This patch changes hwasan inline instrumentation:
Fixes address untagging for shadow address calculation (use 0xFF instead of 0x00 for the top byte).
Emits brk instruction instead of hlt for the kernel and user space.
Use 0x900 instead of 0x100 for brk immediate (0x100 - 0x800 are unavailable in the kernel).
Fixes and adds appropriate tests.
Patch by Andrey Konovalov.
Differential Revision: https://reviews.llvm.org/D43135
llvm-svn: 325711
This results in 15 additional unique source variables in a stage2 build
of FileCheck (at '-Os -g'), with a negligible increase in the size of
the .debug_loc section.
llvm-svn: 325660
Summary:
We used to remove the first memmove in cases like this:
memmove(p, p+2, 8);
memmove(p, p+2, 8);
which is incorrect. Fix this by changing isPossibleSelfRead to what was most
likely the intended behavior.
Historical note: the buggy code was added in https://reviews.llvm.org/rL120974
to address PR8728.
Reviewers: rsmith
Subscribers: mcrosier, llvm-commits, jlebar
Differential Revision: https://reviews.llvm.org/D43425
llvm-svn: 325641
These are fdiv-with-constant-divisor, so they already become
reciprocal multiplies. The last gap for vector ops should be
closed with rL325590.
It's possible that we're missing folds for some edge cases
with denormal intermediate constants after deleting these,
but there are no tests for those patterns, and it would be
better to handle denormals more consistently (and less
conservatively) as noted in TODO comments.
llvm-svn: 325595
It's possible that we could allow this either 'arcp' or 'reassoc' alone, but this
should be conservatively better than what we have right now. GCC allows this with
only -freciprocal-math.
The last test is changed to show a case that is expected to fold, but we need D43398.
llvm-svn: 325533
Summary:
Several for loops in PromoteMemoryToRegister.cpp leave their increment
expression empty, instead incrementing the iterator within the for loop
body. I believe this is because these loops were previously implemented
as while loops; see https://reviews.llvm.org/rL188327.
Incrementing the iterator within the body of the for loop instead of
in its increment expression makes it seem like the iterator will be
modified or conditionally incremented within the loop, but that is not
the case in these loops.
Instead, use range loops.
Test Plan: `check-llvm`
Reviewers: davide, bkramer
Reviewed By: davide, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43473
llvm-svn: 325532
The last fold that used to be here was not necessary. That's a
combination of 2 folds (and there's a regression test to show that).
The transforms are guarded by isFast(), but that should be loosened.
llvm-svn: 325531
Summary:
Move a debug statement to above where an assertion is hit, so that the debug
statement can be inspected before a stack trace.
Test Plan: `check-llvm`
llvm-svn: 325529
Add GraphTraits definitions to the FunctionSummary and ModuleSummaryIndex classes. These GraphTraits will be used to construct find SCC's in ThinLTO analysis passes.
Third attempt - moved function from lambda to static function due to build failures.
llvm-svn: 325506
With this patch in place, when a new-format TBAA tag is available
for a memory-transfer intrinsic call, we prefer propagating that
new-format tag. Otherwise, we fallback to the old approach where
we try to construct a proper TBAA access tag from 'tbaa.struct'
metadata.
Differential Revision: https://reviews.llvm.org/D41543
llvm-svn: 325488
Add GraphTraits definitions to the FunctionSummary and ModuleSummaryIndex classes. These GraphTraits will be used to construct find SCC's in ThinLTO analysis passes.
Second attempt, since last patch caused stage2 build to fail (now using function_ref rather than std::function).
Reverted due to buildbot failures
llvm-svn: 325454
Add GraphTraits definitions to the FunctionSummary and ModuleSummaryIndex classes. These GraphTraits will be used to construct find SCC's in ThinLTO analysis passes.
Second attempt, since last patch caused stage2 build to fail (now using function_ref rather than std::function).
llvm-svn: 325448
...and delete the equivalent local functiona from InstCombine.
These might be useful to other InstCombine files or other passes
and makes FP queries more similar to integer constant queries.
llvm-svn: 325398
Summary:
The LazyValueInfo pass caches a copy of the DominatorTree when available.
Whenever there are pending DominatorTree updates within JumpThreading's
DeferredDominance object we cannot use the cached DT for LVI analysis.
This commit adds the new methods enableDT() and disableDT() to LVI.
JumpThreading also sets the appropriate usage model before calling LVI
analysis methods.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36133
Reviewers: sebpop, dberlin, kuhar
Reviewed by: sebpop, kuhar
Subscribers: uabelho, llvm-commits, aprantl, hiraditya, a.elovikov
Differential Revision: https://reviews.llvm.org/D42717
llvm-svn: 325356
Now that we have the new TBAA metadata format that is capable of
representing accesses to aggregates, we can propagate TBAA access
tags from memory setting and transferring intrinsics to load and
store instructions and vice versa.
Since SROA produces lots of new loads and stores on optimized
builds, this change significantly decreases the share of
undecorated memory accesses on such builds.
Differential Revision: https://reviews.llvm.org/D41563
llvm-svn: 325329
In r325063, we salvaged debug values from dying instructions in
GVN::processBlock() and GVN::performScalarPRE().
The change in performScalarPRE(), while correct, is unhelpful. It
introduced a call to salvageDebugInfo() which was immediately followed
by a RAUW, meaning it prevented the RAUW from efficiently updating
dbg.value intrinsics. This commit reverts the mistake and tightens up
the affected test case.
llvm-svn: 325308
This results in small increases in the size of the .debug_loc section
and the number of unique source variables in a stage2 build of opt.
llvm-svn: 325301
Summary:
The behavior described in Coroutines TS `[dcl.fct.def.coroutine]/7`
allows coroutine parameters to be passed into allocator functions.
The instructions to store values into the alloca'd parameters must not
be moved past the frame allocation, otherwise uninitialized values are
passed to the allocator.
Test Plan: `check-llvm`
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: compnerd, EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D43000
llvm-svn: 325285
The variable name 'AllowReassociate' is a lie at this point because
it's set to 'isFast()' which is more than the 'reassoc' FMF after
rL317488.
In D41286, we showed that this transform may be valid even with strict
math by brute force checking every 32-bit float result.
There's a potential problem here because we're replacing with a tan()
libcall rather than a hypothetical LLVM tan intrinsic. So we might
set errno when we should be guaranteed not to do that. But that's
independent of this change.
llvm-svn: 325247
Move computeLoopSafetyInfo, defined in Transforms/Utils/LoopUtils.h,
into the corresponding LoopUtils.cpp, as opposed to LICM where it resides
at the moment. This will allow other functions from Transforms/Utils
to reference it.
llvm-svn: 325151
The select may have been preventing a division by zero or INT_MIN/-1 so removing it might not be safe.
Fixes PR36362.
Differential Revision: https://reviews.llvm.org/D43276
llvm-svn: 325148
This keeps with our current usage of 'match' and is easier to see that
the optional NSW only applies in the non-constant operand case.
llvm-svn: 325140
Summary:
Reversed loads are handled as gathering. But we can just reshuffle
these values. Patch adds support for vectorization of reversed loads.
Reviewers: RKSimon, spatel, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43022
llvm-svn: 325134
For basic blocks with instructions between the beginning of the block
and a call we have to duplicate the instructions before the call in all
split blocks and add PHI nodes for uses of the duplicated instructions
after the call.
Currently, the threshold for the number of instructions before a call
is quite low, to keep the impact on binary size low.
Reviewers: junbuml, mcrosier, davidxl, davide
Reviewed By: junbuml
Differential Revision: https://reviews.llvm.org/D41860
llvm-svn: 325126
We can use incremental dominator tree updates to avoid re-calculating
the dominator tree after interchanging 2 loops.
Reviewers: dmgreen, kuhar
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D43176
llvm-svn: 325122
Preserve debug info from a dead 'and' instruction with a constant.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D43163
llvm-svn: 325119
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
This preserves an additional 581 unique source variables in a stage2
build of clang (according to `llvm-dwarfdump --statistics`). It
increases the size of the .debug_loc section by 0.1% (or 87139 bytes).
Differential Revision: https://reviews.llvm.org/D43255
llvm-svn: 325063
This replaces the bit-tracking based fold that did the same thing,
but it only worked for scalars and not directly.
There is no evidence in existing regression tests that the greater
power of bit-tracking was needed here, but we should be aware of
this potential loss of optimization.
llvm-svn: 325062
This is both a functional improvement for vectors and an
efficiency improvement for scalars. The existing code below
the new folds does the same thing for scalars, but in an
indirect and expensive way.
llvm-svn: 325048
According to `llvm-dwarfdump --statistics` this salvages 43 additional
unique source variables in a stage2 build of clang. It increases the
size of the .debug_loc section by 0.002% (or 2864 bytes).
Differential Revision: https://reviews.llvm.org/D43220
llvm-svn: 325035
For basic blocks with instructions between the beginning of the block
and a call we have to duplicate the instructions before the call in all
split blocks and add PHI nodes for uses of the duplicated instructions
after the call.
Currently, the threshold for the number of instructions before a call
is quite low, to keep the impact on binary size low.
Reviewers: junbuml, mcrosier, davidxl, davide
Reviewed By: junbuml
Differential Revision: https://reviews.llvm.org/D41860
llvm-svn: 325001
In cases where the OuterMostLoopLatchBI only has a single successor,
accessing the second successor will fail.
This fixes a failure when building the test-suite with loop-interchange
enabled.
Reviewers: mcrosier, karthikthecool, davide
Reviewed by: karthikthecool
Differential Revision: https://reviews.llvm.org/D42906
llvm-svn: 324994
We already try to salvage debug values from no-op bitcasts and inttoptr
instructions: we should handle ptrtoint instructions as well.
This saves an additional 24,444 debug values in a stage2 build of clang,
and (according to llvm-dwarfdump --statistics) provides an additional
289 unique source variables.
llvm-svn: 324982
Here are the number of additional debug values salvaged in a stage2
build of clang:
63 SALVAGE: MUL
1250 SALVAGE: SDIV
(No values were salvaged from `srem` instructions in this experiment,
but it's a simple case to handle so we might as well.)
llvm-svn: 324976
Here are the number of additional debug values salvaged in a stage2
build of clang:
1912 SALVAGE: ASHR
405 SALVAGE: LSHR
249 SALVAGE: SHL
llvm-svn: 324975
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
InstCombine pass to cease using the deprecated MemoryIntrinsic::getAlignment() method, and
instead we use the separate getSourceAlignment and getDestAlignment APIs to simplify
the source and destination alignment attributes separately.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
Reviewers: majnemer, bollu, efriedma
Reviewed By: efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D42871
llvm-svn: 324960
It caused assertion failure
Assertion failed: (!DD.IsLambda && !MergeDD.IsLambda && "faked up lambda definition?"), function MergeDefinitionData, file /Users/buildslave/jenkins/workspace/clang-stage1-configure-RA/llvm/tools/clang/lib/Serialization/ASTReaderDecl.cpp, line 1675.
on the second stage build bots.
llvm-svn: 324932
This is similar to the instsimplify fold added with D42385
( rL323716 )
...but this can't be in instsimplify because we're creating/morphing
a different instruction.
llvm-svn: 324927
Update BlockColors after splitting predecessors. Do not allow splitting
EHPad for sinking when the BlockColors is not empty, so we can
simply assign predecessor's color to the new block.
Fixes PR36184
llvm-svn: 324916
Summary:
For better vectorization result we should take into consideration the
cost of the user insertelement instructions when we try to
vectorize sequences that build the whole vector. I.e. if we have the
following scalar code:
```
<Scalar code>
insertelement <ScalarCode>, ...
```
we should consider the cost of the last `insertelement ` instructions as
the cost of the scalar code.
Reviewers: RKSimon, spatel, hfinkel, mkuper
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D42657
llvm-svn: 324893
Add GraphTraits definitions to the FunctionSummary and ModuleSummaryIndex classes. These GraphTraits will be used to construct find SCC's in ThinLTO analysis passes.
llvm-svn: 324854
The related cases for (X * Y) / X were handled in rL124487.
https://rise4fun.com/Alive/6k9
The division in these tests is subsequently eliminated by existing instcombines
for 1/X.
llvm-svn: 324843
Summary:
If -pass-remarks=loop-vectorize, atomic ops will be seen by
analyzeInterleaving(), even though canVectorizeMemory() == false. This
is because we are requesting extra analysis instead of bailing out.
In such a case, we end up with a Group in both Load- and StoreGroups,
and then we'll try to access freed memory when traversing LoadGroups after having had released the Group when iterating over StoreGroups.
The fix is to include mayWriteToMemory() when validating that two
instructions are the same kind of memory operation.
Reviewers: mssimpso, davidxl
Reviewed By: davidxl
Subscribers: hsaito, fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D43064
llvm-svn: 324786
Extend salvageDebugInfo to preserve the debug info from a dead 'or'
with a constant.
Patch by Ismail Badawi!
Differential Revision: https://reviews.llvm.org/D43129
llvm-svn: 324764
Summary:
For symbols that has linkonce_odr linkage and unnamed_addr, it can be
auto hide by linker to avoid weak external symbols. Teach ThinLTO to
perform auto hide so it can safely promote linkonce_odr to weak symbols
without breaking this nice property.
Reviewers: tejohnson, mehdi_amini
Reviewed By: tejohnson
Subscribers: inglorion, eraman, rnk, pcc, llvm-commits
Differential Revision: https://reviews.llvm.org/D43130
llvm-svn: 324757
Summary:
Kernel addresses have 0xFF in the most significant byte.
A tag can not be pushed there with OR (tag << 56);
use AND ((tag << 56) | 0x00FF..FF) instead.
Reviewers: kcc, andreyknvl
Subscribers: srhines, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D42941
llvm-svn: 324691
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
DataFlowSanitizer pass to cease using the old get/setAlignment() API of MemoryIntrinsic
in favour of getting source & dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324654
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
AddressSanitizer pass to cease using The old IRBuilder CreateMemCpy single-alignment API
in favour of the new API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324653
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
MemorySanitizer pass to cease using the old IRBuilder CreateMemCpy single-alignment APIs
in favour of the new API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324642
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
LoopIdiom pass to cease using the old IRBuilder CreateMemCpy single-alignment APIs in
favour of the new API that allows setting source and destination alignments independently.
This allows us to be slightly more aggressive in setting the alignment of memcpy calls that
loop idiom creates.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324626
Refactor getLogBase2Vector into getLogBase2 to accept all scalars/vectors. Generalize from ConstantDataVector to support all constant vectors.
llvm-svn: 324603
Summary:
GVN hoist pass is using PostDominatorTree analysis, therefore the analysis
should be listed in the pass initialization as a dependency.
Reviewed By: sebpop
Differential Revision: https://reviews.llvm.org/D43007
Author: ashlykov <arkady.shlykov@intel.com>
llvm-svn: 324597
Add support of uge and sge latch condition to Loop Prediction for
reverse loops.
Reviewers: apilipenko, mkazantsev, sanjoy, anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42837
llvm-svn: 324589
With fix: reimplemented.
Original commit message:
Recently introduced convertToDeclaration is very similar
to code used in filterModule function.
Patch reuses it to reduce duplication.
Differential revision: https://reviews.llvm.org/D42971
llvm-svn: 324574
The commit rL308422 introduces a restriction for folding unconditional
branches. Specifically if empty block with unconditional branch leads to
header of the loop then elimination of this basic block is prohibited.
However it seems this condition is redundantly strict.
If elimination of this basic block does not introduce more back edges
then we can eliminate this block.
The patch implements this relax of restriction.
The test profile/Linux/counter_promo_nest.c in compiler-rt project
is updated to meet this change.
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: pacxx
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324572
Summary:
Loops with inequality comparers, such as:
// unsigned bound
for (unsigned i = 1; i < bound; ++i) {...}
have getSmallConstantMaxTripCount report a large maximum static
trip count - in this case, 0xffff fffe. However, profiling info
may show that the trip count is much smaller, and thus
counter-recommend vectorization.
This change:
- flips loop-vectorize-with-block-frequency on by default.
- validates profiled loop frequency data supports vectorization,
when static info appears to not counter-recommend it. Absence
of profile data means we rely on static data, just as we've
done so far.
Reviewers: twoh, mkuper, davidxl, tejohnson, Ayal
Reviewed By: davidxl
Subscribers: bkramer, llvm-commits
Differential Revision: https://reviews.llvm.org/D42946
llvm-svn: 324543
Recently introduced convertToDeclaration is very similar
to code used in filterModule function.
Patch reuses it to reduce duplication.
Differential revision: https://reviews.llvm.org/D42971
llvm-svn: 324455
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
DeadStoreElimination pass to cease using the old getAlignment() API of MemoryIntrinsic
in favour of getting dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324402
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
InferAddressSpaces pass to cease using:
1) The old getAlignment() API of MemoryIntrinsic in favour of getting source & dest specific
alignments through the new API.
2) The old IRBuilder CreateMemCpy/CreateMemMove single-alignment APIs in favour of the new
API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324395
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
InlineFunction pass to ceause using the old IRBuilder CreateMemCpy single-alignment API
in favour of the new API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324384
- Fix condition for detecting that a complex basic block was the first in
the chain.
- Add tests.
This was caught by buildbots when submitting rL324319.
llvm-svn: 324341
It is better to update pointer of the DISuprogram before we call RAUW for
still live arguments of the function, because with the change reviewed in
D42541 in RAUW we compare DISubprograms rather than functions itself.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D42794
llvm-svn: 324335
If the inline asm provides the definition of a symbol, this can result
in duplicate symbol errors.
Differential Revision: https://reviews.llvm.org/D42944
llvm-svn: 324313
In the motivating case from PR35681 and represented by the macro-fuse-cmp test:
https://bugs.llvm.org/show_bug.cgi?id=35681
...there's a 37 -> 31 byte size win for the loop because we eliminate the big base
address offsets.
SPEC2017 on Ryzen shows no significant perf difference.
Differential Revision: https://reviews.llvm.org/D42607
llvm-svn: 324289
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
LowerMemIntrinsics pass to cease using the old getAlignment() API of MemoryIntrinsic in
favour of getting source & dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324278
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
SimplifyLibCalls pass to cease using the old IRBuilder createMemCpy/createMemMove
single-alignment APIs in favour of the new API that allows setting source and destination
alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, r3L24148 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324273
This is the instcombine part of unsigned saturation canonicalization.
Backend patches already commited:
https://reviews.llvm.org/D37510https://reviews.llvm.org/D37534
It converts unsigned saturated subtraction patterns to forms recognized
by the backend:
(a > b) ? a - b : 0 -> ((a > b) ? a : b) - b)
(b < a) ? a - b : 0 -> ((a > b) ? a : b) - b)
(b > a) ? 0 : a - b -> ((a > b) ? a : b) - b)
(a < b) ? 0 : a - b -> ((a > b) ? a : b) - b)
((a > b) ? b - a : 0) -> - ((a > b) ? a : b) - b)
((b < a) ? b - a : 0) -> - ((a > b) ? a : b) - b)
((b > a) ? 0 : b - a) -> - ((a > b) ? a : b) - b)
((a < b) ? 0 : b - a) -> - ((a > b) ? a : b) - b)
Patch by Yulia Koval!
Differential Revision: https://reviews.llvm.org/D41480
llvm-svn: 324255
There was a logic hole in D42739 / rL324014 because we're not accounting for select and phi
instructions that might have repeated operands. This is likely a source of an infinite loop.
I haven't manufactured a test case to prove that, but it should be safe to speculatively limit
this transform to binops while we try to create that test.
llvm-svn: 324252
This broke the Chromium build; see PR36238.
> This patch is an enhancement to propagate dbg.value information when
> Phis are created on behalf of LCSSA. I noticed a case where a value
> carried across a loop was reported as <optimized out>.
>
> Specifically this case:
>
> int bar(int x, int y) {
> return x + y;
> }
>
> int foo(int size) {
> int val = 0;
> for (int i = 0; i < size; ++i) {
> val = bar(val, i); // Both val and i are correct
> }
> return val; // <optimized out>
> }
>
> In the above case, after all of the interesting computation completes
> our value is reported as "optimized out." This change will add a
> dbg.value to correct this.
>
> This patch also moves the dbg.value insertion routine from
> LoopRotation.cpp into Local.cpp, so that we can share it in both places
> (LoopRotation and LCSSA).
>
> Patch by Matt Davis!
>
> Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 324247
Summary:
This complements the fixes in r323633 and r324075 which drop the
definitions of dead functions and variables, respectively.
Fixes PR36208.
Reviewers: grimar, rafael
Subscribers: mehdi_amini, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D42856
llvm-svn: 324242
The patch causes the failure of the test
compiler-rt/test/profile/Linux/counter_promo_nest.c
To unblock buildbot, revert the patch while investigation is in progress.
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324214
The commit rL308422 introduces a restriction for folding unconditional
branches. Specifically if empty block with unconditional branch leads to
header of the loop then elimination of this basic block is prohibited.
However it seems this condition is redundantly strict.
If elimination of this basic block does not introduce more back edges
then we can eliminate this block.
The patch implements this relax of restriction.
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: pacxx
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324208
ScalarEvolution::isKnownPredicate invokes isLoopEntryGuardedByCond without check
that SCEV is available at entry point of the loop. It is incorrect and fixed by patch.
To bugs additionally fixed:
assert is moved after the check whether loop is not a nullptr.
Usage of isLoopEntryGuardedByCond in ScalarEvolution::isImpliedCondOperandsViaNoOverflow
is guarded by isAvailableAtLoopEntry.
Reviewers: sanjoy, mkazantsev, anna, dorit, reames
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42417
llvm-svn: 324204
When using the partial inliner, we might have attributes for forwarded
varargs, but the CodeExtractor does not create an empty argument
attribute set for regular arguments in that case, because it does not know
of the additional arguments. So in case we have attributes for VarArgs, we
also have to make sure we create (empty) attributes for all regular arguments.
This fixes PR36210.
llvm-svn: 324197
The type-shrinking logic in reduction detection, although narrow in scope, is
also rather ad-hoc, which has led to bugs (e.g., PR35734). This patch modifies
the approach to rely on the demanded bits and value tracking analyses, if
available. We currently perform type-shrinking separately for reductions and
other instructions in the loop. Long-term, we should probably think about
computing minimal bit widths in a more complete way for the loops we want to
vectorize.
PR35734
Differential Revision: https://reviews.llvm.org/D42309
llvm-svn: 324195
This, in instcombine, allows conversions to i8/i16/i32 (very
common cases) even if the resulting type is not legal according
to the data layout. This can often open up extra combine
opportunities.
Differential Revision: https://reviews.llvm.org/D42424
llvm-svn: 324174
Summary:
When creating the debug fragments for a SRA'd variable, use the types'
allocation sizes. This fixes issues where the pass would emit too small
fragments, placed at the wrong offset, for padded types.
An example of this is long double on x86. The type is represented using
x86_fp80, which is 10 bytes, but the value is aligned to 12/16 bytes.
The padding is included in the type's DW_AT_byte_size attribute;
therefore, the fragments should also include that. Newer GCC releases
(I tested 7.2.0) emit 12/16-byte pieces for long double. Earlier
releases, e.g. GCC 5.5.0, behaved as LLVM did, i.e. by emitting a
10-byte piece, followed by an empty 2/6-byte piece for the padding.
Failing to cover all `DW_AT_byte_size' bytes of a value with non-empty
pieces results in the value being printed as <optimized out> by GDB.
Patch by: David Stenberg
Reviewers: aprantl, JDevlieghere
Reviewed By: aprantl, JDevlieghere
Subscribers: llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D42807
llvm-svn: 324066
This is the enhancement suggested in D42536 to fix a shortcoming in
regular InstCombine's canEvaluate* functionality.
When we have multiple uses of a value, but they're all in one instruction, we can
allow that expression to be narrowed or widened for the same cost as a single-use
value.
AFAICT, this can only matter for multiply: sub/and/or/xor/select would be simplified
away if the operands are the same value; add becomes shl; shifts with a variable shift
amount aren't handled.
Differential Revision: https://reviews.llvm.org/D42739
llvm-svn: 324014
This, in instcombine, allows conversions to i8/i16/i32 (very
common cases) even if the resulting type is not legal according
to the data layout. This can often open up extra combine
opportunities.
Differential Revision: https://reviews.llvm.org/D42424
llvm-svn: 323951
Summary:
Before emitting code for scaled registers, we prevent
SCEVExpander from hoisting any scaled addressing mode
by emitting all the bases first. However, these bases
are being forced to the final type, resulting in some
odd code.
For example, if the type of the base is an integer and
the final type is a pointer, we will emit an inttoptr
for the base, a ptrtoint for the scale, and then a
'reverse' GEP where the GEP pointer is actually the base
integer and the index is the pointer. It's more intuitive
to use the pointer as a pointer and the integer as index.
Patch by: Bevin Hansson
Reviewers: atrick, qcolombet, sanjoy
Reviewed By: qcolombet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42103
llvm-svn: 323946
For very, very large global initializers which can be statically evaluated, the
code would create vectors of temporary Constants, modifying them in place,
before committing the resulting Constant aggregate to the global's initializer
value. This had effectively O(n^2) complexity in the size of the global
initializer and would cause memory and non-termination issues compiling some
workloads.
This change performs the static initializer evaluation and creation in batches,
once for each global in the evaluated IR memory. The existing code is maintained
as a last resort when the initializers are more complex than simple values in a
large aggregate. This should theoretically by NFC, no test as the example case
is massive. The existing test cases pass with this, as well as the llvm test
suite.
To give an example, consider the following C++ code adapted from the clang
regression tests:
struct S {
int n = 10;
int m = 2 * n;
S(int a) : n(a) {}
};
template<typename T>
struct U {
T *r = &q;
T q = 42;
U *p = this;
};
U<S> e;
The global static constructor for 'e' will need to initialize 'r' and 'p' of
the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
members. This batch algorithm will simply use general CommitValueTo() method
to handle the complex nested S struct initialization of 'q', before
processing the outermost members in a single batch. Using CommitValueTo() to
handle member in the outer struct is inefficient when the struct/array is
very large as we end up creating and destroy constant arrays for each
initialization.
For the above case, we expect the following IR to be generated:
%struct.U = type { %struct.S*, %struct.S, %struct.U* }
%struct.S = type { i32, i32 }
@e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
i64 0, i32 1),
%struct.S { i32 42, i32 84 }, %struct.U* @e }
The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
constant expression, while the other two elements of @e are "simple".
Differential Revision: https://reviews.llvm.org/D42612
llvm-svn: 323933
This covers the case where TruncInst leaf node is a constant expression.
See PR36121 for more details.
Differential Revision: https://reviews.llvm.org/D42622
llvm-svn: 323926
If you have a long chain of select instructions created from something
like `int* p = &g; if (foo()) p += 4; if (foo2()) p += 4;` etc., a naive
recursive visitor will recursively visit each select twice, which is
O(2^N) in the number of select instructions. Use the visited set to cut
off recursion in this case.
(No testcase because this doesn't actually change the behavior, just the
time.)
Differential Revision: https://reviews.llvm.org/D42451
llvm-svn: 323910
Because dead code may contain non-standard IR that causes infinite looping or crashes in underlying analysis.
See PR36134 for more details.
Differential Revision: https://reviews.llvm.org/D42683
llvm-svn: 323862
Summary:
This is exposed during ThinLTO compilation, when we import an alias by
creating a clone of the aliasee. Without this fix the debug type is
unnecessarily cloned and we get a duplicate, undoing the uniquing.
Fixes PR36089.
Reviewers: mehdi_amini, pcc
Subscribers: eraman, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41669
llvm-svn: 323813
candidates with coldcc attribute.
This recommits r322721 reverted due to sanitizer memory leak build bot failures.
Original commit message:
This patch adds support for the coldcc calling convention for Power.
This changes the set of non-volatile registers. It includes a pass to stress
test the implementation by marking all static directly called functions with
the coldcc attribute through the option -enable-coldcc-stress-test. It also
includes an option, -ppc-enable-coldcc, to add the coldcc attribute to
functions which are cold at all call sites based on BlockFrequencyInfo when
the containing function does not call any non cold functions.
Differential Revision: https://reviews.llvm.org/D38413
llvm-svn: 323778
Summary:
There's an asymmetry in the definitions of findBaseDefiningValueOfVector() and
findBaseDefiningValue() of RS4GC. The later handles call and invoke instructions,
and the former does not. This appears to be simple oversight. This patch remedies
the oversight by adding the call and invoke cases to findBaseDefiningValueOfVector().
Reviewers: DaniilSuchkov, anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42653
llvm-svn: 323764
Summary:
The JumpThreading pass has several locations where to the variable name LI
refers to a LoadInst type. This is confusing and inhibits the ability to use
LI for LoopInfo as a member of the JumpThreading class. Minor formatting
and comments were also altered to reflect this change.
Reviewers: dberlin, kuba, spop, sebpop
Reviewed by: sebpop
Subscribers: sebpop, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D42601
llvm-svn: 323695
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323662
This pretty much reverts r322006, except that we keep the test,
because we work around the issue exposed in a different way (a
recursion limit in value tracking). There's still probably some
sequence that exposes this problem, and the proper way to fix that
for somebody who has time is outlined in the code review.
llvm-svn: 323630
A cast from A to B is eliminable if its result is casted to C, and if
the pair of casts could just be expressed as a single cast. E.g here,
%c1 is eliminable:
%c1 = zext i16 %A to i32
%c2 = sext i32 %c1 to i64
InstCombine optimizes away eliminable casts. This patch teaches it to
insert a dbg.value intrinsic pointing to the final result, so that local
variables pointing to the eliminable result are preserved.
Differential Revision: https://reviews.llvm.org/D42566
llvm-svn: 323570
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323530
- using qualified pointer addrspace in intrinsics class to avoid .f32 mangling
- changed too common atomic mangling to ds
- added missing intrinsics to AMDGPUTTIImpl::getTgtMemIntrinsic
Reviewed by: b-sumner
Differential Revision: https://reviews.llvm.org/D42383
llvm-svn: 323516
Inserting a dbg.value instruction at the start of a basic block with a
landingpad instruction triggers a verifier failure. We should be OK if
we insert the instruction a bit later.
Speculative fix for the bot failure described here:
https://reviews.llvm.org/D42551
llvm-svn: 323482
Summary:
The intent of this is to allow the code to be used with ThinLTO. In
Thinlink phase, a traditional Callgraph can not be computed even though
all the necessary information (nodes and edges of a call graph) is
available. This is due to the fact that CallGraph class is closely tied
to the IR. This patch first extends GraphTraits to add a CallGraphTraits
graph. This is then used to implement a version of counts propagation
on a generic callgraph.
Reviewers: davidxl
Subscribers: mehdi_amini, tejohnson, llvm-commits
Differential Revision: https://reviews.llvm.org/D42311
llvm-svn: 323475
This patch is an enhancement to propagate dbg.value information when
Phis are created on behalf of LCSSA. I noticed a case where a value
carried across a loop was reported as <optimized out>.
Specifically this case:
int bar(int x, int y) {
return x + y;
}
int foo(int size) {
int val = 0;
for (int i = 0; i < size; ++i) {
val = bar(val, i); // Both val and i are correct
}
return val; // <optimized out>
}
In the above case, after all of the interesting computation completes
our value is reported as "optimized out." This change will add a
dbg.value to correct this.
This patch also moves the dbg.value insertion routine from
LoopRotation.cpp into Local.cpp, so that we can share it in both places
(LoopRotation and LCSSA).
Patch by Matt Davis!
Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 323472
Right now clang uses "_n" suffix for some user space callbacks and "N" for the matching kernel ones. There's no need for this and it actually breaks kernel build with inline instrumentation. Use the same callback names for user space and the kernel (and also make them consistent with the names GCC uses).
Patch by Andrey Konovalov.
Differential Revision: https://reviews.llvm.org/D42423
llvm-svn: 323470
It was reverted after buildbot regressions.
Original commit message:
This allows relative block frequency of call edges to be passed
to the thinlink stage where it will be used to compute synthetic
entry counts of functions.
llvm-svn: 323460
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323441
This is guarded by shouldChangeType(), so the tests show that
we don't do the fold if the narrower type is not legal. Note
that there is a proposal (D42424) that would change the results
for the specific cases shown in these tests. That difference is
also discussed in PR35792:
https://bugs.llvm.org/show_bug.cgi?id=35792
Alive proofs for the cases handled here as well as the bitwise
logic binops that we should already do better on:
https://rise4fun.com/Alive/c97https://rise4fun.com/Alive/Lc5Ehttps://rise4fun.com/Alive/kdf
llvm-svn: 323437
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323430
Summary:
When creating the debug fragments for a SRA'd struct, use the fields'
offsets, taken from the struct layout, as the offsets for the resulting
fragments. This fixes an issue where GlobalOpt would emit fragments with
incorrect offsets for padded fields.
This should solve PR36016.
Patch by David Stenberg.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42489
llvm-svn: 323411
It causes regressions in various OpenGL test suites.
Keep the test cases introduced by r321751 as XFAIL, and add a test case
for the regression.
Change-Id: I90b4cc354f68cebe5fcef1f2422dc8fe1c6d3514
Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=36015
llvm-svn: 323355
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323348
Combine expression patterns to form expressions with fewer, simple instructions.
This pass does not modify the CFG.
For example, this pass reduce width of expressions post-dominated by TruncInst
into smaller width when applicable.
It differs from instcombine pass in that it contains pattern optimization that
requires higher complexity than the O(1), thus, it should run fewer times than
instcombine pass.
Differential Revision: https://reviews.llvm.org/D38313
llvm-svn: 323321
This patch removes assert that SCEV is able to prove that a value is
non-negative. In fact, SCEV can sometimes be unable to do this because
its cache does not update properly. This assert will be returned once this
problem is resolved.
llvm-svn: 323309
Summary:
Currently, there is no way to extract a basic block from a function easily. This patch
extends llvm-extract to extract the specified basic block(s).
Reviewers: loladiro, rafael, bogner
Reviewed By: bogner
Subscribers: hintonda, mgorny, qcolombet, llvm-commits
Differential Revision: https://reviews.llvm.org/D41638
llvm-svn: 323266
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323246
Summary:
This patch is adding remark messages to the LoopVersioning LICM pass,
which will be useful for optimization remark emitter (ORE) infrastructure.
Patch by: Deepak Porwal
Reviewers: anemet, ashutosh.nema, eastig
Subscribers: eastig, vivekvpandya, fhahn, llvm-commits
llvm-svn: 323183
Currently ASan instrumentation pass forces callback
instrumentation when applied to the kernel.
This patch changes the current behavior to allow
using inline instrumentation in this case.
Authored by andreyknvl. Reviewed in:
https://reviews.llvm.org/D42384
llvm-svn: 323140
ScalarEvolution::isKnownPredicate invokes isLoopEntryGuardedByCond without check
that SCEV is available at entry point of the loop. It is incorrect and fixed by patch.
Reviewers: sanjoy, mkazantsev, anna, dorit
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42165
llvm-svn: 323077
...when the shift is known to not overflow with the matching
signed-ness of the division.
This closes an optimization gap caused by canonicalizing mul
by power-of-2 to shl as shown in PR35709:
https://bugs.llvm.org/show_bug.cgi?id=35709
Patch by Anton Bikineev!
Differential Revision: https://reviews.llvm.org/D42032
llvm-svn: 323068
We already had the pointer being stored to in the MemLoc, reuse that code. In merging cases, it turned out the interface of the getLocForWrite had become inconsitent with other related utilities. Fix that by making sure the input passes hasAnalyzableWrite as well.
llvm-svn: 323056
to @objc_autorelease if its operand is a PHI and the PHI has an
equivalent value that is used by a return instruction.
For example, ARC optimizer shouldn't replace the call in the following
example, as doing so breaks the AutoreleaseRV/RetainRV optimization:
%v1 = bitcast i32* %v0 to i8*
br label %bb3
bb2:
%v3 = bitcast i32* %v2 to i8*
br label %bb3
bb3:
%p = phi i8* [ %v1, %bb1 ], [ %v3, %bb2 ]
%retval = phi i32* [ %v0, %bb1 ], [ %v2, %bb2 ] ; equivalent to %p
%v4 = tail call i8* @objc_autoreleaseReturnValue(i8* %p)
ret i32* %retval
Also, make sure ObjCARCContract replaces @objc_autoreleaseReturnValue's
operand uses with its value so that the call gets tail-called.
rdar://problem/15894705
llvm-svn: 323009
Summary:
If the vectorized tree has truncate to minimum required bit width and
the vector type of the cast operation after the truncation is the same
as the vector type of the cast operands, count cost of the vector cast
operation as 0, because this cast will be later removed.
Also, if the vectorization tree root operations are integer cast operations, do not consider them as candidates for truncation. It will just create extra number of the same vector/scalar operations, which will be removed by instcombiner.
Reviewers: RKSimon, spatel, mkuper, hfinkel, mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41948
llvm-svn: 322946
Three (or more) operand getelementptrs could plausibly also be handled, but
handling only two-operand fits in easily with the existing BinaryOperator
handling.
Differential Revision: https://reviews.llvm.org/D39958
llvm-svn: 322930
Summary:
-hwasan-mapping-offset defines the non-zero shadow base address.
-hwasan-kernel disables calls to __hwasan_init in module constructors.
Unlike ASan, -hwasan-kernel does not force callback instrumentation.
This is controlled separately with -hwasan-instrument-with-calls.
Reviewers: kcc
Subscribers: srhines, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D42141
llvm-svn: 322785
Summary:
The class wraps a uint64_t and an enum to represent the type of profile
count (real and synthetic) with some helper methods.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41883
llvm-svn: 322771
candidates with coldcc attribute.
This patch adds support for the coldcc calling convention for Power.
This changes the set of non-volatile registers. It includes a pass to stress
test the implementation by marking all static directly called functions with
the coldcc attribute through the option -enable-coldcc-stress-test. It also
includes an option, -ppc-enable-coldcc, to add the coldcc attribute to
functions which are cold at all call sites based on BlockFrequencyInfo when
the containing function does not call any non cold functions.
Differential Revision: https://reviews.llvm.org/D38413
llvm-svn: 322721
I was comparing the demanded-bits implementations between InstCombine
and TargetLowering as part of investigating questions in D42088 and
noticed that this was wrong in IR. We were losing all of the prior
known bits when we got back to the 'zext'.
llvm-svn: 322662
This removes some duplication from splitCallSite and makes it easier to
add additional code dealing with each predecessor. It also allows us to
split for more than 2 predecessors, although that is not enabled for
now.
Reviewers: junbuml, mcrosier, davidxl, davide
Reviewed By: junbuml
Differential Revision: https://reviews.llvm.org/D41858
llvm-svn: 322599
Summary: Sometimes vectorization of insertelement instructions with extractelement operands may produce an extra shuffle operation, if these operands are in the reverse order. Patch tries to improve this situation by the reordering of the operands to remove this extra shuffle operation.
Reviewers: mkuper, hfinkel, RKSimon, spatel
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D33954
llvm-svn: 322579
This patch fixes the assertion failure in SROA reported in PR35657.
PR35657 reports the assertion failure due to r319522 (splitting for non-whole-alloca slices), but this problem can happen even without r319522.
The problem exists in a check for reusing an existing alloca when rewriting partitions. As the original comment said, we can reuse the existing alloca if the new alloca has the same type and offset with the existing one. But the code checks only type of the alloca and then check the offset using an assert.
In a corner case with out-of-bounds access (e.g. @PR35657 function added in unit test), it is possible that the two allocas have the same type but different offsets.
This patch makes the check of the offset in the if condition, and re-enables the splitting for non-whole-alloca slices.
Differential Revision: https://reviews.llvm.org/D41981
llvm-svn: 322533
Summary:
This method is supposed to be called for IVs that have casts in their use-def
chains that are completely ignored after vectorization under PSE. However, for
truncates of such IVs the same InductionDescriptor is used during
creation/widening of both original IV based on PHINode and new IV based on
TruncInst.
This leads to unintended second call to recordVectorLoopValueForInductionCast
with a VectorLoopVal set to the newly created IV for a trunc and causes an
assert due to attempt to store new information for already existing entry in the
map. This is wrong and should not be done.
Fixes PR35773.
Reviewers: dorit, Ayal, mssimpso
Reviewed By: dorit
Subscribers: RKSimon, dim, dcaballe, hsaito, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41913
llvm-svn: 322473
Summary:
In preparation for https://reviews.llvm.org/D41675 this NFC changes this
prototype of MemIntrinsicInst::setAlignment() to accept an unsigned instead
of a Constant.
llvm-svn: 322403
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perform the
preversation was minimally altered and simply marked as
preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements such as threading across loop headers.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: mgorny, dmgreen, kuba, rnk, rsmith, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 322401
Currently, IRC contains `Begin` and `Step` as SCEVs and `End` as value.
Aside from that, `End` can also be `nullptr` which can be later conditionally
converted into a non-null SCEV.
To make this logic more transparent, this patch makes `End` a SCEV and
calculates it early, so that it is never a null.
Differential Revision: https://reviews.llvm.org/D39590
llvm-svn: 322364
This is a fix for PR35884.
When we want to delete dead loop we must clean uses in unreachable blocks
otherwise we'll get an assert during deletion of instructions from the loop.
Reviewers: anna, davide
Reviewed By: anna
Subscribers: llvm-commits, lebedev.ri
Differential Revision: https://reviews.llvm.org/D41943
llvm-svn: 322357
Summary:
Very basic stack instrumentation using tagged pointers.
Tag for N'th alloca in a function is built as XOR of:
* base tag for the function, which is just some bits of SP (poor
man's random)
* small constant which is a function of N.
Allocas are aligned to 16 bytes. On every ReturnInst allocas are
re-tagged to catch use-after-return.
This implementation has a bunch of issues that will be taken care of
later:
1. lifetime intrinsics referring to tagged pointers are not
recognized in SDAG. This effectively disables stack coloring.
2. Generated code is quite inefficient. There is one extra
instruction at each memory access that adds the base tag to the
untagged alloca address. It would be better to keep tagged SP in a
callee-saved register and address allocas as an offset of that XOR
retag, but that needs better coordination between hwasan
instrumentation pass and prologue/epilogue insertion.
3. Lifetime instrinsics are ignored and use-after-scope is not
implemented. This would be harder to do than in ASan, because we
need to use a differently tagged pointer depending on which
lifetime.start / lifetime.end the current instruction is dominated
/ post-dominated.
Reviewers: kcc, alekseyshl
Subscribers: srhines, kubamracek, javed.absar, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41602
llvm-svn: 322324
While updating clang tests for having clang set dso_local I noticed
that:
- There are *a lot* of tests to update.
- Many of the updates are redundant.
They are redundant because a GV is "obviously dso_local". This patch
starts formalizing that a bit by requiring that internal and private
GVs be dso_local too. Since they all are, we don't have to print
dso_local to the textual representation, making it a bit more compact
and easier to read.
llvm-svn: 322317
LoadInst isn't enough; we need to include intrinsics that perform loads too.
All side-effecting intrinsics and such are already covered by the isSafe
check, so we just need to care about things that read from memory.
D41960, originally from D33179.
llvm-svn: 322311
parent function
Ideally we should merge the attributes from the functions somehow, but
this is obviously an improvement over taking random attributes from the
caller which will trip up the verifier if they're nonsensical for an
unary intrinsic call.
llvm-svn: 322284
The function can take a significant amount of time on some
complicated test cases, but for the currently only use of
the function we can stop the initialization much earlier
when we find out we are going to discard the result anyway
in the caller of the function.
Adding configurable cut-off points so that we avoid wasting time.
NFCI.
llvm-svn: 322248
Summary:
LowerTypeTests moves some function definitions from individual object
files to the merged module, leaving a stub to be called in the merged
module's jump table. If an alias was pointing to such a function
definition LowerTypeTests would fail because the alias would be left
without a definition to point to.
This change 1) emits information about aliases to the ThinLTO summary,
2) replaces aliases pointing to function definitions that are moved to
the merged module with function declarations, and 3) re-emits those
aliases in the merged module pointing to the correct function
definitions.
The patch does not correctly fix all possible mis-uses of aliases in
LowerTypeTests. For example, it does not handle aliases with a different
type from the pointed to function.
The addition of alias data increases the size of Chrome build artifacts
by less than 1%.
Reviewers: pcc
Reviewed By: pcc
Subscribers: mehdi_amini, eraman, mgrang, llvm-commits, eugenis, kcc
Differential Revision: https://reviews.llvm.org/D41741
llvm-svn: 322139
Summary:
When performing constant propagation for call instructions we have historically replaced all uses of the return from a call, but not removed the call itself. This is required for correctness if the calls have side effects, however the compiler should be able to safely remove calls that don't have side effects.
This allows the compiler to completely fold away calls to functions that have no side effects if the inputs are constant and the output can be determined at compile time.
Reviewers: davide, sanjoy, bruno, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38856
llvm-svn: 322125
Summary:
This pass synthesizes function entry counts by traversing the callgraph
and using the relative block frequencies of the callsites. The intended
use of these counts is in inlining to determine hot/cold callsites in
the absence of profile information.
The pass is split into two files with the code that propagates the
counts in a callgraph in a Utils file. I plan to add support for
propagation in the thinlto link phase and the propagation code will be
shared and hence this split. I did not add support to the old PM since
hot callsite determination in inlining is not possible in old PM
(although we could use hot callee heuristic with synthetic counts in the
old PM it is not worth the effort tuning it)
Reviewers: davidxl, silvas
Subscribers: mgorny, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D41604
llvm-svn: 322110
Because of potential UB (known bits conflicts with an llvm.assume),
we have to check rather than assert here because InstSimplify doesn't
kill the compare:
https://bugs.llvm.org/show_bug.cgi?id=35846
llvm-svn: 322104
EarlyCSE did not try to salvage debug info during erasing of instructions.
This change fixes it.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D41496
llvm-svn: 322083
This is an attempt of fixing PR35807.
Due to the non-standard definition of dominance in LLVM, where uses in
unreachable blocks are dominated by anything, you can have, in an
unreachable block:
%patatino = OP1 %patatino, CONSTANT
When `SimplifyInstruction` receives a PHI where an incoming value is of
the aforementioned form, in some cases, loops indefinitely.
What I propose here instead is keeping track of the incoming values
from unreachable blocks, and replacing them with undef. It fixes this
case, and it seems to be good regardless (even if we can't prove that
the value is constant, as it's coming from an unreachable block, we
can ignore it).
Differential Revision: https://reviews.llvm.org/D41812
llvm-svn: 322006
There is precedence for factorization transforms in instcombine for FP ops with fast-math.
We also have similar logic in foldSPFofSPF().
It would take more work to add this to reassociate because that's specialized for binops,
and min/max are not binops (or even single instructions). Also, I don't have evidence that
larger min/max trees than this exist in real code, but if we find that's true, we might
want to reorganize where/how we do this optimization.
In the motivating example from https://bugs.llvm.org/show_bug.cgi?id=35717 , we have:
int test(int xc, int xm, int xy) {
int xk;
if (xc < xm)
xk = xc < xy ? xc : xy;
else
xk = xm < xy ? xm : xy;
return xk;
}
This patch solves that problem because we recognize more min/max patterns after rL321672
https://rise4fun.com/Alive/Qjnehttps://rise4fun.com/Alive/3yg
Differential Revision: https://reviews.llvm.org/D41603
llvm-svn: 321998
Summary:
Fixes the bug with incorrect handling of InsertValue|InsertElement
instrucions in SLP vectorizer. Currently, we may use incorrect
ExtractElement instructions as the operands of the original
InsertValue|InsertElement instructions.
Reviewers: mkuper, hfinkel, RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41767
llvm-svn: 321994
Summary:
If the vectorized value is marked as extra reduction argument, its users
are not considered as external users. Patch fixes this.
Reviewers: mkuper, hfinkel, RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41786
llvm-svn: 321993
The approach was never discussed, I wasn't able to reproduce this
non-determinism, and the original author went AWOL.
After a discussion on the ML, Philip suggested to revert this.
llvm-svn: 321974
Another small step forward to move VPlan stuff outside of LoopVectorize.cpp.
VPlanBuilder.h is renamed to LoopVectorizationPlanner.h
LoopVectorizationPlanner class is moved from LoopVectorize.cpp to
LoopVectorizationPlanner.h LoopVectorizationCostModel::VectorizationFactor
class is moved to LoopVectorizationPlanner.h (used by the planner class) ---
this needs further streamlining work in later patches and thus all I did was
take it out of the CostModel class and moved to the header file. The callback
function had to stay inside LoopVectorize.cpp since it calls an
InnerLoopVectorizer member function declared in it. Next Steps: Make
InnerLoopVectorizer, LoopVectorizationCostModel, and other classes more modular
and more aligned with VPlan direction, in small increments.
Previous step was: r320900 (https://reviews.llvm.org/D41045)
Patch by Hideki Saito, thanks!
Differential Revision: https://reviews.llvm.org/D41420
llvm-svn: 321962
In addition to target-dependent attributes, we can also preserve a
white-listed subset of target independent function attributes. The white-list
excludes problematic attributes, most prominently:
* attributes related to memory accesses, as alloca instructions
could be moved in/out of the extracted block
* control-flow dependent attributes, like no_return or thunk, as the
relerelevant instructions might or might not get extracted.
Thanks @efriedma and @aemerson for providing a set of attributes that cannot be
propagated.
Reviewers: efriedma, davidxl, davide, silvas
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D41334
llvm-svn: 321961
If the varargs are not accessed by a function, we can inline the
function.
Reviewers: dblaikie, chandlerc, davide, efriedma, rnk, hfinkel
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D41335
llvm-svn: 321940
In the minimal case, this won't remove instructions, but it still improves
uses of existing values.
In the motivating example from PR35834, it does remove instructions, and
sets that case up to be optimized by something like D41603:
https://reviews.llvm.org/D41603
llvm-svn: 321936
Having a single call to findDbgUsers() allows salvageDebugInfo() to
return earlier.
Differential Revision: https://reviews.llvm.org/D41787
llvm-svn: 321915
Besides the bug of omitting the inverse transform of max(~a, ~b) --> ~min(a, b),
the use checking and operand creation were off. We were potentially creating
repeated identical instructions of existing values. This led to infinite
looping after I added the extra folds.
By using the simpler m_Not matcher and not creating new 'not' ops for a and b,
we avoid that problem. It's possible that not using IsFreeToInvert() here is
more limiting than the simpler matcher, but there are no tests for anything
more exotic. It's also possible that we should relax the use checking further
to handle a case like PR35834:
https://bugs.llvm.org/show_bug.cgi?id=35834
...but we can make that a follow-up if it is needed.
llvm-svn: 321882
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perfom the
preversation was minimally altered and was simply marked
as preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements. One example is loop boundary threading.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 321825
This came up during discussions in llvm-commits for
rL321653: Check for unreachable preds before updating LI in
UpdateAnalysisInformation
The assert provides hints to passes to require both DT and LI if we plan on
updating LI through this function.
Tests run: make check
llvm-svn: 321805
The work order was changed in r228186 from SCC order
to RPO with an arbitrary sorting function. The sorting
function attempted to move inner loop nodes earlier. This
was was apparently relying on an assumption that every block
in a given loop / the same loop depth would be seen before
visiting another loop. In the broken testcase, a block
outside of the loop was encountered before moving onto
another block in the same loop. The testcase would then
structurize such that one blocks unconditional successor
could never be reached.
Revert to plain RPO for the analysis phase. This fixes
detecting edges as backedges that aren't really.
The processing phase does use another visited set, and
I'm unclear on whether the order there is as important.
An arbitrary order doesn't work, and triggers some infinite
loops. The reversed RPO list seems to work and is closer
to the order that was used before, minus the arbitary
custom sorting.
A few of the changed tests now produce smaller code,
and a few are slightly worse looking.
llvm-svn: 321751
Summary:
We are incorrectly updating the LI when loop-simplify generates
dedicated exit blocks for a loop. The issue is that there's an implicit
assumption that the Preds passed into UpdateAnalysisInformation are
reachable. However, this is not true and breaks LI by incorrectly
updating the header of a loop.
One such case is when we generate dedicated exits when the exit block is
a landing pad (through SplitLandingPadPredecessors). There maybe other
cases as well, since we do not guarantee that Preds passed in are
reachable basic blocks.
The added test case shows how loop-simplify breaks LI for the outer loop (and DT in turn)
after we try to generate the LoopSimplifyForm.
Reviewers: davide, chandlerc, sanjoy
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41519
llvm-svn: 321653
`RewriteStatepointsForGC` iterates over function blocks and their predecessors
in order of declaration. One of outcomes of this is that callsites are placed in
arbitrary order which has nothing to do with travelsar order.
On the other hand, function `recomputeLiveInValues` asserts that bases are
added to `Info.PointerToBase` before their deried pointers are updated. But
if call sites are processed in order different from RPOT, this is not necessarily
true. We cannot guarantee that the base was placed there before every
pointer derived from it. All we can guarantee is that this base was marked as
known base by this point.
This patch replaces the fact that we assert from checking that the base was
added to the map with assert that the base was marked as known base.
Differential Revision: https://reviews.llvm.org/D41593
llvm-svn: 321517
This reverts r321138. It seems there are still underlying issues with
memdep. PR35519 seems to still be present if debug info is enabled. We
end up losing a memcpy. Somehow during store to memset merging, we
insert the memset after the memcpy or fail to update the memdep analysis
to account for the newly inserted memset of a pair.
Reduced test case:
#include <assert.h>
#include <stdio.h>
#include <string>
#include <utility>
#include <vector>
void do_push_back(
std::vector<std::pair<std::string, std::vector<std::string>>>* crls) {
crls->push_back(std::make_pair(std::string(), std::vector<std::string>()));
}
int __attribute__((optnone)) main() {
// Put some data in the vector and then remove it so we take the push_back
// fast path.
std::vector<std::pair<std::string, std::vector<std::string>>> crl_set;
crl_set.push_back({"asdf", {}});
crl_set.pop_back();
printf("first word in vector storage: %p\n", *(void**)crl_set.data());
// Do the push_back which may fail to initialize the data.
do_push_back(&crl_set);
auto* first = &crl_set.back().first;
printf("first word in vector storage (should be zero): %p\n",
*(void**)crl_set.data());
assert(first->empty());
puts("ok");
}
Compile with libc++, enable optimizations, and enable debug info:
$ clang++ -stdlib=libc++ -g -O2 t.cpp -o t.exe -Wl,-rpath=llvm/build/lib
This program will assert with this change.
llvm-svn: 321510
By following the single predecessors of the predecessors of the call
site, we do not need to restrict the control flow.
Reviewed By: junbuml, davide
Differential Revision: https://reviews.llvm.org/D40729
llvm-svn: 321413
This code was originally removed and replace with an assertion
because believed unnecessary. It turns out there was simply
no test coverage for this case, and the constant folder doesn't
yet know about patterns like `br undef %label1, %label2`.
Presumably at some point the constant folder might learn about
these patterns, but it's a broader change.
A testcase will be added to make sure this doesn't regress again
in the future.
Fixes PR35723.
llvm-svn: 321402
If after if-conversion, most of the instructions in this new BB construct a long and slow dependence chain, it may be slower than cmp/branch, even if the branch has a high miss rate, because the control dependence is transformed into data dependence, and control dependence can be speculated, and thus, the second part can execute in parallel with the first part on modern OOO processor.
This patch checks for the long dependence chain, and give up if-conversion if find one.
Differential Revision: https://reviews.llvm.org/D39352
llvm-svn: 321377
Summary:
This replaces calls to getEntryCount().hasValue() with hasProfileData
that does the same thing. This refactoring is useful to do before adding
synthetic function entry counts but also a useful cleanup IMO even
otherwise. I have used hasProfileData instead of hasRealProfileData as
David had earlier suggested since I think profile implies "real" and I
use the phrase "synthetic entry count" and not "synthetic profile count"
but I am fine calling it hasRealProfileData if you prefer.
Reviewers: davidxl, silvas
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41461
llvm-svn: 321331
If a block has N predecessors, then the current algorithm will try to
sink common code to this block N times (whenever we visit a
predecessor). Every attempt to sink the common code includes going
through all predecessors, so the complexity of the algorithm becomes
O(N^2).
With this patch we try to sink common code only when we visit the block
itself. With this, the complexity goes down to O(N).
As a side effect, the moment the code is sunk is slightly different than
before (the order of simplifications has been changed), that's why I had
to adjust two tests (note that neither of the tests is supposed to test
SimplifyCFG):
* test/CodeGen/AArch64/arm64-jumptable.ll - changes in this test mimic
the changes that previous implementation of SimplifyCFG would do.
* test/CodeGen/ARM/avoid-cpsr-rmw.ll - in this test I disabled common
code sinking by a command line flag.
llvm-svn: 321236
This patch modifies the indirect call promotion utilities by exposing and using
an unconditional call promotion interface. The unconditional promotion
interface (i.e., call promotion without creating an if-then-else) can be used
if it's known that an indirect call has only one possible callee. The existing
conditional promotion interface uses this unconditional interface to promote an
indirect call after it has been versioned and placed within the "then" block.
A consequence of unconditional promotion is that the fix-up operations for phi
nodes in the normal destination of invoke instructions are changed. This is
necessary because the existing implementation assumed that an invoke had been
versioned, creating a "merge" block where a return value bitcast could be
placed. In the new implementation, the edge between a promoted invoke's parent
block and its normal destination is split if needed to add a bitcast for the
return value. If the invoke is also versioned, the phi node merging the return
value of the promoted and original invoke instructions is placed in the "merge"
block.
Differential Revision: https://reviews.llvm.org/D40751
llvm-svn: 321210
Summary: Very similar to AddressSanitizer, with the exception of the error type encoding.
Reviewers: kcc, alekseyshl
Subscribers: cfe-commits, kubamracek, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41417
llvm-svn: 321203
canVectorize is only checking if the loop has a normalized pre-header if DoExtraAnalysis is true.
This doesn't make sense to me because reporting analysis information shouldn't alter legality
checks. This is probably the result of a last minute minor change before committing (?).
Patch by Diego Caballero.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D40973
llvm-svn: 321172
This teaches memcpyopt to make a non-local memdep query when a local query
indicates that the dependency is non-local. This notably allows it to
eliminate many more llvm.memcpy calls in common Rust code, often by 20-30%.
This is r319482 and r319483, along with fixes for PR35519: fix the
optimization that merges stores into memsets to preserve cached memdep
info, and fix memdep's non-local caching strategy to not assume that larger
queries are always more conservative than smaller ones.
Fixes PR28958 and PR35519.
Differential Revision: https://reviews.llvm.org/D40802
llvm-svn: 321138
PRE in JumpThreading should not be able to hoist copy of non-speculable loads across
instructions that don't always transfer execution to their successors, otherwise they may
introduce an unsafe load which otherwise would not be executed.
The same problem for GVN was fixed as rL316975.
Differential Revision: https://reviews.llvm.org/D40347
llvm-svn: 321063
Summary:
In r277849, getEntryCount was changed to return None when the entry
count was 0, specifically for SamplePGO where it means no samples were
recorded. However, for instrumentation PGO a 0 entry count should be
returned directly, since it does mean that the function was completely
cold. Otherwise we end up treating these functions conservatively
in isFunctionEntryCold() and isColdBB().
Instead, for SamplePGO use -1 when there are no samples, and change
getEntryCount to return None when the value is -1.
Reviewers: danielcdh, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41307
llvm-svn: 321018
This patch introduce a switch to control splitting of non-whole-alloca slices with default off.
The switch will be default on again after fixing an issue reported in PR35657.
llvm-svn: 320958
If the loop operand type is int8 then there will be no residual loop for the
unknown size expansion. Dont create the residual-size and bytes-copied values
when they are not needed.
llvm-svn: 320929
We want to do this for 2 reasons:
1. Value tracking does not recognize the ashr variant, so it would fail to match for cases like D39766.
2. DAGCombiner does better at producing optimal codegen when we have the cmp+sel pattern.
More detail about what happens in the backend:
1. DAGCombiner has a generic transform for all targets to convert the scalar cmp+sel variant of abs
into the shift variant. That is the opposite of this IR canonicalization.
2. DAGCombiner has a generic transform for all targets to convert the vector cmp+sel variant of abs
into either an ABS node or the shift variant. That is again the opposite of this IR canonicalization.
3. DAGCombiner has a generic transform for all targets to convert the exact shift variants produced by #1 or #2
into an ISD::ABS node. Note: It would be an efficiency improvement if we had #1 go directly to an ABS node
when that's legal/custom.
4. The pattern matching above is incomplete, so it is possible to escape the intended/optimal codegen in a
variety of ways.
a. For #2, the vector path is missing the case for setlt with a '1' constant.
b. For #3, we are missing a match for commuted versions of the shift variants.
5. Therefore, this IR canonicalization can only help get us to the optimal codegen. The version of cmp+sel
produced by this patch will be recognized in the DAG and converted to an ABS node when possible or the
shift sequence when not.
6. In the following examples with this patch applied, we may get conditional moves rather than the shift
produced by the generic DAGCombiner transforms. The conditional move is created using a target-specific
decision for any given target. Whether it is optimal or not for a particular subtarget may be up for debate.
define i32 @abs_shifty(i32 %x) {
%signbit = ashr i32 %x, 31
%add = add i32 %signbit, %x
%abs = xor i32 %signbit, %add
ret i32 %abs
}
define i32 @abs_cmpsubsel(i32 %x) {
%cmp = icmp slt i32 %x, zeroinitializer
%sub = sub i32 zeroinitializer, %x
%abs = select i1 %cmp, i32 %sub, i32 %x
ret i32 %abs
}
define <4 x i32> @abs_shifty_vec(<4 x i32> %x) {
%signbit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
%add = add <4 x i32> %signbit, %x
%abs = xor <4 x i32> %signbit, %add
ret <4 x i32> %abs
}
define <4 x i32> @abs_cmpsubsel_vec(<4 x i32> %x) {
%cmp = icmp slt <4 x i32> %x, zeroinitializer
%sub = sub <4 x i32> zeroinitializer, %x
%abs = select <4 x i1> %cmp, <4 x i32> %sub, <4 x i32> %x
ret <4 x i32> %abs
}
> $ ./opt -instcombine shiftyabs.ll -S | ./llc -o - -mtriple=x86_64 -mattr=avx
> abs_shifty:
> movl %edi, %eax
> negl %eax
> cmovll %edi, %eax
> retq
>
> abs_cmpsubsel:
> movl %edi, %eax
> negl %eax
> cmovll %edi, %eax
> retq
>
> abs_shifty_vec:
> vpabsd %xmm0, %xmm0
> retq
>
> abs_cmpsubsel_vec:
> vpabsd %xmm0, %xmm0
> retq
>
> $ ./opt -instcombine shiftyabs.ll -S | ./llc -o - -mtriple=aarch64
> abs_shifty:
> cmp w0, #0 // =0
> cneg w0, w0, mi
> ret
>
> abs_cmpsubsel:
> cmp w0, #0 // =0
> cneg w0, w0, mi
> ret
>
> abs_shifty_vec:
> abs v0.4s, v0.4s
> ret
>
> abs_cmpsubsel_vec:
> abs v0.4s, v0.4s
> ret
>
> $ ./opt -instcombine shiftyabs.ll -S | ./llc -o - -mtriple=powerpc64le
> abs_shifty:
> srawi 4, 3, 31
> add 3, 3, 4
> xor 3, 3, 4
> blr
>
> abs_cmpsubsel:
> srawi 4, 3, 31
> add 3, 3, 4
> xor 3, 3, 4
> blr
>
> abs_shifty_vec:
> vspltisw 3, -16
> vspltisw 4, 15
> vsubuwm 3, 4, 3
> vsraw 3, 2, 3
> vadduwm 2, 2, 3
> xxlxor 34, 34, 35
> blr
>
> abs_cmpsubsel_vec:
> vspltisw 3, -16
> vspltisw 4, 15
> vsubuwm 3, 4, 3
> vsraw 3, 2, 3
> vadduwm 2, 2, 3
> xxlxor 34, 34, 35
> blr
>
Differential Revision: https://reviews.llvm.org/D40984
llvm-svn: 320921
Changes to the original scalar loop during LV code gen cause the return value
of Legal->isConsecutivePtr() to be inconsistent with the return value during
legal/cost phases (further analysis and information of the bug is in D39346).
This patch is an alternative fix to PR34965 following the CM_Widen approach
proposed by Ayal and Gil in D39346. It extends InstWidening enum with
CM_Widen_Reverse to properly record the widening decision for consecutive
reverse memory accesses and, consequently, get rid of the
Legal->isConsetuviePtr() call in LV code gen. I think this is a simpler/cleaner
solution to PR34965 than the one in D39346.
Fixes PR34965.
Patch by Diego Caballero, thanks!
Differential Revision: https://reviews.llvm.org/D40742
llvm-svn: 320913
When unsafe algerbra is allowed calls to cabs(r) can be replaced by:
sqrt(creal(r)*creal(r) + cimag(r)*cimag(r))
Patch by Paul Walker, thanks!
Differential Revision: https://reviews.llvm.org/D40069
llvm-svn: 320901
This is a small step forward to move VPlan stuff to where it should belong (i.e., VPlan.*):
1. VP*Recipe classes in LoopVectorize.cpp are moved to VPlan.h.
2. Many of VP*Recipe::print() and execute() definitions are still left in
LoopVectorize.cpp since they refer to things declared in LoopVectorize.cpp. To
be moved to VPlan.cpp at a later time.
3. InterleaveGroup class is moved from anonymous namespace to llvm namespace.
Referencing it in anonymous namespace from VPlan.h ended up in warning.
Patch by Hideki Saito, thanks!
Differential Revision: https://reviews.llvm.org/D41045
llvm-svn: 320900
Summary:
This implements a missing feature to allow importing of aliases, which
was previously disabled because alias cannot be available_externally.
We instead import an alias as a copy of its aliasee.
Some additional work was required in the IndexBitcodeWriter for the
distributed build case, to ensure that the aliasee has a value id
in the distributed index file (i.e. even when it is not being
imported directly).
This is a performance win in codes that have many aliases, e.g. C++
applications that have many constructor and destructor aliases.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D40747
llvm-svn: 320895
This recommits r320823 reverted due to the test failure in sink-foldable.ll and
an unused variable. Added "REQUIRES: aarch64-registered-target" in the test
and removed unused variable.
Original commit message:
Continue trying to sink an instruction if its users in the loop is foldable.
This will allow the instruction to be folded in the loop by decoupling it from
the user outside of the loop.
Reviewers: hfinkel, majnemer, davidxl, efriedma, danielcdh, bmakam, mcrosier
Reviewed By: hfinkel
Subscribers: javed.absar, bmakam, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D37076
llvm-svn: 320858
The original memcpy expansion inserted the loop basic block inbetween
the 2 new basic blocks created by splitting the original block the memcpy
call was in. This commit makes the new memcpy expansion do the same to keep the
layout of the IR matching between the old and new implementations.
Differential Review: https://reviews.llvm.org/D41197
llvm-svn: 320848
This recommit r320823 after fixing a test failure.
Original commit message:
Continue trying to sink an instruction if its users in the loop is foldable.
This will allow the instruction to be folded in the loop by decoupling it from
the user outside of the loop.
Reviewers: hfinkel, majnemer, davidxl, efriedma, danielcdh, bmakam, mcrosier
Reviewed By: hfinkel
Subscribers: javed.absar, bmakam, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D37076
llvm-svn: 320833
Summary:
Continue trying to sink an instruction if its users in the loop is foldable.
This will allow the instruction to be folded in the loop by decoupling it from
the user outside of the loop.
Reviewers: hfinkel, majnemer, davidxl, efriedma, danielcdh, bmakam, mcrosier
Reviewed By: hfinkel
Subscribers: javed.absar, bmakam, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D37076
llvm-svn: 320823
Summary:
The port is nearly straightforward.
The only complication is related to the analyses handling,
since one of the analyses used in this module pass is domtree,
which is a function analysis. That requires asking for the results
of each function and disallows a single interface for run-on-module
pass action.
Decided to copy-paste the main body of this pass.
Most of its code is requesting analyses anyway, so not that much
of a copy-paste.
The rest of the code movement is to transform all the implementation
helper functions like stripNonValidData into non-member statics.
Extended all the related LLVM tests with new-pass-manager use.
No failures.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Subscribers: skatkov, llvm-commits
Differential Revision: https://reviews.llvm.org/D41162
llvm-svn: 320796
This should solve:
https://bugs.llvm.org/show_bug.cgi?id=34603
...by preventing SimplifyCFG from altering redundant instructions before early-cse has a chance to run.
It changes the default (canonical-forming) behavior of SimplifyCFG, so we're only doing the
sinking transform later in the optimization pipeline.
Differential Revision: https://reviews.llvm.org/D38566
llvm-svn: 320749
In SLPVectorizer, the vector build instructions (insertvalue for aggregate type) is passed to BoUpSLP.buildTree, it is treated as UserIgnoreList, so later in cost estimation, the cost of these instructions are not counted.
For aggregate value, later usage are more likely to be done in scalar registers, either used as individual scalars or used as a whole for function call or return value. Ignore scalar extraction instructions may cause too aggressive vectorization for aggregate values, and slow down performance. So for vectorization of aggregate value, the scalar extraction instructions are required in cost estimation.
Differential Revision: https://reviews.llvm.org/D41139
llvm-svn: 320736
Summary:
Passing AliasAnalysis results instead of nullptr appears to work just fine.
A couple new-pass-manager tests updated to align with new order of analyses.
Reviewers: chandlerc, spatel, craig.topper
Reviewed By: chandlerc
Subscribers: mehdi_amini, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D41203
llvm-svn: 320687
D30041 extended SCEVPredicateRewriter to improve handling of Phi nodes whose
update chain involves casts; PSCEV can now build an AddRecurrence for some
forms of such phi nodes, under the proper runtime overflow test. This means
that we can identify such phi nodes as an induction, and the loop-vectorizer
can now vectorize such inductions, however inefficiently. The vectorizer
doesn't know that it can ignore the casts, and so it vectorizes them.
This patch records the casts in the InductionDescriptor, so that they could
be marked to be ignored for cost calculation (we use VecValuesToIgnore for
that) and ignored for vectorization/widening/scalarization (i.e. treated as
TriviallyDead).
In addition to marking all these casts to be ignored, we also need to make
sure that each cast is mapped to the right vector value in the vector loop body
(be it a widened, vectorized, or scalarized induction). So whenever an
induction phi is mapped to a vector value (during vectorization/widening/
scalarization), we also map the respective cast instruction (if exists) to that
vector value. (If the phi-update sequence of an induction involves more than one
cast, then the above mapping to vector value is relevant only for the last cast
of the sequence as we allow only the "last cast" to be used outside the
induction update chain itself).
This is the last step in addressing PR30654.
llvm-svn: 320672
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perfom the
preversation was minimally altered and was simply marked
as preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements. One example is loop boundary threading.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 320612
w.r.t. the paper
"A Practical Improvement to the Partial Redundancy Elimination in SSA Form"
(https://sites.google.com/site/jongsoopark/home/ssapre.pdf)
Proper dominance check was missing here, so having a loopinfo should not be required.
Committing this diff as this fixes the bug, if there are
further concerns, I'll be happy to work on them.
Differential Revision: https://reviews.llvm.org/D39781
llvm-svn: 320607
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask' of
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
Reviewed By: Ayal
Subscribers: mgrang, dcaballe, hans, mzolotukhin
Differential Revision: https://reviews.llvm.org/D36130
llvm-svn: 320548
Summary:
This change makes the call site creation more general if any of the
arguments is predicated on a condition in the call site's predecessors.
If we find a callsite, that potentially can be split, we collect the set
of conditions for the call site's predecessors (currently only 2
predecessors are allowed). To do that, we traverse each predecessor's
predecessors as long as it only has single predecessors and record the
condition, if it is relevant to the call site. For each condition, we
also check if the condition is taken or not. In case it is not taken,
we record the inverse predicate.
We use the recorded conditions to create the new call sites and split
the basic block.
This has 2 benefits: (1) it is slightly easier to see what is going on
(IMO) and (2) we can easily extend it to handle more complex control
flow.
Reviewers: davidxl, junbuml
Reviewed By: junbuml
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40728
llvm-svn: 320547
Summary: This brings CPU overhead on bzip2 down from 5.5x to 2x.
Reviewers: kcc, alekseyshl
Subscribers: kubamracek, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41137
llvm-svn: 320538
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320525
This algorithm (explained more in the source code) takes into account
global redundancies by building a "pair map" to find common subexprs.
The primary motivation of this is to handle situations like
foo = (a * b) * c
bar = (a * d) * c
where we currently don't identify that "a * c" is redundant.
Accordingly, it prioritizes the emission of a * c so that CSE
can remove the redundant calculation later.
Does not change the actual reassociation algorithm -- only the
order in which the reassociated operand chain is reconstructed.
Gives ~1.5% floating point math instruction count reduction on
a large offline suite of graphics shaders.
llvm-svn: 320515
Summary:
The PGO gen/use passes currently fail with an assert failure if there's a
critical edge whose source is an IndirectBr instruction and that edge
needs to be instrumented.
To avoid this in certain cases, split IndirectBr critical edges in the PGO
gen/use passes. This works for blocks with single indirectbr predecessors,
but not for those with multiple indirectbr predecessors (splitting an
IndirectBr critical edge isn't always possible.)
Reviewers: davidxl, xur
Reviewed By: davidxl
Subscribers: efriedma, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D40699
llvm-svn: 320511
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320510
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320499
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320496
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320488
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320483
Summary:
Currently, in InstCombineLoadStoreAlloca, we have simplification
rules for the following cases:
1. load off a null
2. load off a GEP with null base
3. store to a null
This patch adds support for the fourth case which is store into a
GEP with null base. Since this is UB as well (and directly analogous to
the load off a GEP with null base), we can substitute the stored val
with undef in instcombine, so that SimplifyCFG can optimize this code
into unreachable code.
Note: Right now, simplifyCFG hasn't been taught about optimizing
this to unreachable and adding an llvm.trap (this is already done for
the above 3 cases).
Reviewers: majnemer, hfinkel, sanjoy, davide
Reviewed by: sanjoy, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41026
llvm-svn: 320480
VecValuesToIgnore holds values that will not appear in the vectorized loop.
We should therefore ignore their cost when VF > 1.
Differential Revision: https://reviews.llvm.org/D40883
llvm-svn: 320463
Summary:
This solves PR35616.
We don't want the compiler to generate different code when we compile
with/without -g, so we now ignore debug intrinsics when determining if
the optimization can trigger or not.
Reviewers: junbuml
Subscribers: davide, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41068
llvm-svn: 320460
The tests fail (opt asserts) on Windows.
> Summary:
> If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
> &V2)))), bitcast)`, but the load is used in other instructions, it leads
> to looping in InstCombiner. Patch adds additional check that all users
> of the load instructions are stores and then replaces all uses of load
> instruction by the new one with new type.
>
> Reviewers: RKSimon, spatel, majnemer
>
> Subscribers: llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320421
The function stack poisioner conditionally stores local variables
either in an alloca or in malloc'ated memory, which has the
unfortunate side-effect, that the actual address of the variable is
only materialized when the variable is accessed, which means that
those variables are mostly invisible to the debugger even when
compiling without optimizations.
This patch stores the address of the local stack base into an alloca,
which can be referred to by the debug info and is available throughout
the function. This adds one extra pointer-sized alloca to each stack
frame (but mem2reg can optimize it away again when optimizations are
enabled, yielding roughly the same debug info quality as before in
optimized code).
rdar://problem/30433661
Differential Revision: https://reviews.llvm.org/D41034
llvm-svn: 320415
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320407
This patch introduces getShadowOriginPtr(), a method that obtains both the shadow and origin pointers for an address as a Value pair.
The existing callers of getShadowPtr() and getOriginPtr() are updated to use getShadowOriginPtr().
The rationale for this change is to simplify KMSAN instrumentation implementation.
In KMSAN origins tracking is always enabled, and there's no direct mapping between the app memory and the shadow/origin pages.
Both the shadow and the origin pointer for a given address are obtained by calling a single runtime hook from the instrumentation,
therefore it's easier to work with those pointers together.
Reviewed at https://reviews.llvm.org/D40835.
llvm-svn: 320373
Summary:
Reuse the Linux new mapping as it is.
Sponsored by <The NetBSD Foundation>
Reviewers: joerg, eugenis, vitalybuka
Reviewed By: vitalybuka
Subscribers: llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D41022
llvm-svn: 320219
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.
HWASan comes with its own IR attribute.
A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).
Reviewers: kcc, pcc, alekseyshl
Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40932
llvm-svn: 320217
Summary:
If a partially inlined function has debug info, we have to add debug
locations to the call instruction calling the outlined function.
We use the debug location of the first instruction in the outlined
function, as the introduced call transfers control to this statement and
there is no other equivalent line in the source code.
We also use the same debug location for the branch instruction added
to jump from artificial entry block for the outlined function, which just
jumps to the first actual basic block of the outlined function.
Reviewers: davide, aprantl, rriddle, dblaikie, danielcdh, wmi
Reviewed By: aprantl, rriddle, danielcdh
Subscribers: eraman, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D40413
llvm-svn: 320199
Causes unexpected memory issue with New PM this time.
The new PM invalidates BPI but not BFI, leaving the
reference to BPI from BFI invalid.
Abandon this patch. There is a more general solution
which also handles runtime infinite loop (but not statically).
llvm-svn: 320180
Summary:
If we have the code like this:
```
float a, b;
a = std::max(a ,b);
```
it is converted into something like this:
```
%call = call dereferenceable(4) float* @_ZSt3maxIfERKT_S2_S2_(float* nonnull dereferenceable(4) %a.addr, float* nonnull dereferenceable(4) %b.addr)
%1 = bitcast float* %call to i32*
%2 = load i32, i32* %1, align 4
%3 = bitcast float* %a.addr to i32*
store i32 %2, i32* %3, align 4
```
After inlinning this code is converted to the next:
```
%1 = load float, float* %a.addr
%2 = load float, float* %b.addr
%cmp.i = fcmp fast olt float %1, %2
%__b.__a.i = select i1 %cmp.i, float* %a.addr, float* %b.addr
%3 = bitcast float* %__b.__a.i to i32*
%4 = load i32, i32* %3, align 4
%5 = bitcast float* %arrayidx to i32*
store i32 %4, i32* %5, align 4
```
This pattern is not recognized as minmax pattern.
Patch solves this problem by converting sequence
```
store (bitcast, (load bitcast (select ((cmp V1, V2), &V1, &V2))))
```
to a sequence
```
store (,load (select((cmp V1, V2), &V1, &V2)))
```
After this the code is recognized as minmax pattern.
Reviewers: RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40304
llvm-svn: 320157
In more recent Linux kernels with 47 bit VMAs the layout of virtual memory
for powerpc64 changed causing the address sanitizer to not work properly. This
patch adds support for 47 bit VMA kernels for powerpc64 and fixes up test
cases.
https://reviews.llvm.org/D40907
There is an associated patch for compiler-rt.
Tested on several 4.x and 3.x kernel releases.
llvm-svn: 320109
Summary:
Make enum ModRefInfo an enum class. Changes to ModRefInfo values should
be done using inline wrappers.
This should prevent future bit-wise opearations from being added, which can be more error-prone.
Reviewers: sanjoy, dberlin, hfinkel, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40933
llvm-svn: 320107
As a new access is generated spanning across multiple fields, we need to
propagate alias info from all the fields to form the most generic alias info.
rdar://35602528
Differential Revision: https://reviews.llvm.org/D40617
llvm-svn: 319979
This patch factors out the main code transformation utilities in the pgo-driven
indirect call promotion pass and places them in Transforms/Utils. The change is
intended to be a non-functional change, letting non-pgo-driven passes share a
common implementation with the existing pgo-driven pass.
The common utilities are used to conditionally promote indirect call sites to
direct call sites. They perform the underlying transformation, and do not
consider profile information. The pgo-specific details (e.g., the computation
of branch weight metadata) have been left in the indirect call promotion pass.
Differential Revision: https://reviews.llvm.org/D40658
llvm-svn: 319963
Summary:
There is no need to replace the original call instruction if no
VarArgs need to be forwarded.
Reviewers: davide, rnk, majnemer, efriedma
Reviewed By: efriedma
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D40412
llvm-svn: 319947
This caused PR35519.
> [memcpyopt] Teach memcpyopt to optimize across basic blocks
>
> This teaches memcpyopt to make a non-local memdep query when a local query
> indicates that the dependency is non-local. This notably allows it to
> eliminate many more llvm.memcpy calls in common Rust code, often by 20-30%.
>
> Fixes PR28958.
>
> Differential Revision: https://reviews.llvm.org/D38374
>
> [memcpyopt] Commit file missed in r319482.
>
> This change was meant to be included with r319482 but was accidentally
> omitted.
llvm-svn: 319873
Summary:
The aim is to make ModRefInfo checks and changes more intuitive
and less error prone using inline methods that abstract the bit operations.
Ideally ModRefInfo would become an enum class, but that change will require
a wider set of changes into FunctionModRefBehavior.
Reviewers: sanjoy, george.burgess.iv, dberlin, hfinkel
Subscribers: nlopes, llvm-commits
Differential Revision: https://reviews.llvm.org/D40749
llvm-svn: 319821
This uses ConstantRange::makeGuaranteedNoWrapRegion's newly-added handling for subtraction to allow CVP to remove some subtraction overflow checks.
Differential Revision: https://reviews.llvm.org/D40039
llvm-svn: 319807
Summary:
A true or false result is expected from a comparison, but it seems the possibility of undef was overlooked, which could lead to a failed assert. This is fixed by this patch by bailing out if we encounter undef.
The bug is old and the assert has been there since the end of 2014, so it seems this is unusual enough to forego optimization.
Patch by JesperAntonsson.
Reviewers: spatel, eeckstein, hans
Reviewed By: hans
Subscribers: uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D40639
llvm-svn: 319768
Summary:
Move splitIndirectCriticalEdges() from CodeGenPrepare to BasicBlockUtils.h so
that it can be called from other places.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40750
llvm-svn: 319689
(This reapplies r314253. r314253 was reverted on r314482 because of a
correctness regression on P100, but that regression was identified to be
something else.)
Summary:
Don't bail out on constant divisors for divisions that can be narrowed without
introducing control flow . This gives us a 32 bit multiply instead of an
emulated 64 bit multiply in the generated PTX assembly.
Reviewers: jlebar
Subscribers: jholewinski, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38265
llvm-svn: 319677
Summary:
Currently, we only support predication for forward loops with step
of 1. This patch enables loop predication for reverse or
countdownLoops, which satisfy the following conditions:
1. The step of the IV is -1.
2. The loop has a singe latch as B(X) = X <pred>
latchLimit with pred as s> or u>
3. The IV of the guard is the decrement
IV of the latch condition (Guard is: G(X) = X-1 u< guardLimit).
This patch was downstream for a while and is the last series of patches
that's from our LP implementation downstream.
Reviewers: apilipenko, mkazantsev, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40353
llvm-svn: 319659
Turns out we can have comparisons which are indirect users of the induction variable that we can make invariant. In this case, there is no loop invariant value contributing and we'd fail an assert.
The test case was found by a java fuzzer and reduced. It's a real cornercase. You have to have a static loop which we've already proven only executes once, but haven't broken the backedge on, and an inner phi whose result can be constant folded by SCEV using exit count reasoning but not proven by isKnownPredicate. To my knowledge, only the fuzzer has hit this case.
llvm-svn: 319583
It causes builds to fail with "Instruction does not dominate all uses" (PR35497).
> Patch tries to improve vectorization of the following code:
>
> void add1(int * __restrict dst, const int * __restrict src) {
> *dst++ = *src++;
> *dst++ = *src++ + 1;
> *dst++ = *src++ + 2;
> *dst++ = *src++ + 3;
> }
> Allows to vectorize even if the very first operation is not a binary add, but just a load.
>
> Fixed issues related to previous commit.
>
> Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev
>
> Reviewed By: ABataev, RKSimon
>
> Subscribers: llvm-commits, RKSimon
>
> Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 319550
Summary:
A true or false result is expected from a comparison, but it seems the possibility of undef was overlooked, which could lead to a failed assert. This is fixed by this patch by bailing out if we encounter undef.
The bug is old and the assert has been there since the end of 2014, so it seems this is unusual enough to forego optimization.
Patch by: JesperAntonsson
Reviewers: spatel, eeckstein, hans
Reviewed By: hans
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40639
llvm-svn: 319537
Patch tries to improve vectorization of the following code:
void add1(int * __restrict dst, const int * __restrict src) {
*dst++ = *src++;
*dst++ = *src++ + 1;
*dst++ = *src++ + 2;
*dst++ = *src++ + 3;
}
Allows to vectorize even if the very first operation is not a binary add, but just a load.
Fixed issues related to previous commit.
Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev
Reviewed By: ABataev, RKSimon
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 319531
These command line options are not intended for public use, and often
don't even make sense in the context of a particular tool anyway. About
90% of them are already hidden, but when people add new options they
forget to hide them, so if you were to make a brand new tool today, link
against one of LLVM's libraries, and run tool -help you would get a
bunch of junk that doesn't make sense for the tool you're writing.
This patch hides these options. The real solution is to not have
libraries defining command line options, but that's a much larger effort
and not something I'm prepared to take on.
Differential Revision: https://reviews.llvm.org/D40674
llvm-svn: 319505