Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
This fixes a false positive ODR violation that is reported by ASan when using LTO. In cases, where two constant globals have the same value, LTO will merge them, which breaks ASan's ODR detection.
Differential Revision: https://reviews.llvm.org/D43959
llvm-svn: 327061
This fixes a false positive ODR violation that is reported by ASan when using LTO. In cases, where two constant globals have the same value, LTO will merge them, which breaks ASan's ODR detection.
Differential Revision: https://reviews.llvm.org/D43959
llvm-svn: 327053
This fixes a false positive ODR violation that is reported by ASan when using LTO. In cases, where two constant globals have the same value, LTO will merge them, which breaks ASan's ODR detection.
Differential Revision: https://reviews.llvm.org/D43959
llvm-svn: 327029
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
AddressSanitizer pass to cease using The old IRBuilder CreateMemCpy single-alignment API
in favour of the new API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324653
Right now clang uses "_n" suffix for some user space callbacks and "N" for the matching kernel ones. There's no need for this and it actually breaks kernel build with inline instrumentation. Use the same callback names for user space and the kernel (and also make them consistent with the names GCC uses).
Patch by Andrey Konovalov.
Differential Revision: https://reviews.llvm.org/D42423
llvm-svn: 323470
Currently ASan instrumentation pass forces callback
instrumentation when applied to the kernel.
This patch changes the current behavior to allow
using inline instrumentation in this case.
Authored by andreyknvl. Reviewed in:
https://reviews.llvm.org/D42384
llvm-svn: 323140
The function stack poisioner conditionally stores local variables
either in an alloca or in malloc'ated memory, which has the
unfortunate side-effect, that the actual address of the variable is
only materialized when the variable is accessed, which means that
those variables are mostly invisible to the debugger even when
compiling without optimizations.
This patch stores the address of the local stack base into an alloca,
which can be referred to by the debug info and is available throughout
the function. This adds one extra pointer-sized alloca to each stack
frame (but mem2reg can optimize it away again when optimizations are
enabled, yielding roughly the same debug info quality as before in
optimized code).
rdar://problem/30433661
Differential Revision: https://reviews.llvm.org/D41034
llvm-svn: 320415
In more recent Linux kernels with 47 bit VMAs the layout of virtual memory
for powerpc64 changed causing the address sanitizer to not work properly. This
patch adds support for 47 bit VMA kernels for powerpc64 and fixes up test
cases.
https://reviews.llvm.org/D40907
There is an associated patch for compiler-rt.
Tested on several 4.x and 3.x kernel releases.
llvm-svn: 320109
Summary:
This change reverts r318575 and changes FindDynamicShadowStart() to
keep the memory range it found mapped PROT_NONE to make sure it is
not reused. We also skip MemoryRangeIsAvailable() check, because it
is (a) unnecessary, and (b) would fail anyway.
Reviewers: pcc, vitalybuka, kcc
Subscribers: srhines, kubamracek, mgorny, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40203
llvm-svn: 318666
Revert the following commits:
r318369 [asan] Fallback to non-ifunc dynamic shadow on android<22.
r318235 [asan] Prevent rematerialization of &__asan_shadow.
r317948 [sanitizer] Remove unnecessary attribute hidden.
r317943 [asan] Use dynamic shadow on 32-bit Android.
MemoryRangeIsAvailable() reads /proc/$PID/maps into an mmap-ed buffer
that may overlap with the address range that we plan to use for the
dynamic shadow mapping. This is causing random startup crashes.
llvm-svn: 318575
The requirement is that shadow memory must be aligned to page
boundaries (4k in this case). Use a closed form equation that always
satisfies this requirement.
Differential Revision: https://reviews.llvm.org/D39471
llvm-svn: 318421
Fix a couple places where the minimum alignment/size should be a
function of the shadow granularity:
- alignment of AllGlobals
- the minimum left redzone size on the stack
Added a test to verify that the metadata_array is properly aligned
for shadow scale of 5, to be enabled when we add build support
for testing shadow scale of 5.
Differential Revision: https://reviews.llvm.org/D39470
llvm-svn: 318395
Summary:
In the mode when ASan shadow base is computed as the address of an
external global (__asan_shadow, currently on android/arm32 only),
regalloc prefers to rematerialize this value to save register spills.
Even in -Os. On arm32 it is rather expensive (2 loads + 1 constant
pool entry).
This changes adds an inline asm in the function prologue to suppress
this behavior. It reduces AsanTest binary size by 7%.
Reviewers: pcc, vitalybuka
Subscribers: aemerson, kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40048
llvm-svn: 318235
Summary:
The following kernel change has moved ET_DYN base to 0x4000000 on arm32:
https://marc.info/?l=linux-kernel&m=149825162606848&w=2
Switch to dynamic shadow base to avoid such conflicts in the future.
Reserve shadow memory in an ifunc resolver, but don't use it in the instrumentation
until PR35221 is fixed. This will eventually let use save one load per function.
Reviewers: kcc
Subscribers: aemerson, srhines, kubamracek, kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D39393
llvm-svn: 317943
Summary:
Instrumentation to copy byval arguments is now correctly inserted
after the dynamic shadow base is loaded.
Reviewers: vitalybuka, eugenis
Reviewed By: vitalybuka
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D36533
llvm-svn: 310503
Summary:
ASan determines the stack layout from alloca instructions. Since
arguments marked as "byval" do not have an explicit alloca instruction, ASan
does not produce red zones for them. This commit produces an explicit alloca
instruction and copies the byval argument into the allocated memory so that red
zones are produced.
Submitted on behalf of @morehouse (Matt Morehouse)
Reviewers: eugenis, vitalybuka
Reviewed By: eugenis
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34789
llvm-svn: 308387
Revert "Copy arguments passed by value into explicit allocas for ASan."
Revert "[asan] Add end-to-end tests for overflows of byval arguments."
Build failure on lldb-x86_64-ubuntu-14.04-buildserver.
Test failure on clang-cmake-aarch64-42vma and sanitizer-x86_64-linux-android.
llvm-svn: 307345
ASan determines the stack layout from alloca instructions. Since
arguments marked as "byval" do not have an explicit alloca instruction, ASan
does not produce red zones for them. This commit produces an explicit alloca
instruction and copies the byval argument into the allocated memory so that red
zones are produced.
Patch by Matt Morehouse.
Differential revision: https://reviews.llvm.org/D34789
llvm-svn: 307342
Going through the Constant methods requires redetermining that the Constant is a ConstantInt and then calling isZero/isOne/isMinusOne.
llvm-svn: 307292
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential Revision: https://reviews.llvm.org/D32541
llvm-svn: 302571
Use a combination of !associated, comdat, @llvm.compiler.used and
custom sections to allow dead stripping of globals and their asan
metadata. Sometimes.
Currently this works on LLD, which supports SHF_LINK_ORDER with
sh_link pointing to the associated section.
This also works on BFD, which seems to treat comdats as
all-or-nothing with respect to linker GC. There is a weird quirk
where the "first" global in each link is never GC-ed because of the
section symbols.
At this moment it does not work on Gold (as in the globals are never
stripped).
This is a second re-land of r298158. This time, this feature is
limited to -fdata-sections builds.
llvm-svn: 301587
When possible, put ASan ctor/dtor in comdat.
The only reason not to is global registration, which can be
TU-specific. This is not the case when there are no instrumented
globals. This is also limited to ELF targets, because MachO does
not have comdat, and COFF linkers may GC comdat constructors.
The benefit of this is a lot less __asan_init() calls: one per DSO
instead of one per TU. It's also necessary for the upcoming
gc-sections-for-globals change on Linux, where multiple references to
section start symbols trigger quadratic behaviour in gold linker.
This is a second re-land of r298756. This time with a flag to disable
the whole thing to avoid a bug in the gold linker:
https://sourceware.org/bugzilla/show_bug.cgi?id=19002
llvm-svn: 301586
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
llvm-svn: 300522
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299949
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
llvm-svn: 299925
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299699
Use a combination of !associated, comdat, @llvm.compiler.used and
custom sections to allow dead stripping of globals and their asan
metadata. Sometimes.
Currently this works on LLD, which supports SHF_LINK_ORDER with
sh_link pointing to the associated section.
This also works on BFD, which seems to treat comdats as
all-or-nothing with respect to linker GC. There is a weird quirk
where the "first" global in each link is never GC-ed because of the
section symbols.
At this moment it does not work on Gold (as in the globals are never
stripped).
This is a re-land of r298158 rebased on D31358. This time,
asan.module_ctor is put in a comdat as well to avoid quadratic
behavior in Gold.
llvm-svn: 299697