Track them for ISL/OS objects by default, and for NS/CF under a flag.
rdar://47536377
Differential Revision: https://reviews.llvm.org/D57356
llvm-svn: 352534
When a function takes the address of a field the analyzer will no longer
assume that the function will change other fields of the enclosing structs.
Differential Revision: https://reviews.llvm.org/D57230
llvm-svn: 352473
Summary:
When importing classes we may add a CXXMethodDecl more than once to a CXXRecordDecl when handling overrides. This patch will fix the cases we currently know about and handle the case where we are only dealing with declarations.
Differential Revision: https://reviews.llvm.org/D56936
llvm-svn: 352436
This patch effectively fixes the almost decade old checker naming issue.
The solution is to assert when CheckerManager::getChecker is called on an
unregistered checker, and assert when CheckerManager::registerChecker is called
on a checker that is already registered.
Differential Revision: https://reviews.llvm.org/D55429
llvm-svn: 352292
Unfortunately, up until now, the fact that certain checkers depended on one
another was known, but how these actually unfolded was hidden deep within the
implementation. For example, many checkers (like RetainCount, Malloc or CString)
modelled a certain functionality, and exposed certain reportable bug types to
the user. For example, while MallocChecker models many many different types of
memory handling, the actual "unix.MallocChecker" checker the user was exposed to
was merely and option to this modeling part.
Other than this being an ugly mess, this issue made resolving the checker naming
issue almost impossible. (The checker naming issue being that if a checker
registered more than one checker within its registry function, both checker
object recieved the same name) Also, if the user explicitly disabled a checker
that was a dependency of another that _was_ explicitly enabled, it implicitly,
without "telling" the user, reenabled it.
Clearly, changing this to a well structured, declarative form, where the
handling of dependencies are done on a higher level is very much preferred.
This patch, among the detailed things later, makes checkers declare their
dependencies within the TableGen file Checkers.td, and exposes the same
functionality to plugins and statically linked non-generated checkers through
CheckerRegistry::addDependency. CheckerRegistry now resolves these dependencies,
makes sure that checkers are added to CheckerManager in the correct order,
and makes sure that if a dependency is disabled, so will be every checker that
depends on it.
In detail:
* Add a new field to the Checker class in CheckerBase.td called Dependencies,
which is a list of Checkers.
* Move unix checkers before cplusplus, as there is no forward declaration in
tblgen :/
* Add the following new checkers:
- StackAddrEscapeBase
- StackAddrEscapeBase
- CStringModeling
- DynamicMemoryModeling (base of the MallocChecker family)
- IteratorModeling (base of the IteratorChecker family)
- ValistBase
- SecuritySyntaxChecker (base of bcmp, bcopy, etc...)
- NSOrCFErrorDerefChecker (base of NSErrorChecker and CFErrorChecker)
- IvarInvalidationModeling (base of IvarInvalidation checker family)
- RetainCountBase (base of RetainCount and OSObjectRetainCount)
* Clear up and registry functions in MallocChecker, happily remove old FIXMEs.
* Add a new addDependency function to CheckerRegistry.
* Neatly format RUN lines in files I looked at while debugging.
Big thanks to Artem Degrachev for all the guidance through this project!
Differential Revision: https://reviews.llvm.org/D54438
llvm-svn: 352287
The actual implementation of unix.API features a dual-checker: two checkers in
one, even though they don't even interact at all. Split them up, as this is a
problem for establishing dependencies.
I added no new code at all, just merely moved it around.
Since the plist files change (and that's a benefit!) this patch isn't NFC.
Differential Revision: https://reviews.llvm.org/D55425
llvm-svn: 352278
As noted in https://bugs.llvm.org/show_bug.cgi?id=36651, the specialization for
isPodLike<std::pair<...>> did not match the expectation of
std::is_trivially_copyable which makes the memcpy optimization invalid.
This patch renames the llvm::isPodLike trait into llvm::is_trivially_copyable.
Unfortunately std::is_trivially_copyable is not portable across compiler / STL
versions. So a portable version is provided too.
Note that the following specialization were invalid:
std::pair<T0, T1>
llvm::Optional<T>
Tests have been added to assert that former specialization are respected by the
standard usage of llvm::is_trivially_copyable, and that when a decent version
of std::is_trivially_copyable is available, llvm::is_trivially_copyable is
compared to std::is_trivially_copyable.
As of this patch, llvm::Optional is no longer considered trivially copyable,
even if T is. This is to be fixed in a later patch, as it has impact on a
long-running bug (see r347004)
Note that GCC warns about this UB, but this got silented by https://reviews.llvm.org/D50296.
Differential Revision: https://reviews.llvm.org/D54472
llvm-svn: 351701
With commit r351627, LLVM gained the ability to apply (existing) IPO
optimizations on indirections through callbacks, or transitive calls.
The general idea is that we use an abstraction to hide the middle man
and represent the callback call in the context of the initial caller.
It is described in more detail in the commit message of the LLVM patch
r351627, the llvm::AbstractCallSite class description, and the
language reference section on callback-metadata.
This commit enables clang to emit !callback metadata that is
understood by LLVM. It does so in three different cases:
1) For known broker functions declarations that are directly
generated, e.g., __kmpc_fork_call for the OpenMP pragma parallel.
2) For known broker functions that are identified by their name and
source location through the builtin detection, e.g.,
pthread_create from the POSIX thread API.
3) For user annotated functions that carry the "callback(callee, ...)"
attribute. The attribute has to include the name, or index, of
the callback callee and how the passed arguments can be
identified (as many as the callback callee has). See the callback
attribute documentation for detailed information.
Differential Revision: https://reviews.llvm.org/D55483
llvm-svn: 351629
Add a defensive check against an invalid destructor in the CFG.
Unions with fields with destructors have their own destructor implicitly
deleted. Due to a bug in the CFG we're still trying to evaluate them
at the end of the object's lifetime and crash because we are unable
to find the destructor's declaration.
rdar://problem/47362608
Differential Revision: https://reviews.llvm.org/D56899
llvm-svn: 351610
If a property is defined with a custom getter, we should not behave as if
the getter simply returns an instance variable. We don't support setters,
so they aren't affected.
On top of being the right thing to do, this also fixes a crash on
the newly added test - in which a property and its getter are defined
in two separate categories.
rdar://problem/47051544
Differential Revision: https://reviews.llvm.org/D56823
llvm-svn: 351609
This is especially crucial for reports related to use-after-move of
standard library objects.
rdar://problem/47338505
Differential Revision: https://reviews.llvm.org/D56824
llvm-svn: 351500
SymbolReaper now realizes that our liveness analysis isn't sharp enough
to discriminate between liveness of, say, variables and their fields.
Surprisingly, this didn't quite work before: having a variable live only
through Environment (eg., calling a C++ method on a local variable
as the last action ever performed on that variable) would not keep the
region value symbol of a field of that variable alive.
It would have been broken in the opposite direction as well, but both
Environment and RegionStore use the scanReachableSymbols mechanism for finding
live symbols regions within their values, and due to that they accidentally
end up marking the whole chain of super-regions as live when at least one
sub-region is known to be live.
It is now a direct responsibility of SymbolReaper to maintain this invariant,
and a unit test was added in order to make sure it stays that way.
Differential Revision: https://reviews.llvm.org/D56632
rdar://problem/46914108
llvm-svn: 351499
This is not NFC strictly speaking, since it unifies CleanupAttr handling,
so that out parameters now also understand it.
Differential Revision: https://reviews.llvm.org/D56759
llvm-svn: 351394
compiler identification lines in test-cases.
(Doing so only because it's then easier to search for references which
are actually important and need fixing.)
llvm-svn: 351200
We need to be able to emit the diagnostic at PreImplicitCall,
and the patch implements this functionality.
However, for now the need for emitting such diagnostics is not all that great:
it is only necessary to not crash when emitting a false positive due to an
unrelated issue of having dead symbol collection not working properly.
Coming up with a non-false-positive test seems impossible with the current
set of checkers, though it is likely to be needed for good things as well
in the future.
Differential Revision: https://reviews.llvm.org/D56042
rdar://problem/46911462
llvm-svn: 350907
The current argument order has "expected" and "actual" the wrong way around,
so that the diff shows the change from expected to actual, not from actual to expected.
Namely, if the expected diagnostics contains the string "foo", but the analyzer emits "bar",
we really want to see:
```
- foo
+ bar
```
not
```
- bar
+ foo
```
since adapting to most changes would require applying that diff to the expected output.
Differential Revision: https://reviews.llvm.org/D56340
llvm-svn: 350866
Summary: This is just changing naming and documentation to be general about external definitions that can be imported for cross translation unit analysis. There is at least a plan to add VarDecls: D46421
Reviewers: NoQ, xazax.hun, martong, a.sidorin, george.karpenkov, serge-sans-paille
Reviewed By: xazax.hun, martong
Subscribers: mgorny, whisperity, baloghadamsoftware, szepet, rnkovacs, mikhail.ramalho, Szelethus, donat.nagy, dkrupp, cfe-commits
Differential Revision: https://reviews.llvm.org/D56441
llvm-svn: 350852
This patch is a different approach to landing the reverted r349701.
It is expected to have the same object (memory region) treated as if it has
different types in different program points. The correct behavior for
RegionStore when an object is stored as an object of type T1 but loaded as
an object of type T2 is to store the object as if it has type T1 but cast it
to T2 during load.
Note that the cast here is some sort of a "reinterpret_cast" (even in C). For
instance, if you store an integer and load a float, you won't get your integer
represented as a float; instead, you will get garbage.
Admit that we cannot perform the cast and return an unknown value.
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349984
The fix done in D55465 did not previously apply when the function was inlined.
rdar://46889541
Differential Revision: https://reviews.llvm.org/D55976
llvm-svn: 349876
Previously, we were not printing a note at all if at least one of the parameters was not annotated.
rdar://46888422
Differential Revision: https://reviews.llvm.org/D55972
llvm-svn: 349875
If an -analyzer-config is passed through -Xanalyzer, it is not found while
looking for -Xclang.
Additionally, don't emit -analyzer-config-compatibility-mode for *every*
-analyzer-config flag we encounter; one is enough.
https://reviews.llvm.org/D55823
rdar://problem/46504165
llvm-svn: 349866
If it ends with "Retain" like CFRetain and returns a CFTypeRef like CFRetain,
then it is not necessarily a CFRetain. But it is indeed true that these two
return something retained.
Differential Revision: https://reviews.llvm.org/D55907
rdar://problem/39390714
llvm-svn: 349862
The -c flag causes a .o file to appear every time we run a test.
Remove it.
Differential Revision: https://reviews.llvm.org/D55823
rdar://problem/46504165
llvm-svn: 349835
Buildbots can't find the linker, which we don't really need in our tests.
Differential Revision: https://reviews.llvm.org/D55823
rdar://problem/46504165
llvm-svn: 349828
Since r348038 we emit an error every time an -analyzer-config option is not
found. The driver, however, suppresses this error with another flag,
-analyzer-config-compatibility-mode, so backwards compatibility is maintained,
while analyzer developers still enjoy the new typo-free experience.
The backwards compatibility turns out to be still broken when the -analyze
action is not specified; it is still possible to specify -analyzer-config
in that case. This should be fixed now.
Patch by Kristóf Umann!
Differential Revision: https://reviews.llvm.org/D55823
rdar://problem/46504165
llvm-svn: 349824
This adds anchors to all of the documented checks so that you can directly link to a check by a stable name. This is useful because the SARIF file format has a field for specifying a URI to documentation for a rule and some viewers, like CodeSonar, make use of this information. These links are then exposed through the SARIF exporter.
llvm-svn: 349812
This reverts commit r349701.
The patch was incorrect. The whole point of CastRetrievedVal()
is to handle the case in which the type from which the cast is made
(i.e., the "type" of value `V`) has nothing to do with the type of
the region it was loaded from (i.e., `R->getValueType()`).
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349798
It is expected to have the same object (memory region) treated as if it has
different types in different program points. The correct behavior for
RegionStore when an object is stored as an object of type T1 but loaded as
an object of type T2 is to store the object as if it has type T1 but cast it
to T2 during load.
Note that the cast here is some sort of a "reinterpret_cast" (even in C). For
instance, if you store a float and load an integer, you won't have your float
rounded to an integer; instead, you will have garbage.
Admit that we cannot perform the cast as long as types we're dealing with are
non-trivial (neither integers, nor pointers).
Of course, if the cast is not necessary (eg, T1 == T2), we can still load the
value just fine.
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349701
Static Analyzer processes the program function-by-function, sometimes diving
into other functions ("inlining" them). When an object is returned from an
inlined function, Return Value Optimization is modeled, and the returned object
is constructed at its return location directly.
When an object is returned from the function from which the analysis has started
(the top stack frame of the analysis), the return location is unknown. Model it
with a SymbolicRegion based on a conjured symbol that is specifically tagged for
that purpose, because this is generally the correct way to symbolicate
unknown locations in Static Analyzer.
Fixes leak false positives when an object is returned from top frame in C++17:
objects that are put into a SymbolicRegion-based memory region automatically
"escape" and no longer get reported as leaks. This only applies to C++17 return
values with destructors, because it produces a redundant CXXBindTemporaryExpr
in the call site, which confuses our liveness analysis. The actual fix
for liveness analysis is still pending, but it is no longer causing problems.
Additionally, re-enable temporary destructor tests in C++17.
Differential Revision: https://reviews.llvm.org/D55804
rdar://problem/46217550
llvm-svn: 349696