need to be shared.
Reviewers: hfinkel, Hahnfeld, ABataev, carlo.bertolli, caomhin
Reviewed By: ABataev
Subscribers: cfe-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D41123
llvm-svn: 320527
In the future the compiler will analyze whether the OpenMP
runtime needs to be (fully) initialized and avoid that overhead
if possible. The functions already take an argument to transfer
that information to the runtime, so pass in the default value 1.
(This is needed for binary compatibility with libomptarget-nvptx
currently being upstreamed.)
Differential Revision: https://reviews.llvm.org/D40354
llvm-svn: 318836
Summary:
This patch is part of the development effort to add support in the current OpenMP GPU offloading implementation for implicitly sharing variables between a target region executed by the team master thread and the worker threads within that team.
This patch is the first of three required for successfully performing the implicit sharing of master thread variables with the worker threads within a team. The remaining two patches are:
- Patch D38978 to the LLVM NVPTX backend which ensures the lowering of shared variables to an device memory which allows the sharing of references;
- Patch (coming soon) is a patch to libomptarget runtime library which ensures that a list of references to shared variables is properly maintained.
A simple code snippet which illustrates an implicit data sharing situation is as follows:
```
#pragma omp target
{
// master thread only
int v;
#pragma omp parallel
{
// worker threads
// use v
}
}
```
Variable v is implicitly shared from the team master thread which executes the code in between the target and parallel directives. The worker threads must operate on the latest version of v, including any updates performed by the master.
The code generated in this patch relies on the LLVM NVPTX patch (mentioned above) which prevents v from being lowered in the thread local memory of the master thread thus making the reference to this variable un-shareable with the workers. This ensures that the code generated by this patch is correct.
Since the parallel region is outlined the passing of arguments to the outlined regions must preserve the original order of arguments. The runtime therefore maintains a list of references to shared variables thus ensuring their passing in the correct order. The passing of arguments to the outlined parallel function is performed in a separate function which the data sharing infrastructure constructs in this patch. The function is inlined when optimizations are enabled.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, Hahnfeld, ABataev, caomhin
Reviewed By: ABataev
Subscribers: cfe-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D38976
llvm-svn: 318773
Summary:
Convert clang::LangAS to a strongly typed enum
Currently both clang AST address spaces and target specific address spaces
are represented as unsigned which can lead to subtle errors if the wrong
type is passed. It is especially confusing in the CodeGen files as it is
not possible to see what kind of address space should be passed to a
function without looking at the implementation.
I originally made this change for our LLVM fork for the CHERI architecture
where we make extensive use of address spaces to differentiate between
capabilities and pointers. When merging the upstream changes I usually
run into some test failures or runtime crashes because the wrong kind of
address space is passed to a function. By converting the LangAS enum to a
C++11 we can catch these errors at compile time. Additionally, it is now
obvious from the function signature which kind of address space it expects.
I found the following errors while writing this patch:
- ItaniumRecordLayoutBuilder::LayoutField was passing a clang AST address
space to TargetInfo::getPointer{Width,Align}()
- TypePrinter::printAttributedAfter() prints the numeric value of the
clang AST address space instead of the target address space.
However, this code is not used so I kept the current behaviour
- initializeForBlockHeader() in CGBlocks.cpp was passing
LangAS::opencl_generic to TargetInfo::getPointer{Width,Align}()
- CodeGenFunction::EmitBlockLiteral() was passing a AST address space to
TargetInfo::getPointerWidth()
- CGOpenMPRuntimeNVPTX::translateParameter() passed a target address space
to Qualifiers::addAddressSpace()
- CGOpenMPRuntimeNVPTX::getParameterAddress() was using
llvm::Type::getPointerTo() with a AST address space
- clang_getAddressSpace() returns either a LangAS or a target address
space. As this is exposed to C I have kept the current behaviour and
added a comment stating that it is probably not correct.
Other than this the patch should not cause any functional changes.
Reviewers: yaxunl, pcc, bader
Reviewed By: yaxunl, bader
Subscribers: jlebar, jholewinski, nhaehnle, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D38816
llvm-svn: 315871
When translating arguments for NVPTX target it is not taken into account
that function may have variable number of arguments. Patch fixes this
problem.
llvm-svn: 310920
Arguments, passed to the outlined function, must have correct address
space info for proper Debug info support. Patch sets global address
space for arguments that are mapped and passed by reference.
Also, cuda-gdb does not handle reference types correctly, so reference
arguments are represented as pointers.
llvm-svn: 310387
Arguments, passed to the outlined function, must have correct address
space info for proper Debug info support. Patch sets global address
space for arguments that are mapped and passed by reference.
Also, cuda-gdb does not handle reference types correctly, so reference
arguments are represented as pointers.
llvm-svn: 310377
Arguments, passed to the outlined function, must have correct address
space info for proper Debug info support. Patch sets global address
space for arguments that are mapped and passed by reference.
Also, cuda-gdb does not handle reference types correctly, so reference
arguments are represented as pointers.
llvm-svn: 310360
Arguments, passed to the outlined function, must have correct address
space info for proper Debug info support. Patch sets global address
space for arguments that are mapped and passed by reference.
Also, cuda-gdb does not handle reference types correctly, so reference
arguments are represented as pointers.
llvm-svn: 310104
Summary:
If the first parameter of the function is the ImplicitParamDecl, codegen
automatically marks it as an implicit argument with `this` or `self`
pointer. Added internal kind of the ImplicitParamDecl to separate
'this', 'self', 'vtt' and other implicit parameters from other kind of
parameters.
Reviewers: rjmccall, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33735
llvm-svn: 305075
Amongst other, this will help LTO to correctly handle/honor files
compiled with O0, helping debugging failures.
It also seems in line with how we handle other options, like how
-fnoinline adds the appropriate attribute as well.
Differential Revision: https://reviews.llvm.org/D28404
llvm-svn: 304127
This patch implements codegen for the reduction clause on
any teams construct for elementary data types. It builds
on parallel reductions on the GPU. Subsequently,
the team master writes to a unique location in a global
memory scratchpad. The last team to do so loads and
reduces this array to calculate the final result.
This patch emits two helper functions that are used by
the OpenMP runtime on the GPU to perform reductions across
teams.
Patch by Tian Jin in collaboration with Arpith Jacob
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29879
llvm-svn: 295335
This patch implements codegen for the reduction clause on
any parallel construct for elementary data types. An efficient
implementation requires hierarchical reduction within a
warp and a threadblock. It is complicated by the fact that
variables declared in the stack of a CUDA thread cannot be
shared with other threads.
The patch creates a struct to hold reduction variables and
a number of helper functions. The OpenMP runtime on the GPU
implements reduction algorithms that uses these helper
functions to perform reductions within a team. Variables are
shared between CUDA threads using shuffle intrinsics.
An implementation of reductions on the NVPTX device is
substantially different to that of CPUs. However, this patch
is written so that there are minimal changes to the rest of
OpenMP codegen.
The implemented design allows the compiler and runtime to be
decoupled, i.e., the runtime does not need to know of the
reduction operation(s), the type of the reduction variable(s),
or the number of reductions. The design also allows reuse of
host codegen, with appropriate specialization for the NVPTX
device.
While the patch does introduce a number of abstractions, the
expected use case calls for inlining of the GPU OpenMP runtime.
After inlining and optimizations in LLVM, these abstractions
are unwound and performance of OpenMP reductions is comparable
to CUDA-canonical code.
Patch by Tian Jin in collaboration with Arpith Jacob
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29758
llvm-svn: 295333